1
|
Nguyen TP, Nguyen BT, Nan FH, Lee MC, Lee PT. TLR23, a fish-specific TLR, recruits MyD88 and TRIF to activate expression of a range of effectors in melanomacrophages in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:34-46. [PMID: 35598740 DOI: 10.1016/j.fsi.2022.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is an important food fish species that is mainly cultivated in tropical and subtropical countries. However, microbial diseases have created various difficulties for this industry. The fundamental prerequisite for tackling disease outbreak prevention and disease resistance is to know how hosts' immune responses against invading microbes are initiated. Toll-like receptors (TLRs) are vital pattern recognition receptors and play pivotal roles in the cellular innate immunity defense that is able to recognize pathogen-associated molecular patterns (PAMPs). In this study, Oreochromis niloticus TLR23 (OnTLR23) was cloned and bioinformatic analyses revealed that OnTLR23 is not an ortholog of mammalian TLR13 as previously suggested. The basal transcript level of OnTLR23 was found to be higher in the immune-related organs and was upregulated in the spleen and/or head kidney following Aeromonas hydrophila, Streptococcus agalactiae or poly I:C injections, and increased in the melanomacrophage-like tilapia head kidney (THK) cell line after LPS and zymosan stimulation. Furthermore, we demonstrated for the first time that OnTLR23 locates mainly in the intracellular region in fish cells and the constitutively active form of OnTLR23 promotes the expression of molecules related to antigen presentation, proinflammatory cytokines, antimicrobial peptides and type I interferon in THK cells. A co-immunoprecipitation assay revealed that OnTLR23 can interact with both OnMyD88 and OnTRIF, but not with OnTIRAP. A luciferase assay showed that the NF-κB activity was not elevated in the OnTLR23 overexpressed THK cells after treatment with ligand for TLR13 as well as other known purified bacterial-derived ligands of TLRs. Taken together, OnTLR23 is likely to recruit OnMyD88 and OnTRIF as adaptors to induce the expression of various effectors in melanomacrophages, but its corresponding ligand is an issue awaiting further investigation.
Collapse
Affiliation(s)
- Tan Phat Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Bao Trung Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; College of Aquaculture and Fisheries, Can Tho University, Viet Nam
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
2
|
Wu X, Xiong F, Fang H, Zhang J, Chang M. Crosstalks between NOD1 and Histone H2A Contribute to Host Defense against Streptococcus agalactiae Infection in Zebrafish. Antibiotics (Basel) 2021; 10:antibiotics10070861. [PMID: 34356784 PMCID: PMC8300774 DOI: 10.3390/antibiotics10070861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/30/2022] Open
Abstract
Correlation studies about NOD1 and histones have not been reported. In the present study, we report the functional correlation between NOD1 and the histone H2A variant in response to Streptococcus agalactiae infection. In zebrafish, NOD1 deficiency significantly promoted S. agalactiae proliferation and decreased larval survival. Transcriptome analysis revealed that the significantly enriched pathways in NOD1−/− adult zebrafish were mainly involved in immune and metabolism. Among 719 immunity-associated DEGs at 48 hpi, 74 DEGs regulated by NOD1 deficiency were histone variants. Weighted gene co-expression network analysis identified that H2A, H2B, and H3 had significant associations with NOD1 deficiency. Above all, S. agalactiae infection could induce the expression of intracellular histone H2A, as well as NOD1 colocalized with histone H2A, both in the cytoplasm and cell nucleus in the case of S. agalactiae infection. The overexpression of H2A variants such as zfH2A-6 protected against S. agalactiae infection and could improve cell survival in NOD1-deficient cells. Furthermore, NOD1 could interact with zfH2A-6 and cooperate with zfH2A-6 to inhibit the proliferation of S. agalactiae. NOD1 also showed a synergetic effect in inducing the expression of many antibacterial genes, especially antibacterial pattern recognition receptors PGRP2, PGRP5, and PGRP6. Collectively, these results firstly highlight the roles of NOD1 deficiency in the regulation of immune-related and metabolic pathways, and the correlation between zebrafish NOD1 and histone H2A variant in the defense against S. agalactiae infection.
