1
|
Liu H, Zhu Y, Chen W, Sheng R, Liu C, Sun Y, Liu J, Wang M, Lu J, Chen J, Zhang W. Fullerol Initiates Stem Cell-Nanomaterials Interactions for Enhanced Tissue Regeneration via Clathrin-Mediated Endocytosis and Nuclear Factor Erythroid 2-Related Factor 2 Signaling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25011-25034. [PMID: 40241445 DOI: 10.1021/acsami.5c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The advancement of nanomedicine requires a thorough understanding of the intrinsic bioactivity and molecular interactions of nanomaterials for safe and effective clinical applications, which remains lacking for most currently developed nanomaterials. Here, we uncover the unique intrinsic bioactivity and regulatory mechanisms of carbon-based fullerol nanomaterials through high-throughput molecular analysis and explore their therapeutic potential for tissue regeneration using tissue engineering approaches. Fullerol exhibits intrinsic pro-differentiation and antioxidant properties that enhance the osteogenesis and chondrogenesis of MSCs. Mechanistically, proteomic analysis combined with small-molecule inhibition studies reveals that fullerol is internalized by MSCs via clathrin-mediated endocytosis and activates NRF2 signaling, thereby exerting antioxidant effects that restore impaired MSC viability and differentiation under oxidative stress. Leveraging these unique bioactivities, we develop a fullerol-functionalized hydrogel with feasible physicochemical properties and triple biological functions in antioxidant, pro-osteogenic, and pro-chondrogenic effects and confirm its great regenerative capacity for both cartilage and subchondral bone by promoting structural restoration and improving functional recovery in a rat osteochondral defect model. Our findings offer new insights into the intricate interactions between stem cells and nanomaterials at the cellular and molecular levels and broaden the potential biomedical applications of fullerol for future cartilage and bone regeneration therapies.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Yue Zhu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Weixu Chen
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 221000 Xuzhou, China
| | - Renwang Sheng
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Yuzhi Sun
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 210008 Nanjing, China
| | - Jia Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Mingyue Wang
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Wei Zhang
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
2
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
3
|
Kim MJ, Yoon SB, Ji HB, Kim CR, Han JH, Kim SN, Min CH, Lee C, Chang LS, Choy YB. In Situ Hydrogel with Immobilized Mn-Porphyrin for Reactive Oxygen Species Scavenging, Oxygen Generation, and Risedronate Delivery in Bone Defect Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40682-40694. [PMID: 39046105 DOI: 10.1021/acsami.4c08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled in situ gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected. Additionally, the hydrogel was incorporated with risedronate to induce synergistic effects of ROS scavenging, O2 generation, and sustained drug release. In vitro studies demonstrated enhanced proliferation and differentiation of MG-63 cells and suppressed proliferation and differentiation of RAW 264.7 cells in ROS-rich environments. In vivo evaluation of a calvarial bone defect model revealed that this multifunctional hydrogel facilitated significant bone regeneration. Therefore, the hydrogel proposed in this study is a promising strategy for addressing complex wound environments and promoting effective bone healing.
Collapse
Affiliation(s)
- Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Chang Hee Min
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Lan Sook Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea
- ToBIOS Inc., 3F, 9-7 Seongbuk-ro 5-gil, Seongbuk-gu, Seoul 02880, Republic of Korea
| |
Collapse
|
4
|
Qamar R, Choubisa R, Sen A, Parikh M, Bishnoi S, Yadav M, Srivastava SS, Sayed HS, Choudhary C. Exploring Ascorbic Acid's Role in Orthopedic Practices: Present Theories, Innovative Approaches, and Prospects. Cureus 2024; 16:e60164. [PMID: 38868284 PMCID: PMC11166896 DOI: 10.7759/cureus.60164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
In the human body, ascorbic acid (AA) is known for its potent antioxidant and reducing properties and also plays a vital role in supporting the growth of bones and cartilage. It has been used extensively in orthopedic surgery. Ongoing studies under the umbrella of ascorbic acid research investigate its impact on bone and tendon physiology, as well as its influence on joint replacement and postoperative pain. The majority of both laboratory and human studies link the usage of ascorbic acid to enhanced bone health and improved tendon healing. Recent literature suggest that ascorbic acid administration may have a positive impact on the outcome of orthopedic procedures. On the other hand, controversy exists regarding the efficacy of ascorbic acid in reducing the incidence of complex regional pain syndrome. In brief, the effectiveness of ascorbic acid in enhancing orthopedic procedure outcomes remains a subject of ongoing investigation. Although certain studies have hinted at the potential positive influence of ascorbic acid on these outcomes, further research is required to validate its effectiveness and ascertain the ideal dosage and method of administration for maximizing its anticipated advantages. To establish the efficacy of ascorbic acid in improving orthopedic procedure outcomes, rigorous human trials of high quality are imperative. The aim of this review was to provide an overview of ascorbic acid's utilization in orthopedic practices and to pinpoint prospective areas for future research.
Collapse
Affiliation(s)
- Rayed Qamar
- Orthopedics and Traumatology, Geetanjali Medical College and Hospital, Udaipur, IND
| | | | - Akshit Sen
- Orthopedics, Geetanjali Medical College and Hospital, Udaipur, IND
| | - Mit Parikh
- Orthopedics, Geetanjali Medical College and Hospital, Udaipur, IND
| | | | - Mayank Yadav
- Orthopedics, Geetanjali Medical College and Hospital, Udaipur, IND
| | | | - Haseeb S Sayed
- Orthopedics, Geetanjali Medical College and Hospital, Udaipur, IND
| | | |
Collapse
|
5
|
Ahuja N, Awad K, Yang S, Dong H, Mikos A, Aswath P, Young S, Brotto M, Varanasi V. SiON x Coating Regulates Mesenchymal Stem Cell Antioxidant Capacity via Nuclear Erythroid Factor 2 Activity under Toxic Oxidative Stress Conditions. Antioxidants (Basel) 2024; 13:189. [PMID: 38397787 PMCID: PMC10885901 DOI: 10.3390/antiox13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Healing in compromised and complicated bone defects is often prolonged and delayed due to the lack of bioactivity of the fixation device, secondary infections, and associated oxidative stress. Here, we propose amorphous silicon oxynitride (SiONx) as a coating for the fixation devices to improve both bioactivity and bacteriostatic activity and reduce oxidative stress. We aimed to study the effect of increasing the N/O ratio in the SiONx to fine-tune the cellular activity and the antioxidant effect via the NRF2 pathway under oxidative stress conditions. The in vitro studies involved using human mesenchymal stem cells (MSCs) to examine the effect of SiONx coatings on osteogenesis with and without toxic oxidative stress. Additionally, bacterial growth on SiONx surfaces was studied using methicillin-resistant Staphylococcus aureus (MRSA) colonies. NRF2 siRNA transfection was performed on the hMSCs (NRF2-KD) to study the antioxidant response to silicon ions. The SiONx implant surfaces showed a >4-fold decrease in bacterial growth vs. bare titanium as a control. Increasing the N/O ratio in the SiONx implants increased the alkaline phosphatase activity >1.5 times, and the other osteogenic markers (osteocalcin, RUNX2, and Osterix) were increased >2-fold under normal conditions. Increasing the N/O ratio in SiONx enhanced the protective effects and improved cell viability against toxic oxidative stress conditions. There was a significant increase in osteocalcin activity compared to the uncoated group, along with increased antioxidant activity under oxidative stress conditions. In NRF2-KD cells, there was a stunted effect on the upregulation of antioxidant markers by silicon ions, indicating a role for NRF2. In conclusion, the SiONx coatings studied here displayed bacteriostatic properties. These materials promoted osteogenic markers under toxic oxidative stress conditions while also enhancing antioxidant NRF2 activity. These results indicate the potential of SiONx coatings to induce in vivo bone regeneration in a challenging oxidative stress environment.
