1
|
Cao Y, Zhang Y, Qiu F. Low endotoxin recovery and its impact on endotoxin detection. Biopolymers 2021; 112:e23470. [PMID: 34407207 DOI: 10.1002/bip.23470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Endotoxin exists on the outer membrane of Gram-negative bacteria and poses risks to human health by triggering a series of immune responses. Therefore, its accurate detection is essential. The Limulus amoebocyte lysate (LAL) test is the most pharmacopeia-recognized and popular technique for endotoxin detection. Despite its wide industry adoption, the low endotoxin recovery (LER) phenomenon can compromise the LAL test's reliability. This review summarizes the possible reasons attributing to the LER phenomenon from three different perspectives: the endotoxin standards used in hold time study, protein active pharmaceutical ingredients, and excipients. Potential mechanisms and strategies to mitigate the LER phenomenon are also discussed as presented by different research groups.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Yujie Zhang
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Frank Qiu
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| |
Collapse
|
2
|
Bu R, Deng X, Cao Y, Jin J, Mai B, Meng K, Liu X, Chi JC, Zhang Y, Qiu F. Effect of different sample treatment methods on Low Endotoxin Recovery Phenomenon. J Microbiol Methods 2021; 186:106241. [PMID: 33992679 DOI: 10.1016/j.mimet.2021.106241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Endotoxin is a kind of lipopolysaccharide that exits on the cell wall of Gram-negative bacteria. It can cause fever, shock or even death when is delivered into human body. So, it is necessary to control the endotoxin contamination for biopharmaceutical products that are mainly administered by intravenous route. Limulus Amebocyte Lysate (LAL)-based tests are usually used to detect endotoxin content in biologics formulations. However, an undesirable phenomenon called "Low Endotoxin Recovery (LER)" often occurs in formulation buffers that usually contain chelating component, such as sodium citrate, and amphiphilic surfactant, such as Tween-20. The occurrence of this LER phenomenon may interfere with endotoxin detection and cause false negative results. In this study, we compared the effect of different sample treatment methods on endotoxin detection and found that the LER phenomenon was better controlled under the conditions of low pH (pH = 5.0), low temperature (2-8 °C) and in the presence of divalent cations in the solution. In addition, although the endotoxin activity was found to have decreased due to LER phenomenon, the particle size distribution of endotoxin determined by dynamic light scattering (DLS) in LER solution did not change obviously, which is different from previous hypothesis about LER phenomenon in literature that the particle size of endotoxin aggregates would decrease under LER conditions. These findings provide some insights into different sample treatment methods for endotoxin detection and give a better understanding and solution on minimizing the LER phenomenon.
Collapse
Affiliation(s)
- Ruixuan Bu
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Xinren Deng
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Yuan Cao
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Jiayi Jin
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Binliang Mai
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Ke Meng
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Xiaohui Liu
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Jen-Chih Chi
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Yujie Zhang
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China.
| | - Frank Qiu
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| |
Collapse
|
3
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
4
|
Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, Dobrovolskaia MA. Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations. Adv Drug Deliv Rev 2018; 136-137:82-96. [PMID: 30273617 DOI: 10.1016/j.addr.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
Nanotechnology provides many solutions to improve conventional drug delivery and has a unique niche in the areas related to the specific targeting of the immune system, such as immunotherapies and vaccines. Preclinical studies in this field rely heavily on the combination of in vitro and in vivo methods to assess the safety and efficacy of nanotechnology platforms, nanoparticle-formulated drugs, and vaccines. While certain types of toxicities can be evaluated in vitro and good in vitro-in vivo correlation has been demonstrated for such tests, animal studies are still needed to address complex biological questions and, therefore, provide a unique contribution to establishing nanoparticle safety and efficacy profiles. The genetic, metabolic, mechanistic, and phenotypic diversity of currently available animal models often complicates both the animal choice and the interpretation of the results. This review summarizes current knowledge about differences in the immune system function and immunological responses of animals commonly used in preclinical studies of nanomaterials. We discuss challenges, highlight current gaps, and propose recommendations for animal model selection to streamline preclinical analysis of nanotechnology formulations.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University and SeroScience Ltd, Nagyvárad tér 4, 1089 Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Serguei V Kozlov
- Laboratory of Animal Sciences Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Andrew T Lucas