Collapse
Affiliation(s)
- Xiaoman Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
3
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
4
|
Altered Toll-Like Receptor Signalling in Children with Down Syndrome. Mediators Inflamm 2019; 2019:4068734. [PMID: 31611734 PMCID: PMC6757445 DOI: 10.1155/2019/4068734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are the key in initiating innate immune responses. TLR2 is crucial in recognising lipopeptides from gram-positive bacteria and is implicated in chronic inflammation. Children with Down syndrome (DS) are prone to infections from these pathogens and have an increased risk of autoimmunity. Sparstolonin B (SsnB) is a TLR antagonist which attenuates cytokine production and improves outcomes in sepsis. We hypothesised that TLR signalling may be abnormal in children with DS and contribute to their clinical phenotype. We evaluated TLR pathways in 3 ways: determining the expression of TLR2 on the surface of neutrophils and monocytes by flow cytometry, examining the gene expression of key regulatory proteins involved in TLR signal propagation, MyD88, IRAK4, and TRIF, by quantitative PCR, and lastly determining the cytokine production by ELISA following immunomodulation with proinflammatory stimuli (lipopolysaccharide (LPS), Pam3Csk4) and the anti-inflammatory agent SsnB. We report TLR2 expression being significantly increased on neutrophils, total monocytes, and intermediate and nonclassical monocytes in children with DS (n = 20, mean age 8.8 ± SD 5.3 years, female n = 11) compared to controls (n = 15, mean age 6.2 ± 4.2 years, female n = 5). At baseline, the expression of MyD88 was significantly lower, and TRIF significantly raised in children with DS. The TLR antagonist SsnB was effective in reducing TLR2 and CD11b expression and abrogating cytokine production in both cohorts. We conclude that TLR signalling and the TLR2 pathway are dysregulated in DS, and this disparate innate immunity may contribute to chronic inflammation in DS. SsnB attenuates proinflammatory mediators and may be of therapeutic benefit.
Collapse
|
5
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
6
|
Asami T, Ishii M, Namkoong H, Yagi K, Tasaka S, Asakura T, Suzuki S, Kamo T, Okamori S, Kamata H, Zhang H, Hegab AE, Hasegawa N, Betsuyaku T. Anti-inflammatory roles of mesenchymal stromal cells during acute Streptococcus pneumoniae pulmonary infection in mice. Cytotherapy 2018; 20:302-313. [PMID: 29397306 DOI: 10.1016/j.jcyt.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia. METHODS Bone marrow-derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed. RESULTS After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)-6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups. CONCLUSIONS These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.
Collapse
Affiliation(s)
- Takahiro Asami
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuro Kamo
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haiyue Zhang
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Center for Infectious Disease and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Ferwerda B, Valls Serón M, Jongejan A, Zwinderman AH, Geldhoff M, van der Ende A, Baas F, Brouwer MC, van de Beek D. Variation of 46 Innate Immune Genes Evaluated for their Contribution in Pneumococcal Meningitis Susceptibility and Outcome. EBioMedicine 2016; 10:77-84. [PMID: 27432718 PMCID: PMC5006661 DOI: 10.1016/j.ebiom.2016.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Early recognition of the pathogen and subsequent innate immune response play a vital role in disease susceptibility and outcome. Genetic variations in innate immune genes can alter the immune response and influence susceptibility and outcome of meningitis disease. Here we conducted a sequencing study of coding regions from 46 innate immune genes in 435 pneumococcal meningitis patients and 416 controls, to determine the role of genetic variation on pneumococcal meningitis susceptibility and disease outcome. Strongest signals for susceptibility were rs56078309 CXCL1 (p=4.8e-04) and rs2008521 in CARD8 (p=6.1e-04). For meningitis outcome the rs2067085 in NOD2 (p=5.1e-04) and rs4251552 of IRAK4 were the strongest associations with unfavorable outcome (p=6.7e-04). Haplotype analysis showed a haplotype block, determined by IRAK4 rs4251552, significantly associated with unfavorable outcome (p=0.004). Cytokine measurements from cerebrospinal fluid showed that with the IRAK4 rs4251552 G risk allele had higher levels of IL-6 compared to individuals with A/A genotype (p=0.04). We show that genetic variation within exons and flanking regions of 46 innate immunity genes does not yield significant association with pneumococcal meningitis. The strongest identified signal IRAK4 does imply a potential role of genetic variation in pneumococcal meningitis.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Mercedes Valls Serón
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, P.O. Box 22660, Amsterdam, The Netherlands
| | - Madelijn Geldhoff