Collapse
Affiliation(s)
- Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Su Yang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76010, USA
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, Rice University, Houston, TX 77005, USA
| | - Pranesh Aswath
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Venu Varanasi
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
6
|
Guo Q, Yang S, Ni G, Ji J, Luo M, Du W. The Preparation and Effects of Organic-Inorganic Antioxidative Biomaterials for Bone Repair. Biomedicines 2023; 12:70. [PMID: 38255177 PMCID: PMC10813766 DOI: 10.3390/biomedicines12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Reactive oxygen species (ROS) has great influence in many physiological or pathological processes in organisms. In the site of bone defects, the overproduced ROS significantly affects the dynamic balance process of bone regeneration. Many antioxidative organic and inorganic antioxidants showed good osteogenic ability, which has been widely used for bone repair. It is of great significance to summarize the antioxidative bone repair materials (ABRMs) to provide guidance for the future design and preparation of osteogenic materials with antioxidative function. Here, this review introduced the major research direction of ABRM at present in nanoscale, 2-dimensional coating, and 3-dimensional scaffolds. Moreover, the referring main active substances and antioxidative properties were classified, and the positive roles of antioxidative materials for bone repair have also been clearly summarized in signaling pathways, antioxidant enzymes, cellular responses and animal levels.
Collapse
Affiliation(s)
- Qihao Guo
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China;
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Wei Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
7
|
Awad K, Ahuja N, Yacoub AS, Brotto L, Young S, Mikos A, Aswath P, Varanasi V. Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects. FRONTIERS IN AGING 2023; 4:1217054. [PMID: 37520216 PMCID: PMC10376722 DOI: 10.3389/fragi.2023.1217054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.
Collapse
Affiliation(s)
- Kamal Awad
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Neelam Ahuja
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Ahmed S. Yacoub
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Leticia Brotto
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, United States
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Venu Varanasi
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
8
|
Zhou J, Li Y, He J, Liu L, Hu S, Guo M, Liu T, Liu J, Wang J, Guo B, Wang W. ROS Scavenging Graphene-Based Hydrogel Enhances Type H Vessel Formation and Vascularized Bone Regeneration via ZEB1/Notch1 Mediation. Macromol Biosci 2023; 23:e2200502. [PMID: 36637816 DOI: 10.1002/mabi.202200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Indexed: 01/14/2023]
Abstract
The regeneration strategy for bone defects is greatly limited by the bone microenvironment, and excessive reactive oxygen species (ROS) seriously hinder the formation of new bone. Reduced graphene oxide (rGO) is expected to meet the requirements because of its ability to scavenge free radicals through electron transfer. Antioxidant hydrogels based on gelatine methacrylate (GM), acrylyl-β-cyclodextrin (Ac-CD), and rGO functionalized with β-cyclodextrin (β-CD) are developed for skull defect regeneration, but the mechanism of how rGO-based hydrogels enhance bone repair remains unclear. In this work, it is confirmed that the GM/Ac-CD/rGO hydrogel has good antioxidant capacity, and promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). The rGO-based hydrogel affects ZEB1/Notch1 to promote tube formation. Furthermore, two-photon laser scanning microscopy is used to observe the ROS in a skull defect. The rGO-based hydrogel promotes type H vessel formation in a skull defect. In conclusion, the hydrogel neutralizes ROS in the vicinity of a skull defect and stimulates ZEB1/Notch1 to promote the coupling of osteogenesis and angiogenesis, which may be a possible approach for bone regeneration.
Collapse
Affiliation(s)
- Junpeng Zhou
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Yongwei Li
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liying Liu
- Biomedical Experimental Center of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710116, China
| | - Shugang Hu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Meng Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Tun Liu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Junzheng Liu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| |
Collapse
|
9
|
Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects. Biomaterials 2022; 286:121574. [DOI: 10.1016/j.biomaterials.2022.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
|
10
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
11
|
Yang J, Liang J, Zhu Y, Hu M, Deng L, Cui W, Xu X. Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing. Bioact Mater 2021; 6:4801-4815. [PMID: 34095630 PMCID: PMC8144672 DOI: 10.1016/j.bioactmat.2021.05.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
The balance of redox homeostasis is key to stem cell maintenance and differentiation. However, this balance is disrupted by the overproduced reactive oxygen species (ROS) in pathological conditions, which seriously impair the therapeutic efficacy of stem cells. In the present study, highly dispersed fullerol nanocrystals with enhanced bioreactivity were incorporated into hydrogel microspheres using one-step innovative microfluidic technology to construct fullerol-hydrogel microfluidic spheres (FMSs) for in situ regulating the redox homeostasis of stem cells and promoting refractory bone healing. It was demonstrated that FMSs exhibited excellent antioxidant activity to quench both intracellular and extracellular ROS, sparing stem cells from oxidative stress damage. Furthermore, these could effectively promote the osteogenic differentiation of stem cells with the activation of FoxO1 signaling, indicating the intrinsically osteogenic property of FMSs. By injecting the stem cells-laden FMSs into rat calvarial defects, the formation of new bone was remarkably reinforced, which is a positive synergic effect from modulating the ROS microenvironment and enhancing the osteogenesis of stem cells. Collectively, the antioxidative FMSs, as injectable stem cell carriers, hold enormous promise for refractory bone healing, which can also be expanded to deliver a variety of other cells, targeting diseases that require in situ redox regulation.
