1
|
Nguyen H, Zhu W, Baltan S. Casein Kinase 2 Signaling in White Matter Stroke. Front Mol Biosci 2022; 9:908521. [PMID: 35911974 PMCID: PMC9325966 DOI: 10.3389/fmolb.2022.908521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
The growth of the aging population, together with improved stroke care, has resulted in an increase in stroke survivors and a rise in recurrent events. Axonal injury and white matter (WM) dysfunction are responsible for much of the disability observed after stroke. The mechanisms of WM injury are distinct compared to gray matter and change with age. Therefore, an ideal stroke therapeutic must restore neuronal and axonal function when applied before or after a stroke, and it must also protect across age groups. Casein kinase 2 (CK2), is expressed in the brain, including WM, and is regulated during the development and numerous disease conditions such as cancer and ischemia. CK2 activation in WM mediates ischemic injury by activating the Cdk5 and AKT/GSK3β signaling pathways. Consequently, CK2 inhibition using the small molecule inhibitor CX-4945 (Silmitasertib) correlates with preservation of oligodendrocytes, conservation of axon structure, and axonal mitochondria, leading to improved functional recovery. Remarkably, CK2 inhibition promotes WM function when applied after ischemic injury by specifically regulating the AKT/GSK3β pathways. The blockade of the active conformation of AKT confers post-ischemic protection to young and old WM by preserving mitochondria, implying AKT as a common therapeutic target across age groups. Using a NanoString nCounter miRNA expression profiling, comparative analyses of ischemic WM with or without CX-4945 treatment reveal that miRNAs are expressed at high levels in WM after ischemia, and CX-4945 differentially regulates some of these miRNAs. Therefore, we propose that miRNA regulation may be one of the protective actions of CX-4945 against WM ischemic injury. Silmitasertib is FDA approved and currently in use for cancer and Covid patients; therefore, it is plausible to repurpose CK2 inhibitors for stroke patients.
Collapse
Affiliation(s)
| | | | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Transcriptomic Analysis of Age-Associated Periventricular Lesions Reveals Dysregulation of the Immune Response. Int J Mol Sci 2020; 21:ijms21217924. [PMID: 33113879 PMCID: PMC7663268 DOI: 10.3390/ijms21217924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
White matter lesions (WML) are a common feature of the ageing brain associated with cognitive impairment. The gene expression profiles of periventricular lesions (PVL, n = 7) and radiologically-normal-appearing (control) periventricular white matter cases (n = 11) obtained from the Cognitive Function and Ageing Study (CFAS) neuropathology cohort were interrogated using microarray analysis and NanoString to identify novel mechanisms potentially underlying their formation. Histological characterisation of control white matter cases identified a subgroup (n = 4) which contained high levels of MHC-II immunoreactive microglia, and were classified as “pre-lesional.” Microarray analysis identified 2256 significantly differentially-expressed genes (p ≤ 0.05, FC ≥ 1.2) in PVL compared to non-lesional control white matter (1378 upregulated and 878 downregulated); 2649 significantly differentially-expressed genes in “pre-lesional” cases compared to PVL (1390 upregulated and 1259 downregulated); and 2398 significantly differentially-expressed genes in “pre-lesional” versus non-lesional control cases (1527 upregulated and 871 downregulated). Whilst histological evaluation of a single marker (MHC-II) implicates immune-activated microglia in lesion pathology, transcriptomic analysis indicates significant downregulation of a number of activated microglial markers and suggests established PVL are part of a continuous spectrum of white matter injury. The gene expression profile of “pre-lesional” periventricular white matter suggests upregulation of several signalling pathways may be a neuroprotective response to prevent the pathogenesis of PVL.