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands; The Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Takahashi S, Ishii M, Namkoong H, Hegab AE, Asami T, Yagi K, Sasaki M, Haraguchi M, Sato M, Kameyama N, Asakura T, Suzuki S, Tasaka S, Iwata S, Hasegawa N, Betsuyaku T. Pneumococcal Infection Aggravates Elastase-Induced Emphysema via Matrix Metalloproteinase 12 Overexpression. J Infect Dis 2015; 213:1018-30. [PMID: 26563237 DOI: 10.1093/infdis/jiv527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease (COPD)--typically caused by bacterial or viral infection--is associated with poor prognosis and emphysema progression through unknown mechanisms. We aimed to elucidate the mechanisms responsible for the poor prognosis and emphysema progression associated with COPD exacerbation. METHODS We established a mouse model mimicking acute human COPD exacerbation, wherein mice with elastase-induced emphysema were intranasally infected with Streptococcus pneumoniae. RESULTS In mice with elastase-induced emphysema, infection with S. pneumoniae resulted in increased mortality, an increased number of inflammatory cells in bronchoalveolar lavage fluid (BALF), and increased matrix metalloproteinase 12 (MMP-12) production in the lungs, as well as enhanced emphysema progression. The increased MMP-12 production was mostly due to alveolar type II cells, alveolar macrophages, and lymphocytes that aggregated around vessels and bronchioles. Dexamethasone treatment suppressed the mortality rate and number of inflammatory cells in BALF but not emphysema progression, possibly owing to the failure of MMP-12 suppression in the lungs, whereas treatment with the MMP inhibitor ONO-4817 dramatically suppressed both mortality rate and emphysema progression. CONCLUSIONS These results suggest that MMP-12 production during COPD exacerbation results in increased mortality and emphysema progression. Our study identifies MMP-12 as a target to prevent further aggravation of COPD.
Collapse
Affiliation(s)
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine
| | | | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine
| | - Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine
| | | | - Minako Sato
- Division of Pulmonary Medicine, Department of Medicine
| | | | | | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine
| | | | - Satoshi Iwata
- Department of Infectious Diseases Center for Infectious Disease and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Center for Infectious Disease and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
9
|
Yang Z, Zhong L, Zhong S, Xian R, Yuan B. miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Mol Immunol 2015; 65:293-301. [DOI: 10.1016/j.molimm.2015.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 12/12/2022]
|
10
|
Weber M, Lambeck S, Ding N, Henken S, Kohl M, Deigner HP, Enot DP, Igwe EI, Frappart L, Kiehntopf M, Claus RA, Kamradt T, Weih D, Vodovotz Y, Briles DE, Ogunniyi AD, Paton JC, Maus UA, Bauer M. Hepatic induction of cholesterol biosynthesis reflects a remote adaptive response to pneumococcal pneumonia. FASEB J 2012; 26:2424-36. [DOI: 10.1096/fj.11-191957] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martina Weber
- Department of Anaesthesiology and Intensive Care TherapyJena University HospitalJenaGermany
| | - Sandro Lambeck
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Nadine Ding
- Department of Experimental PneumologyHannover School of MedicineHannoverGermany
| | - Stefanie Henken
- Department of Experimental PneumologyHannover School of MedicineHannoverGermany
| | - Matthias Kohl
- Department of Anaesthesiology and Intensive Care TherapyJena University HospitalJenaGermany
| | | | | | | | - Lucien Frappart
- Department of PathologyUniversity Claude Bernard Lyon I and Inserm U590LyonFrance
| | - Michael Kiehntopf
- Institute for Clinical Chemistry and Laboratory MedicineJena University HospitalJenaGermany
| | - Ralf A. Claus
- Department of Anaesthesiology and Intensive Care TherapyJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Thomas Kamradt
- Institute of ImmunologyJena University HospitalJenaGermany
| | - Debra Weih
- Leibniz Institute for Age ResearchFritz‐Lipmann InstituteJenaGermany
| | - Yoram Vodovotz
- Department of SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Inflammation and Regenerative ModelingMcGowan Institute for Regenerative MedicinePittsburghPennsylvaniaUSA
| | - David E. Briles
- Department of MicrobiologyUniversity of Alabama at BirminghamAlabamaUSA
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious DiseasesSchool of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
| | - James C. Paton
- Research Centre for Infectious DiseasesSchool of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
| | - Ulrich A. Maus
- Department of Experimental PneumologyHannover School of MedicineHannoverGermany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care TherapyJena University HospitalJenaGermany
- Center for Sepsis Control and CareJena University HospitalJenaGermany
| |
Collapse
|
11
|
Holley MM, Zhang Y, Lehrmann E, Wood WH, Becker KG, Kielian T. Toll-like receptor 2 (TLR2)-TLR9 crosstalk dictates IL-12 family cytokine production in microglia. Glia 2011; 60:29-42. [PMID: 21901759 DOI: 10.1002/glia.21243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 08/11/2011] [Indexed: 02/06/2023]