Collapse
Affiliation(s)
- Jielai Yang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jing Liang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuan Zhu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Mu Hu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wenguo Cui
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiangyang Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
12
|
Yang S, Ji J, Luo M, Li H, Gao Z. Poly(tannic acid) nanocoating based surface modification for construction of multifunctional composite CeO 2NZs to enhance cell proliferation and antioxidative viability of preosteoblasts. NANOSCALE 2021; 13:16349-16361. [PMID: 34581718 DOI: 10.1039/d1nr02799a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceria (CeO2) based materials possess many antioxidant enzyme-like activities and unique properties for bone repair, but their free radical scavenging function is still insufficient. In order to deal with the complex oxidative stress environment in bone repair, multifunctional composite CeO2 nanozymes (CeO2NZs), featuring multiple antioxidative properties, were constructed via surface modification on CeO2NZs with nanoscale poly(tannic acid) (PTA) coatings. Moreover, we adjusted pH conditions (ranging from 4 to 9) to effectively control the formation and antioxidative properties of PTA coatings on CeO2NZ surfaces. Here, the physical properties of this novel inorganic and organic composite antioxidant, such as surface morphology, particle size, crystal structure, surface charge and element composition, were thoroughly characterized. The PTA/CeO2NZs showed obvious coating morphology under weak acid conditions (pH = 5-6), and the PTA layer at pH = 5 is about 1 nm in thickness. Compared with untreated CeO2NZs, the PTA/CeO2NZs showed stronger SOD-like activity and obviously higher free radical scavenging rate (for both ABTS+˙ and DPPH˙).Notably, this composite antioxidative nanozyme not only exhibited favorable cell proliferation of preosteoblasts (MC3T3-E1) but also provided strong antioxidative property to maintain cell vitality against H2O2 induced oxidative damage. In particular, this study provides new insights into the designing of surface polyphenolic coatings at the nanoscale, and these multiple antioxidative properties shown by PTA coated CeO2NZs make them suitable for protecting cells under the oxidative stress environment.
Collapse
Affiliation(s)
- Shuoshuo Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
13
|
Shi Z, Wang S, Deng J, Gong Z. PGC-1α attenuates the oxidative stress-induced impaired osteogenesis and angiogenesis regulation effects of mesenchymal stem cells in the presence of diabetic serum. Biochem Biophys Rep 2021; 27:101070. [PMID: 34286110 PMCID: PMC8278528 DOI: 10.1016/j.bbrep.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is believed to induce dysfunction of the bone remodeling process and be associated with progressive loss of bone mass. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master controller during mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α could function as a cyto-protective effector in mesenchymal stem cells (MSCs) under oxidative stress conditions. In this study, diabetic serum was firstly used to treat MSCs to induce oxidative damage. The anti-oxidative protective effects of PGC-1α overexpression on MSCs, as well as MSCs' osteogenesis and angiogenic regulation effects were investigated in vitro. Results showed that diabetic conditions induced significantly increase of intracellular oxidative damage and mitochondrial permeability transition pore (mPTP) opening activity, decrease of cellular viability, and osteogenic differentiation and pro-angiogenic regulation effects of MSCs. However, the diabetic conditions induced oxidative impair on MSCs were significantly alleviated via PGC-1α overexpression under diabetic conditions. Taken together, this study indicates the anti-oxidative treatment potential of PGC-1α regulation as a promising strategy to promote coupling pro-osteogenesis and pro-angiogenesis effects of MSCs.
Collapse
Affiliation(s)
- Zongxin Shi
- Department of Orthopedic Surgery, Liangxiang Hospital of Beijing Fangshan District, and Liangxiang Teaching Hospital of Capital Medical University, No.45, Gongchen Ave., Liangxiang, Fangshan Dist., Beijing, 102488, China
| | - Shikun Wang
- Department of Orthopedic Surgery, Liangxiang Hospital of Beijing Fangshan District, and Liangxiang Teaching Hospital of Capital Medical University, No.45, Gongchen Ave., Liangxiang, Fangshan Dist., Beijing, 102488, China
| | - Jiechao Deng
- Department of Orthopedic Surgery, Liangxiang Hospital of Beijing Fangshan District, and Liangxiang Teaching Hospital of Capital Medical University, No.45, Gongchen Ave., Liangxiang, Fangshan Dist., Beijing, 102488, China
| | - Zishun Gong
- Department of Orthopedic Surgery, Liangxiang Hospital of Beijing Fangshan District, and Liangxiang Teaching Hospital of Capital Medical University, No.45, Gongchen Ave., Liangxiang, Fangshan Dist., Beijing, 102488, China
| |
Collapse
|
14
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Hung KC, Chiang MH, Wu SC, Chang YJ, Ho CN, Wang LK, Chen JY, Chen KH, Sun CK. A meta-analysis of randomized clinical trials on the impact of oral vitamin C supplementation on first-year outcomes in orthopedic patients. Sci Rep 2021; 11:9225. [PMID: 33927326 PMCID: PMC8085077 DOI: 10.1038/s41598-021-88864-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
This meta-analysis aimed at investigating the impact of oral vitamin C supplementation on the post-procedural recovery of orthopedic patients, including functional outcomes and complex regional pain syndrome type I (CRPS I). Literature search using the Medline, Cochrane Library, and Embase databases from inception till March 2021 identified seven eligible randomized controlled trials with 1,361 participants. Forest plot revealed no significant difference in the functional outcomes at 6-12 months [standardized mean difference (SMD) = -0.00, 95% CI - 0.19 to 0.18, 467 patients], risk of overall complications (RR = 0.98, 95% CI 0.68 to 1.39, 426 patients), and pain severity at 3-6 months (SMD = - 0.18, 95% CI - 0.49 to 0.12, 486 patients) between patients with and without oral vitamin C supplementation. Pooled analysis showed that vitamin C treatment reduced the risk of CRPS I regardless of dosage (RR = 0.46, 95% CI 0.25 to 0.85, 1143 patients). In conclusion, the current meta-analysis demonstrated that oral vitamin C supplementation may reduce the risk of complex regional pain syndrome type I but did not improve the functional outcomes in orthopedic patients. Nevertheless, because of the small number of trials included in the present study, further large-scale clinical studies are warranted to support our findings.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Min-Hsien Chiang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
- College of Health Sciences, Chang Jung Christian University, Tainan City, Taiwan
| | - Chun-Ning Ho
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Kee-Hsin Chen
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
- Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Evidence-Based Knowledge Translation Center, Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, No.1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
- College of Medicine, I-Shou University, Kaohsiung City, Taiwan.