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A Piscitelli
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
5
|
Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release 2015; 220:571-83. [PMID: 26348388 PMCID: PMC4688153 DOI: 10.1016/j.jconrel.2015.08.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Assorted challenges in physicochemical characterization, sterilization, depyrogenation, and in the assessment of pharmacology, safety, and efficacy profiles accompany pre-clinical development of nanotechnology-formulated drugs. Some of these challenges are not unique to nanotechnology and are common in the development of other pharmaceutical products. However, nanoparticle-formulated drugs are biochemically sophisticated, which causes their translation into the clinic to be particularly complex. An understanding of both the immune compatibility of nanoformulations and their effects on hematological parameters is now recognized as an important step in the (pre)clinical development of nanomedicines. An evaluation of nanoparticle immunotoxicity is usually performed as a part of a traditional toxicological assessment; however, it often requires additional in vitro and in vivo specialized immuno- and hematotoxicity tests. Herein, I review literature examples and share the experience with the NCI Nanotechnology Characterization Laboratory assay cascade used in the early (discovery-level) phase of pre-clinical development to summarize common challenges in the immunotoxicological assessment of nanomaterials, highlight considerations and discuss solutions to overcome problems that commonly slow or halt the translation of nanoparticle-formulated drugs toward clinical trials. Special attention will be paid to the grand-challenge related to detection, quantification and removal of endotoxin from nanoformulations, and practical considerations related to this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
6
|
Dobrovolskaia MA, Neun BW, Clogston JD, Grossman JH, McNeil SE. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond) 2014; 9:1847-56. [DOI: 10.2217/nnm.13.157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Many nanoparticles interfere with traditional tests to quantify endotoxin. The aim of this study was to compare the performance of limulus amoebocyte lysate (LAL) formats on clinical-grade nanoformulations, to determine whether there were disparate results among formats and to test the applicability of an alternative bioassay (the macrophage activation test [MAT]) for resolving discrepancies, if observed. Materials & methods: Clinical-grade nanoformulations were tested using turbidimetric, gel-clot and chromogenic LAL. Formulations that cause a discrepancy among LAL tests were also tested by the MAT. Results & conclusion: The gel-clot LAL method cannot be relied upon to resolve discrepancies among LAL tests for certain nanoformulations. No one LAL format was shown to be optimal for all the tested clinical-grade nanoformulations. The tested alternative bioassay (the MAT) was useful for verifying LAL findings, but only for those nanoformulations not carrying/including cytotoxic drugs. Original submitted 1 March 2013; Revised submitted 13 August 2013
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Jennifer H Grossman
- Nanotechnology Characterization Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Scott E McNeil
- Nanotechnology Characterization Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Vogel SN. How discovery of Toll-mediated innate immunity in Drosophila impacted our understanding of TLR signaling (and vice versa). THE JOURNAL OF IMMUNOLOGY 2012; 188:5207-9. [PMID: 22611247 DOI: 10.4049/jimmunol.1201050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Abstract
Historically, the laboratory mouse (Mus musculus) has been the experimental model of choice to study pathophysiology of infection with bacterial pathogens, including natural and acquired host defence mechanisms. Inbred mouse strains differ significantly in their degree of susceptibility to infection with various human pathogens such as Mycobacterium, Salmonella, Legionella and many others. Segregation analyses and linkage studies have indicated that some of these differences are under simple genetic control whereas others behave as complex traits. Major advances in genome technologies have greatly facilitated positional cloning of single gene effects. Thus, a number of genes playing a key role in initial susceptibility, progression and outcome of infection have been uncovered and the functional characterization of the encoded proteins has provided new insight into the molecular basis of antimicrobial defences of polymorphonuclear leukocytes, macrophages, as well as T and B lymphocytes. The multigenic control of susceptibility to infection with certain human pathogens is beginning to be characterized by quantitative trait locus mapping in genome wide scans. This review summarizes recent progress on the mapping, cloning and characterization of genes and proteins that affect susceptibility to infection with major intracellular bacterial pathogens.
Collapse
|
9
|
Watters JJ, Sommer JA, Pfeiffer ZA, Prabhu U, Guerra AN, Bertics PJ. A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production. J Biol Chem 2002; 277:9077-87. [PMID: 11786532 DOI: 10.1074/jbc.m104385200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.
Collapse
Affiliation(s)
- Jyoti J Watters
- Department of Biomolecular Chemistry and Program in Molecular and Cellular Pharmacology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|