Abstract
Microglia are the resident mononuclear phagocytes of the CNS parenchyma and represent an initial line of defense against invading microorganisms. Microglia utilize Toll-like receptors (TLRs) for pathogen recognition and TLR2 specifically senses conserved motifs of gram-positive bacteria including lipoproteins, lipoteichoic acids, and peptidoglycan (PGN) leading to cytokine/chemokine production. Interestingly, primary microglia derived from TLR2 knockout (KO) mice over-expressed numerous IL-12 family members, including IL-12p40, IL-12p70, and IL-27 in response to intact S. aureus, but not the less structurally complex TLR2 ligands Pam3CSK4 or PGN. The ability of intact bacteria to augment IL-12 family member expression was specific for gram-positive organisms, since numerous gram-negative strains were unable to elicit exaggerated responses in TLR2 KO microglia. Inhibition of SYK or IRAK4 signaling did not impact heightened IL-12 family member production in S. aureus-treated TLR2 KO microglia, whereas PI3K, MAPK, and JNK inhibitors were all capable of restoring exaggerated cytokine expression to wild type levels. Additionally, elevated IL-12 production in TLR2 KO microglia was ablated by a TLR9 antagonist, suggesting that TLR9 drives IL-12 family member production following exposure to intact bacteria that remains unchecked in the absence of TLR2 signaling. Collectively, these findings indicate crosstalk between TLR2 and TLR9 pathways to regulate IL-12 family member production by microglia. The summation of TLR signals must be tightly controlled to ensure the timely cessation and/or fine tuning of cytokine signaling to avoid nonspecific bystander damage due to sustained IL-12 release.
Collapse
Affiliation(s)
- Monica M Holley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | | | | | | | | | | |
Collapse
|
12
|
Faust K, Demmert M, Bendiks M, Göpel W, Herting E, Härtel C. Intrapartum colonization with Streptococcus pneumoniae, early-onset sepsis and deficient specific neonatal immune responses. Arch Gynecol Obstet 2011; 285:599-604. [PMID: 21805143 DOI: 10.1007/s00404-011-2020-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Intrapartum colonization with Streptococcus pneumoniae (S. pneumoniae) is a rare but important risk factor for severe courses of early-onset sepsis (EOS) in the newborn, as underlined in the case of a preterm infant born after 32 weeks of gestation described here. One potential explanation could be an immature immune response of the neonate to S. pneumoniae, however, immunological data in term and preterm infants are scarce. METHODS To determine the neonatal immune responses to S. pneumoniae, flow-cytometry analysis of the cytokine production by CD14+ cells was performed after full pathogen stimulation with S. pneumoniae (serotype 18C, derived from an EOS case described here) of cord blood of 10 term (37-41 gestational weeks) and 6 preterm (31-32 gestational weeks) neonates, compared to peripheral venous blood samples of 10 healthy adults in vitro. RESULTS Neonatal cytokine responses of term and preterm infants to S. pneumoniae are diminished compared to adults. The quantities of cytokine expression were comparable to immune responses induced by other important gram-positive pathogens of EOS such as Streptococcus agalacticae. CONCLUSION Severe courses of EOS with S. pneumoniae may be attributed to remarkable deficiencies of the specific neonatal immune response. To protect the neonate from invasive pneumococcal disease, maternal immunization may be an important prevention strategy, as protective antibodies can be transferred through the placenta and vaccination of pregnant women may reduce colonization.
Collapse
Affiliation(s)
- Kirstin Faust
- Department of Pediatrics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Dominis-Kramari M, Bosnar M, Kelneri Ž, Glojnari I, Čuži S, Parnham MJ, Erakovi Haber V. Comparison of Pulmonary Inflammatory and Antioxidant Responses to Intranasal Live and Heat-Killed Streptococcus pneumoniae in Mice. Inflammation 2010; 34:471-86. [DOI: 10.1007/s10753-010-9255-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 2010; 11:701-8. [PMID: 20581831 DOI: 10.1038/ni.1890] [Citation(s) in RCA: 725] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/18/2010] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T lymphocytes (MAIT lymphocytes) are characterized by two evolutionarily conserved features: an invariant T cell antigen receptor (TCR) alpha-chain and restriction by the major histocompatibility complex (MHC)-related protein MR1. Here we show that MAIT cells were activated by cells infected with various strains of bacteria and yeast, but not cells infected with virus, in both humans and mice. This activation required cognate interaction between the invariant TCR and MR1, which can present a bacteria-derived ligand. In humans, we observed considerably fewer MAIT cells in blood from patients with bacterial infections such as tuberculosis. In the mouse, MAIT cells protected against infection by Mycobacterium abscessus or Escherichia coli. Thus, MAIT cells are evolutionarily conserved innate-like lymphocytes that sense and help fight off microbial infection.