| |
Collapse
|
16
|
Oakes B, Bolia IK, Weber AE, Petrigliano FA. Vitamin C in orthopedic practices: Current concepts, novel ideas, and future perspectives. J Orthop Res 2021; 39:698-706. [PMID: 33300201 DOI: 10.1002/jor.24947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023]
Abstract
Vitamin C (ascorbic acid), is an important antioxidant that has been applied broadly in the field of orthopaedics. Current research on vitamin C examines the molecule's role in bone and tendon physiology, as well as joint replacement and Postoperative pain. Most laboratory and human studies associate the use of vitamin C with improved bone health and tendon healing. Recent literature moderately supports the use of vitamin C to improve functional outcomes, decreased postoperative pain, and prevent complex regional pain syndrome following orthopaedic procedures. The perioperative use of vitamin C in patients undergoing joint replacement surgery and anterior cruciate ligament reconstruction is still under investigation. Overall, there is need for high-quality human trials to confirm whether vitamin C can potentiate the outcomes of orthopaedic procedures and to determine optimal dosage and means of administration to maximize its proposed benefits. The purpose of this review was to summarize the application of vitamin C in orthopaedic practices and to identify potential areas for future study.
Collapse
Affiliation(s)
- Bennett Oakes
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Ioanna K Bolia
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Alexander E Weber
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Huang L, Zhang J, Liu X, Zhao T, Gu Z, Li Y. l-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ren Y, Wang ZY, Wei X, Xu L, Gul RM, Huang SS, Xu JZ, Li ZM. Insights into Oxidation of the Ultrahigh Molecular Weight Polyethylene Artificial Joint Related to Lipid Peroxidation. ACS APPLIED BIO MATERIALS 2019; 3:547-553. [PMID: 35019398 DOI: 10.1021/acsabm.9b00960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zi-Yang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Xin Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201899 Shanghai, China
| | - Rizwan M. Gul
- Department of Mechanical Engineering, University of Engineering and Technology, 25120 Peshawar, Pakistan
| | - Shi-Shu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| |
Collapse
|
19
|
Falfushynska HI, Horyn OI, Poznansky DV, Osadchuk DV, Savchyn TО, Krytskyi TІ, Merva LS, Hrabra SZ. Oxidative stress and thiols depletion impair tibia fracture healing in young men with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Dnmt3a-Mediated DNA Methylation Changes Regulate Osteogenic Differentiation of hMSCs Cultivated in the 3D Scaffolds under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4824209. [PMID: 31827676 PMCID: PMC6885223 DOI: 10.1155/2019/4824209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/07/2019] [Indexed: 01/17/2023]
Abstract
Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and resorption. However, the effect and mechanism of DNA methylation changes induced by OS on bone formation after implantation still remain unknown. Three-dimensional (3D) cell culture systems are much closer to the real situation than traditional monolayer cell culture systems in mimicking the in vivo microenvironment. We have developed porous 3D scaffolds composed of mineralized collagen type I, which mimics the composition of the extracellular matrix of human bone. Here, we first established a 3D culture model of human mesenchymal stem cells (hMSCs) seeded in the biomimetic scaffolds using 160 μM H2O2 to simulate the microenvironment of osteogenesis after implantation. Our results showed that decreased methylation levels of ALP and RUNX2 were induced by H2O2 treatment in hMSCs cultivated in the 3D scaffolds. Furthermore, we found that Dnmt3a was significantly downregulated in a porcine anterior lumbar interbody fusion model and was confirmed to be reduced by H2O2 treatment using the 3D in vitro model. The hypomethylation of ALP and RUNX2 induced by H2O2 treatment was abolished by Dnmt3a overexpression. Moreover, our findings demonstrated that the Dnmt inhibitor 5-AZA can enhance osteogenic differentiation of hMSCs under OS, evidenced by the increased expression of ALP and RUNX2 accompanied by the decreased DNA methylation of ALP and RUNX2. Taken together, these results suggest that Dnmt3a-mediated DNA methylation changes regulate osteogenic differentiation and 5-AZA can enhance osteogenic differentiation via the hypomethylation of ALP and RUNX2 under OS. The biomimetic 3D scaffolds combined with 5-AZA and antioxidants may serve as a promising novel strategy to improve osteogenesis after implantation.
Collapse
|
21
|
Azizieh FY, Shehab D, Jarallah KA, Gupta R, Raghupathy R. Circulatory Levels of RANKL, OPG, and Oxidative Stress Markers in Postmenopausal Women With Normal or Low Bone Mineral Density. Biomark Insights 2019; 14:1177271919843825. [PMID: 31452599 PMCID: PMC6700864 DOI: 10.1177/1177271919843825] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and oxidative stress markers are suggested to contribute to bone loss in osteoporosis that occurs in menopause. However, the association between these markers and bone mineral density (BMD) is controversial. The aim of this study was to measure circulatory levels of these parameters in postmenopausal women with normal or low BMD. Methods: The study population included 71 postmenopausal women, of whom 25 had normal BMD, 31 had osteopenia, and 15 had osteoporosis. Serum levels of RANKL, OPG, and 5 oxidative stress markers (catalase, peroxiredoxin 2 [PRX2], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and thioredoxin [TRx1]) were measured using the Multiplex system. Results: As compared with subjects having normal BMD, subjects with low BMD had significantly lower median serum levels of OPG, catalase, SOD2, and PRX2 (P = .004, .031, .044, and .041 respectively). Although levels of RANKL were not different between the 2 groups, the RANKL/OPG ratio was higher in women with low BMD (P = .027). Conclusions: These data provide insights into the possible roles of OPG, RANKL, and oxidative stress in the pathogenesis of postmenopausal osteoporosis. However, the lack of association between these markers and BMD indicates that osteoporosis is complex and multivariate.
Collapse
Affiliation(s)
- Fawaz Y Azizieh
- Department of Mathematics and Natural Sciences, International Centre for Applied Mathematics and Computational Bioengineering, Gulf University for Science and Technology, Hawally, Kuwait
| | - Diaa Shehab
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Khaled Al Jarallah
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Renu Gupta
- Department of Radiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
22
|
Zhou T, Yan L, Xie C, Li P, Jiang L, Fang J, Zhao C, Ren F, Wang K, Wang Y, Zhang H, Guo T, Lu X. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805440. [PMID: 31106983 DOI: 10.1002/smll.201805440] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method. During LBL-PED, the PPy-PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy-PDA-HA films. Ultimately, the PPy-PDA-HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy-PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.