Collapse
|
4
|
Osborn KE, Alverio JM, Dumitrescu L, Pechman KR, Gifford KA, Hohman TJ, Blennow K, Zetterberg H, Jefferson AL. Adverse Vascular Risk Relates to Cerebrospinal Fluid Biomarker Evidence of Axonal Injury in the Presence of Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 71:281-290. [PMID: 31381510 DOI: 10.3233/jad-190077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vascular risk factors promote cerebral small vessel disease and neuropathological changes, particularly in white matter where large-caliber axons are located. How Alzheimer's disease pathology influences the brain's vulnerability in this regard is not well understood. OBJECTIVE Systemic vascular risk was assessed in relation to cerebrospinal fluid concentrations of neurofilament light, a biomarker of large-caliber axonal injury, evaluating for interactions by clinical and protein markers of Alzheimer's disease. METHODS Among Alzheimer's Disease Neuroimaging Initiative participants with normal cognition (n = 117), mild cognitive impairment (n = 190), and Alzheimer's disease (n = 95), linear regression related vascular risk (as measured by the modified Framingham Stroke Risk Profile) to neurofilament light, adjusting for age, sex, education, and cognitive diagnosis. Interactions were assessed by cognitive diagnosis, and by cerebrospinal fluid markers of Aβ42, hyperphosphorylated tau, and total tau. RESULTS Vascular risk and neurofilament light were not related in the main effect model (p = 0.08). However, interactions emerged for total tau (p = 0.01) and hyperphosphorylated tau (p = 0.002) reflecting vascular risk becoming more associated with cerebrospinal fluid neurofilament light in the context of greater concentrations of tau biomarkers. An interaction also emerged for the Alzheimer's disease biomarker profiles (p = 0.046) where in comparison to the referent 'normal' biomarker group, individuals with abnormal levels of both Aβ42 and total tau showed stronger associations between vascular risk and neurofilament light. CONCLUSION Older adults may be more vulnerable to axonal injury in response to higher vascular risk burdens in the context of concomitant Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Katie E Osborn
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Logan Dumitrescu
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Katherine A Gifford
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Angela L Jefferson
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Su Z, Chang Q, Drelich A, Shelite T, Judy B, Liu Y, Xiao J, Zhou C, He X, Jin Y, Saito T, Tang S, Soong L, Wakamiya M, Fang X, Bukreyev A, Ksiazek T, Russell WK, Gong B. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis 2020; 14:e0007960. [PMID: 32687500 PMCID: PMC7392349 DOI: 10.1371/journal.pntd.0007960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/30/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.
Collapse
Affiliation(s)
- Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Changchen Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Shaojun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bastian C, Day J, Politano S, Quinn J, Brunet S, Baltan S. Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia. Neuromolecular Med 2019; 21:484-492. [PMID: 31152363 PMCID: PMC6884671 DOI: 10.1007/s12017-019-08550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Jerica Day
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Stephen Politano
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - John Quinn
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Xu M, Wang MM, Gao Y, Keep RF, Shi Y. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiol Dis 2018; 126:13-22. [PMID: 30017454 DOI: 10.1016/j.nbd.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
White matter injury is a crucial component of human stroke, but it has often been neglected in preclinical studies. Most human stroke is associated with one or more comorbidities, including aging, hypertension, diabetes and metabolic syndrome including hyperlipidemia. The purpose of this review is to examine how age and hypertension impact stroke-induced white matter injury as well as white matter repair in both human stroke and preclinical models. It is essential that comorbidities be examined in preclinical trials as they may impact translatability to the clinic. In addition, understanding how comorbidities impact white matter injury and repair may provide new therapeutic opportunities for patients with those conditions.
Collapse
Affiliation(s)
- Mingyue Xu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Michael M Wang
- Departments of Neurology and Physiology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Bastian C, Quinn J, Tripathi A, Aquila D, McCray A, Dutta R, Baltan S, Brunet S. CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiol Dis 2018; 126:47-61. [PMID: 29944965 DOI: 10.1016/j.nbd.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - John Quinn
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ajai Tripathi
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Danielle Aquila
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Andrew McCray
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ranjan Dutta
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Selva Baltan
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Sylvain Brunet
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
10
|
Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. Int J Mol Sci 2018; 19:ijms19061743. [PMID: 29895784 PMCID: PMC6032201 DOI: 10.3390/ijms19061743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Even in adult brains, restorative mechanisms are still retained to maintain the microenvironment. Under the pathological conditions of central nervous system (CNS) diseases, several immature cells in the brain would be activated as a compensative response. As the concept of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative process. White matter damage and oligodendrocyte loss are representative characteristics for many neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination. Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly unknown and understudied, accumulated evidence now suggests that support from neighboring cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases, focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
Collapse
|
11
|
NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. J Neurosci 2018; 38:6247-6266. [PMID: 29891729 DOI: 10.1523/jneurosci.3017-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.