Collapse
|
15
|
Ripoll VM, Kadioglu A, Cox R, Hume DA, Denny P. Macrophages from BALB/c and CBA/Ca mice differ in their cellular responses to Streptococcus pneumoniae. J Leukoc Biol 2009; 87:735-41. [PMID: 20028774 DOI: 10.1189/jlb.0509359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Vera M Ripoll
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK.
| | | | | | | | | |
Collapse
|
16
|
Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria duringin vitrofermentation in faecal microbiota obtained from patients with inflammatory bowel disease. Br J Nutr 2009; 103:1514-24. [DOI: 10.1017/s0007114509993515] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this research was to test the hypothesis that starch-entrapped microspheres would produce favourable fermentation profiles and microbial shifts duringin vitrofermentation with the faecal microbiota from patients with inflammatory bowel disease (IBD).In vitrofermentation was carried out using a validated, dynamic, computer-controlled model of the human colon (Toegepast Natuurwetenschappelijk Onderzoek gastro-intestinal model-2) after inoculation with pooled faeces from healthy individuals, patients with inactive IBD (Crohn's disease (CD)) or patients with active IBD (ulcerative colitis (UC)). Starch-entrapped microspheres fermented more slowly and produced more butyrate than fructo-oligosaccharides (FOS) when fermented with the faecal microbiota from patients with active UC. When fermented with the microbiota from patients with inactive CD, starch-entrapped microspheres also fermented more slowly but produced similar amounts of butyrate compared with FOS. Starch-entrapped microspheres showed a greater ability to maintain a low pH during simulated-distal colon conditions compared with FOS. After fermentation with the microbiota from inactive CD patients, starch-entrapped microspheres resulted in lower concentrations of some potentially harmful gut bacteria, included inBacteroides,Enterococcus,FusobacteriumandVeillonella, compared with FOS. These findings suggest that slow fermenting starch-entrapped microspheres may induce a favourable colonic environment in patients with IBD through high butyrate production, maintenance of low pH in the distal colon and inhibition of the growth of potentially harmful bacteria.
Collapse
|
17
|
Role for Toll-like receptor 2 in the immune response to Streptococcus pneumoniae infection in mouse otitis media. Infect Immun 2009; 77:3100-8. [PMID: 19414550 DOI: 10.1128/iai.00204-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is the most common pathogen associated with otitis media. To examine the role of Toll-like receptor 2 (TLR2) in host defense against Streptococcus pneumoniae infection in the middle ear, wild-type (WT; C57BL/6) and TLR2-deficient (TLR2(-/-)) mice were inoculated with Streptococcus pneumoniae (1 x 10(6) CFU) through the tympanic membrane. Nineteen of 37 TLR2(-/-) mice showed bacteremia and died within 3 days after the challenge, compared to only 4 of 32 WT mice that died. Of those that survived, more severe hearing loss in the TLR2(-/-) mice than in the WT mice was indicated by an elevation in auditory-evoked brain stem response thresholds at 3 or 7 days postinoculation. The histological pathology was characterized by effusion and tissue damage in the middle ear, and in the TLR2(-/-) mice, the outcome of infection became more severe at 7 days. At both 3 and 7 days postchallenge, the TLR2(-/-) mice had higher blood bacterial titers than the WT mice (P < 0.05), and typical bacteria were identified in the effusion from both ears of both mouse groups by acridine orange staining. Moreover, by 3 days postchallenge, the mRNA accumulation levels of NF-kappaB, tumor necrosis factor alpha, interleukin 1beta, MIP1alpha, Muc5ac, and Muc5b were significantly lower in the ears of TLR2(-/-) mice than in WT mice. In summary, TLR2(-/-) mice may produce relatively low levels of proinflammatory cytokines following pneumococcal challenge, thus hindering the clearance of bacteria from the middle ear and leading to sepsis and a high mortality rate. This study provides evidence that TLR2 is important in the molecular pathogenesis and host response to otitis media.
Collapse
|