Collapse
Affiliation(s)
- Ting Zhou
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Liwei Yan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lili Jiang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cancan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tailin Guo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
23
|
Yang S, Wang Y, Luo S, Shan C, Geng Y, Zhang T, Sheng S, Zan X. Building polyphenol and gelatin films as implant coating, evaluating from in vitro and in vivo performances. Colloids Surf B Biointerfaces 2019; 181:549-560. [PMID: 31185447 DOI: 10.1016/j.colsurfb.2019.05.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Bone related implants have huge potential market in global. Improving the implant outcomes and probability of implant success are highly pursued to relieve the pain of patients and burden on native healthy system. There are growing evidence to support reactive oxygen species (ROS) directly involved in bone diseases and failure of implants. Taking advantage of the antioxidant property of tannic acid (TA) and biocompatibility of gelatin (Gel), the TA/Gel multilayer film was fabricated by layer by layer method, and the growing process of this film was monitored by QCM-D. The physical properties of TA/Gel film were further well characterized and modulated. In cellular test, TA/Gel multilayer film displayed good antioxidant properties under ROS stress environment (after H2O2 treatment flourscence intensity increased 38.9-fold for glasses, only ˜6-fold for (TA/Gel)8), facilitating cell attachment, fastening spreading at early stage and accelerating proliferation in beginning 2 day. Area per cell on (TA/ Gel)4-0.15 M is 1.5-fold higher than that on glass at 2 h, while it became 2.3-fold higher at 4 h. Moreover, these films performed both enhanced osteogenesis in vitro test and bone formation in vivo in the animal bone implanting model. Our results supported discovered the antioxidant coating played the critical role one the success of bone related implants, which could be particularly noted in the future implant design. And the strategy applied here, utilizing the interactions between polyphenol and proteins to construct multilayer film, will pave the way to fabricating an antioxidant coating.
Collapse
Affiliation(s)
- Shuoshuo Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. PR China; Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, CAS Wenzhou, Zhejiang Province, 325001, PR China
| | - Yong Wang
- Institute of Materials Research and Engineering, A⁎STAR (Agency for Science, Technology and Research), #08-03, 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Shan Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. PR China
| | - Chenjie Shan
- Department of Orthopaedics,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325035, PR China
| | - Yibo Geng
- Department of Orthopaedics,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325035, PR China
| | - Tinghong Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. PR China; Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, CAS Wenzhou, Zhejiang Province, 325001, PR China
| | - Sunren Sheng
- Department of Orthopaedics,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325035, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. PR China; Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, CAS Wenzhou, Zhejiang Province, 325001, PR China.
| |
Collapse
|
24
|
Glutathione Metabolism, Mitochondria Activity, and Nitrosative Stress in Patients Treated for Mandible Fractures. J Clin Med 2019; 8:jcm8010127. [PMID: 30669680 PMCID: PMC6352110 DOI: 10.3390/jcm8010127] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to evaluate the effect of titanium bone fixations on mitochondrial activity, reactive oxygen species (ROS) production, glutathione metabolism, and selected markers of oxidative/nitrosative stress in the periosteum-like tissue of patients treated with mandible fractures. The study group consisted of 30 patients with bilateral fractures of the mandible body eligible for surgical treatment. Our study is the first one that indicates disturbances of mitochondrial activity as well as a higher production of ROS in the periosteum-like tissue covering titanium fixations of the mandible. We also found significantly higher levels of reduced glutathione and enhanced activity of glutathione reductase in the periosteum homogenates of patients in the study group compared to the control group. Levels of nitrosative (S-nitrosothiols, peroxynitrite, nitrotyrosine) and oxidative stress biomarkers (malondialdehyde, protein carbonyls, dityrosine, kynurenine, and N-formylkynurenine) were statistically elevated in periosteum-like tissue covering titanium fixations. Although exposure to titanium fixations induces local antioxidant mechanisms, patients suffer oxidative damage, and in the periosteum-like tissue the phenomenon of metallosis was observed. Titanium implants cause oxidative/nitrosative stress as well as disturbances in mitochondrial activity.
Collapse
|
25
|
Gao C, Cheng H, Xu N, Li Y, Chen Y, Wei Y, Gao B, Fu J, Huo K, Xiong W. Poly(dopamine) and Ag nanoparticle-loaded TiO 2 nanotubes with optimized antibacterial and ROS-scavenging bioactivities. Nanomedicine (Lond) 2019; 14:803-818. [PMID: 30638128 DOI: 10.2217/nnm-2018-0131] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To create polydopamine (PDA) and Ag nanoparticle-loaded TiO2 nanotubes coating on titanium (Ti) alloy. MATERIALS & METHODS TiO2-PDA-Ag coating was fabricated on Ti implants by electrochemical anodization. The in vitro and in vivo bactericidal and antibiofilm activities were tested. Intracellular reactive oxygen species (ROS) and antioxidative capability were measured, and cell proliferation, adhesion and cell morphology were characterized. RESULTS TiO2-PDA-Ag coating showed satisfactory bactericidal and antibiofilm activities in vitro and in vivo, improved Ag release pattern, evident ROS scavenging properties and enhanced cell adhesion and proliferation. CONCLUSION Our study successfully fabricated a PDA and Ag nanoparticle-loaded TiO2 nanotubes coating on Ti alloy. The improved Ag release kinetics and ROS-scavenging properties achieve an optimal balance between antibacterial ability and biocompatibility.
Collapse
Affiliation(s)
- Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Hao Cheng
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Na Xu
- Institute of Biology & Medicine, Wuhan University of Science & Technology, Wuhan 430065, PR China
| | - Yong Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Yangmengfan Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Yong Wei
- The State Key Laboratory of Refractories & Metallurgy, School of Materials & Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Biao Gao
- The State Key Laboratory of Refractories & Metallurgy, School of Materials & Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Jijiang Fu
- The State Key Laboratory of Refractories & Metallurgy, School of Materials & Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Kaifu Huo
- The State Key Laboratory of Refractories & Metallurgy, School of Materials & Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Wei Xiong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, PR China
| |
Collapse
|
26
|
DePhillipo NN, Aman ZS, Kennedy MI, Begley JP, Moatshe G, LaPrade RF. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop J Sports Med 2018; 6:2325967118804544. [PMID: 30386805 PMCID: PMC6204628 DOI: 10.1177/2325967118804544] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Recent investigations on the biochemical pathways after a musculoskeletal injury have suggested that vitamin C (ascorbic acid) may be a viable supplement to enhance collagen synthesis and soft tissue healing. Purpose To (1) summarize vitamin C treatment protocols; (2) report on the efficacy of vitamin C in accelerating healing after bone, tendon, and ligament injuries in vivo and in vitro; and (3) report on the efficacy of vitamin C as an antioxidant protecting against fibrosis and promoting collagen synthesis. Study Design Systematic review; Level of evidence, 2. Methods A systematic review was performed, with the inclusion criteria of animal and human studies on vitamin C supplementation after a musculoskeletal injury specific to collagen cross-linking, collagen synthesis, and biologic healing of the bone, ligament, and tendon. Results The initial search yielded 286 articles. After applying the inclusion and exclusion criteria, 10 articles were included in the final analysis. Of the preclinical studies evaluating fracture healing, 2 studies reported significantly accelerated bone healing in the vitamin C supplementation group compared with control groups. The 2 preclinical studies evaluating tendon healing reported significant increases in type I collagen fibers and scar tissue formation with vitamin C compared with control groups. The 1 preclinical study after anterior cruciate ligament (ACL) reconstruction reported significant short-term (1-6 weeks) improvements in ACL graft incorporation in the vitamin C group compared with control groups; however, there was no long-term (42 weeks) difference. Of the clinical studies evaluating fracture healing, 1 study reported no significant differences in the rate of fracture healing at 50 days or functional outcomes at 1 year. Vitamin C supplementation was shown to decrease oxidative stress parameters by neutralizing reactive oxygen species through redox modulation in animal models. No animal or human studies reported any adverse effects of vitamin C supplementation. Conclusion Preclinical studies demonstrated that vitamin C has the potential to accelerate bone healing after a fracture, increase type I collagen synthesis, and reduce oxidative stress parameters. No adverse effects were reported with vitamin C supplementation in either animal models or human participants; thus, oral vitamin C appears to be a safe supplement but lacks clinical evidence compared with controls. Because of the limited number of human studies, further clinical investigations are needed before the implementation of vitamin C as a postinjury supplement.
Collapse
Affiliation(s)
- Nicholas N DePhillipo
- The Steadman Clinic, Vail, Colorado, USA.,Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Zachary S Aman
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | - J P Begley
- The Steadman Clinic, Vail, Colorado, USA
| | - Gilbert Moatshe
- Steadman Philippon Research Institute, Vail, Colorado, USA.,Oslo University Hospital, Oslo, Norway.,OSTRC, Norwegian School of Sports Science, Oslo, Norway
| | - Robert F LaPrade
- The Steadman Clinic, Vail, Colorado, USA.,Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
27
|
Shahin YR, Elguindy NM, Abdel Bary A, Balbaa M. The protective mechanism of Nigella sativa against diethylnitrosamine-induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:885-898. [PMID: 29923357 DOI: 10.1002/tox.22574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023]
Abstract
A wide variety of natural products have powerful chemopreventive effects due to their antioxidant, antimutagenic, and anti-inflammatory activities that enable them to arrest cell proliferation in several cancer models. In the present study, we shed light on the protective mechanism of Nigella sativa extract against diethylnitrosamine (DENA)-induced preneoplastic stage of hepatocellular carcinoma (HCC) in rats. We studied the extract effect on EGFR/ERK1/2 signaling pathway as one of the major signaling pathways controlling cell proliferation during hepatocarcinogenesis as well as the investigation of its antioxidant activity. The study also compared the effects of NSEE to those of (thymoquinone) TQ and silymarin as hepatoprotective substances. Rats received daily doses of NSEE (150, 250, 350 mg/kg BW), a dose per three alternative days/week of TQ (20 mg/kg BW) and a daily dose of silymarin (100 mg/kg BW). The doses were administered orally by gavage for 12 days before DENA and CCl4 administration, and then the supply of NSEE, TQ or silymarin was continued until the end of the experiment (16 weeks). DENA administration activated EGFR/ERK1/2 signaling and caused a significant increase in P-EGFR and P-ERK1/2 as well as a significant up-regulation of expression of target genes such as PCNA, c-fos and Bcl2, which indicated the increase in cell proliferation. Furthermore, a significant elevation in alpha-fetoprotein (AFP) and hepatic enzymes was observed in DENA-treated rats in addition to a decrease in the antioxidant status. The protection with NSEE, TQ, or silymarin has the potential to inhibit the EGFR/ERK1/2 activation and improve the antioxidant status. Moreover, the action of NSEE against the hepatocarcinogenesis was supported by high antioxidant activity and the histopathological observations of the liver. These data suggest that NSEE has a chemopreventive role in DENA-induced HCC through the inhibition of the EGFR/ERK1/2 signaling pathway and their target genes in addition to its role as an antioxidant.
Collapse
Affiliation(s)
- Y R Shahin
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - N M Elguindy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - A Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - M Balbaa
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
28
|
Abstract
We evaluated whether the biological activity of the surface of titanium, when stored in an aqueous solution after ultraviolet (UV) treatment, is comparable to that of the surface immediately after UV treatment. We subjected Grade IV titanium discs with machined surfaces to UV radiation for 15 min and then tested them immediately and after storage for 28 days, with and without distilled H2O (dH2O). We evaluated the surface characteristics using surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and in terms of the surface zeta-potential. We determined the level of biological activity by analysing albumin adsorption, MC3T3-E1 and human mesenchymal cell adhesion and cytoskeleton development, as well as the production of intracellular reactive oxygen species between groups. The surface characteristics produced by the UV irradiation were maintained in dH2O for 28 days. We found that titanium stored in dH2O for 28 days after UV treatment exhibited enhanced protein adsorption, cell attachment, and cytoskeleton development. Titanium stored in dH2O for 28 days after UV irradiation exhibited a lower level of oxidative stress, comparable to that of the titanium immediately after UV treatment. UV treatment combined with wet storage can be used as a means of overcoming the biological aging of titanium.
Collapse
|
29
|
Chen W, Shen X, Hu Y, Xu K, Ran Q, Yu Y, Dai L, Yuan Z, Huang L, Shen T, Cai K. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials 2017; 114:82-96. [DOI: 10.1016/j.biomaterials.2016.10.055] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
|
30
|
Pesic G, Jeremic J, Stojic I, Vranic A, Cankovic M, Nikolic T, Jeremic N, Matic A, Srejovic I, Zivkovic V, Jakovljevic V. Redox Status in Patients with Femoral Neck Fractures. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2016. [DOI: 10.1515/sjecr-2015-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The femur transfers the body weight from the pelvic bone to the shinbone. Femur fractures are a significant cause of morbidity and mortality among the group of locomotor apparatus injuries, especially in the elderly population. Considering that oxidative stress occurs as a result of increased production of free radicals that damage cell function and cause numerous pathological conditions and diseases, the aim of this study was to investigate oxidative stress parameters in older patients with femoral neck fractures. This clinical study included 70 patients, of which 35 had femoral neck fractures (26 males and 9 females), while the other half of the patients formed the matched control group. Markers of oxidative stress (NO2
−, TBARS, H2O2 and O2
-) and anti-oxidative enzymes (SOD, CAT, and GSH) were measured. Results showed that the levels of O2
- increased, while levels of NO2
-, H2O2 and all the antioxidative enzymes decreased in patients with femoral neck fractures. These findings indicate that fractures cause oxidative stress, probably because of the reduced activity of osteoblasts and the increased activity of osteoclasts.
Collapse
Affiliation(s)
- Goran Pesic
- Orthopedic and Traumatology Clinic, Podgorica, Montenegro
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Vranic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Cankovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Matic
- Department of Orthopedics, Clinical Center of Kragujevac, Kragujevac
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
31
|
Ilyas A, Odatsu T, Shah A, Monte F, Kim HKW, Kramer P, Aswath PB, Varanasi VG. Amorphous Silica: A New Antioxidant Role for Rapid Critical-Sized Bone Defect Healing. Adv Healthc Mater 2016; 5:2199-213. [PMID: 27385056 PMCID: PMC6635139 DOI: 10.1002/adhm.201600203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/25/2016] [Indexed: 12/23/2022]
Abstract
Traumatic fractures cause structurally unstable sites due to severe bone loss. Such fractures generate a high yield of reactive oxygen species (ROS) that can lead to oxidative stress. Excessive and prolonged ROS activity impedes osteoblast differentiation and instigates long healing times. Stimulation of antioxidants such as superoxide dismutase (SOD1), are crucial to reduce ROS, stimulate osteogenesis, and strengthen collagen and mineral formation. Yet, no current fixative devices have shown an ability to enhance collagen matrix formation through antioxidant expression. This study reports plasma-enhanced chemical vapor deposition based amorphous silicon oxynitride (Si(ON)x) as a potential new fracture healing biomaterial that adheres well to the implant surface, releases Si(+4) to enhance osteogenesis, and forms a surface hydroxyapatite for collagen mineral attachment. These materials provide a sustained release of Si(+4) in physiological environment for extended times. The dissolution rate partially depends on the film chemistry and can be controlled by varying O/N ratio. The presence of Si(+4) enhances SOD1, which stimulates other osteogenic markers downstream and leads to rapid mineral formation. In vivo testing using a rat critical-sized calvarial defect model shows a more rapid bone-regeneration for these biomaterials as compared to control groups, that implies the clinical significance of the presented biomaterial.
Collapse
Affiliation(s)
- Azhar Ilyas
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Tetsuro Odatsu
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Ami Shah
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
| | - Harry K W Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Philip Kramer
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Pranesh B Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
32
|
Khoshhal KI, Sheweita SA, Al-Maghamsi MS, Habeb AM. Does type 1 diabetes mellitus affect bone quality in prepubertal children? J Taibah Univ Med Sci 2015; 10:300-305. [DOI: 10.1016/j.jtumed.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Ilyas A, Lavrik NV, Kim HK, Aswath PB, Varanasi VG. Enhanced interfacial adhesion and osteogenesis for rapid "bone-like" biomineralization by PECVD-based silicon oxynitride overlays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15368-15379. [PMID: 26095187 PMCID: PMC6508966 DOI: 10.1021/acsami.5b03319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structurally unstable fracture sites require metal fixative devices, which have long healing times due to their lack of osteoinductivity. Bioactive glass coatings lack in interfacial bonding, delaminate, and have reduced bioactivity due to the high temperatures used for their fabrication. Here, we test the hypothesis that low-temperature PECVD amorphous silica can enhance adhesion to the underlying metal surface and that N incorporation enhances osteogenesis and rapid biomineralization. A model Ti/TiO2-SiOx interface was formed by first depositing Ti onto Si wafers, followed by surface patterning, thermal annealing to form TiO2, and depositing SiOx/Si(ON)x overlays. TEM micrographs showed conformal SiOx layers on Ti/TiO2 overlays while XPS data revealed the formation of an elemental Ti-O-Si interface. Nanoscratch testing verified strong SiOx bonding with the underlying TiO2 layers. In vitro studies showed that the surface properties changed significantly to reveal the formation of hydroxycarbonate apatite within 6 h, and Si(ON)x surface chemistry induced osteogenic gene expression of human periosteal cells and led to a rapid "bone-like" biomineral formation within 4 weeks. XANES data revealed that the incorporation of N increased the surface HA bioactivity by increasing the carbonate to phosphate ratio. In conclusion, silicon oxynitride overlays on bone-implant systems enhance osteogenesis and biomineralization via surface nitrogen incorporation.
Collapse
Affiliation(s)
- Azhar Ilyas
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M University, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry K.W. Kim
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Pranesh B. Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, 501 West First Street, Arlington, Texas 76019, United States
| | - Venu G. Varanasi
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M University, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| |
Collapse
|
34
|
Sequential analysis of oxidative stress markers and vitamin C status in acute bacterial osteomyelitis. Mediators Inflamm 2014; 2014:975061. [PMID: 25180026 PMCID: PMC4142778 DOI: 10.1155/2014/975061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/28/2014] [Indexed: 01/03/2023] Open
Abstract
In bacterial bone infections, excessively formed oxidants may result in local and systemic oxidative stress. Vitamin C is the major extracellular nonenzymatic antioxidant, also implicated in bone cells metabolism and viability. The physiological functions of vitamin C largely depend on its redox status. We sequentially assessed oxidative stress markers, hydroperoxides and malondialdehyde (MDA), total antioxidant activity (AOA), total vitamin C, ascorbic acid (Asc), and oxidized/reduced vitamin C ratio in 137 patients with acute osteomyelitis (OM). Compared to 52 healthy controls, in OM group baseline serum hydroperoxides, MDA and oxidized/reduced vitamin C ratio were higher whilst Asc and AOA were lower (P < 0.05, resp.). On the other side, total vitamin C levels in patients and controls were similar (P > 0.05), thereby suggesting a relative rather than absolute vitamin C deficiency in OM. During the follow-up, oxidative stress markers, AOA, and oxidizedreduced vitamin C ratio were gradually returned to normal, while there was no apparent change of total vitamin C concentrations. Persistently high values of oxidized/reduced vitamin C ratio and serum MDA were found in subacute OM. In conclusion, acute OM was associated with enhanced systemic oxidative stress and the shift of vitamin C redox status towards oxidized forms.
Collapse
|
35
|
Rodríguez-Estival J, Álvarez-Lloret P, Rodríguez-Navarro AB, Mateo R. Chronic effects of lead (Pb) on bone properties in red deer and wild boar: relationship with vitamins A and D3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:142-9. [PMID: 23262069 DOI: 10.1016/j.envpol.2012.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/22/2012] [Accepted: 11/08/2012] [Indexed: 05/03/2023]
Abstract
Here we study the occurrence of abnormalities on bone tissue composition and turnover mechanisms through the Pb-mediated disruption of vitamins A and D in wild ungulates living in a lead (Pb)-polluted mining area. Red deer (Cervus elaphus) and wild boar (Sus scrofa) from the mining area had significantly higher liver and bone Pb levels than controls, which were associated with the depletion of liver retinyl esters and the corresponding increase of free retinol levels both in deer and boar from the mining area. Pb-exposed adult deer had lower carbonate content in bone mineral than controls, which was associated with the increased free retinol percentage. In wild boar, the degree of bone mineralization was also positively associated with higher burdens of retinyl esters. These results suggest that Pb-associated changes in bone composition and mineralization is likely influenced by the depletion of vitamin A in wildlife exposed to environmental Pb pollution.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | | | | | | |
Collapse
|
36
|
D'Adamo CR, Miller RR, Shardell MD, Orwig DL, Hochberg MC, Ferrucci L, Semba RD, Yu-Yahiro JA, Magaziner J, Hicks GE. Higher serum concentrations of dietary antioxidants are associated with lower levels of inflammatory biomarkers during the year after hip fracture. Clin Nutr 2012; 31:659-65. [PMID: 22365613 DOI: 10.1016/j.clnu.2012.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 01/13/2012] [Accepted: 01/29/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation impairs recovery among the 1.6 million people who suffer from hip fracture annually. Vitamin E and the carotenoids are two classes of dietary antioxidants with profound anti-inflammatory effects, and the goal of this study was to assess whether higher post-fracture concentrations of these antioxidants were associated with lower levels of interleukin 6 (IL-6) and the soluble receptor for tumor necrosis factor-alpha (sTNF-αR1), two common markers of inflammation. METHODS Serum concentrations of the dietary antioxidants and inflammatory markers were assessed at baseline and 2, 6, and 12 month follow-up visits among 148 hip fracture patients from The Baltimore Hip Studies. Generalized estimating equations modeled the relationship between baseline and time-varying antioxidant concentrations and inflammatory markers. RESULTS Higher post-fracture concentrations of vitamin E and the carotenoids were associated with lower levels of inflammatory markers. Associations were strongest at baseline, particularly between the α-tocopherol form of vitamin E and sTNF-αR1 (p = 0.05) and total carotenoids and both sTNF-αR1(p = 0.01) and IL-6 (p = 0.05). Higher baseline and time-varying α-carotene and time-varying lutein concentrations were also associated with lower sTNF-αR1 at all post-fracture visits (p ≤ 0.05). CONCLUSIONS These findings suggest that a clinical trial increasing post-fracture intake of vitamin E and the carotenoids may be warranted.
Collapse
Affiliation(s)
- Christopher R D'Adamo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 520 W. Lombard Street, East Hall, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Freitas DQD, Ramos-Perez FMDM, Neves EG, Marques MR, Bóscolo FN, Almeida SMD. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats. Braz Dent J 2012; 23:723-8. [DOI: 10.1590/s0103-64402012000600017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
This studyevaluated protection by selenium (Se) in the bone repair process in ovariectomized rats after irradiation. For such purpose, 80 ovariectomized female Wistar rats were randomly divided into 4 experimental groups: ovariectomized (Ov), Ov/Se, Ov/irradiated (Irr) and Ov/ Se/Irr. A bone defect was created on the tibia of all animals 40 days after ovariectomy. Two days after surgery, only the Ov/Se and Ov/Se/Irr rats received 0.8 mg Se/kg. Three days after surgery, only the Ov/Irr and Ov/Se/Irr rats received 10 Gy of x-rays on the lower limb region. The animals were euthanized at 7, 14, 21 and 28 days after surgery to assess the repair process, which was evaluated by analysis of trabecular bone number (Masson Trichrome) and birefringence analysis (Picrosirius). It was possible to observe a delay in the bone repair process in the ovariectomized/irradiated group and similarity between the ovariectomized, Ov/Se and Ov/Se/Irr groups. In conclusion, sodium selenite exerted a radioprotective effect in the bone repair of tibia of ovariectomized rats without toxicity.
Collapse
|
38
|
Defi IR, Yamazaki C, Kameo S, Kobayashi K, Nakazawa M, Shinya Y, Sato N, Wada N, Shirakura K, Koyama H. Acute phase response of selenium status and glutathione peroxidase activity in blood plasma before and after total knee arthroplasty surgery. Biol Trace Elem Res 2011; 144:388-95. [PMID: 21671086 DOI: 10.1007/s12011-011-9107-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/30/2011] [Indexed: 11/29/2022]
Abstract
Several studies show the consistent results of the decrease in plasma or serum selenium (Se) after surgery, and the change is suggested to be a negative acute phase response of Se to the surgical inflammation. Plasma glutathione peroxidase (GPx), which is included in the acute phase response proteins, is a selenoenzyme. However, previous studies failed to show any changes in GPx activity before and after surgery. In the present study, we investigated the Se- and selenoenzyme responses that accompany the acute inflammatory reactions during and following major surgery. Patients who underwent elective total knee arthroplasty surgery due to knee osteoarthritis at the Department of Orthopaedic Surgery at Gunma University Hospital in Japan were studied. The plasma Se concentration was determined, and the activity of plasma GPx was measured. C-reactive protein (CRP), albumin, blood urea nitrogen (BUN), and white blood cell (WBC) count were also analysed. Increases in the inflammatory biomarkers of CRP and WBC showed inflammatory reactions with the surgery. A significant increase in plasma GPx activity (p < 0.05) and decreases in the plasma Se concentration (p < 0.05) and in serum albumin (p < 0.05) after surgery were observed. Since albumin is a Se-containing protein and represents a negative acute phase protein that provides amino acids for the production of other series of acute phase proteins, the present results suggest that there is a redistribution of plasma Se to GPx that occurs as an acute phase response, and the source of Se for GPx could be, at least partly, from albumin.
Collapse
Affiliation(s)
- Irma Ruslina Defi
- Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|