Collapse
|
12
|
Yin X, Kidd GJ, Ohno N, Perkins GA, Ellisman MH, Bastian C, Brunet S, Baltan S, Trapp BD. Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 2017; 215:531-542. [PMID: 27872255 PMCID: PMC5119941 DOI: 10.1083/jcb.201607099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
The authors show that central nervous system myelin lacking proteolipid protein (PLP) induces mitochondrial dysfunction, including altered motility, degeneration, and ectopic smooth endoplasmic reticulum interactions, leading to axonal structural defects and degeneration. Mutated PLP occurs in hereditary spastic paraplegia, and these cellular effects provide potential insight into the pathology of the disease. Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P0 (P0-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria–SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria–SER associations were reduced by 86% in 1-mo-old P0-CNS juxtaparanodal axoplasm. 1-mo-old P0-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria–SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration.
Collapse
Affiliation(s)
- Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Grahame J Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
| | - Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
13
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
14
|
Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter. J Neurosci 2016; 36:9990-10001. [PMID: 27683897 DOI: 10.1523/jneurosci.1316-16.2016] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The impact of aging on CNS white matter (WM) is of general interest because the global effects of aging on myelinated nerve fibers are more complex and profound than those in cortical gray matter. It is important to distinguish between axonal changes created by normal aging and those caused by neurodegenerative diseases, including multiple sclerosis, stroke, glaucoma, Alzheimer's disease, and traumatic brain injury. Using three-dimensional electron microscopy, we show that in mouse optic nerve, which is a pure and fully myelinated WM tract, aging axons are larger, have thicker myelin, and are characterized by longer and thicker mitochondria, which are associated with altered levels of mitochondrial shaping proteins. These structural alterations in aging mitochondria correlate with lower ATP levels and increased generation of nitric oxide, protein nitration, and lipid peroxidation. Moreover, mitochondria-smooth endoplasmic reticulum interactions are compromised due to decreased associations and decreased levels of calnexin and calreticulin, suggesting a disruption in Ca(2+) homeostasis and defective unfolded protein responses in aging axons. Despite these age-related modifications, axon function is sustained in aging WM, which suggests that age-dependent changes do not lead to irreversible functional decline under normal conditions, as is observed in neurodegenerative diseases. SIGNIFICANCE STATEMENT Aging is a common risk factor for a number of neurodegenerative diseases, including stroke. Mitochondrial dysfunction and oxidative damage with age are hypothesized to increase risk for stroke. We compared axon-myelin-node-mitochondrion-smooth endoplasmic reticulum (SER) interactions in white matter obtained at 1 and 12 months. We show that aging axons have enlarged volume, thicker myelin, and elongated and thicker mitochondria. Furthermore, there are reduced SER connections to mitochondria that correlate with lower calnexin and calreticulin levels. Despite a prominent decrease in number, elongated aging mitochondria produce excessive stress markers with reduced ATP production. Because axons maintain function under these conditions, our study suggests that it is important to understand the process of normal brain aging to identify neurodegenerative changes.
Collapse
|
15
|
Baltan S. Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 2015; 110:626-632. [PMID: 26407763 DOI: 10.1016/j.neuropharm.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/18/2015] [Accepted: 09/12/2015] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes and axons are the main targets of an ischemic white matter injury and the resultant loss of axon function underlies the clinical disability in patients who survive a stroke. The cellular mechanisms of ischemic injury change as a function of age in concordance with age-mediated structural changes in white matter. Shorter periods of injury cause rapid and robust loss of axon function together with widespread oligodendrocyte death. While blockade of NMDA receptors fails to benefit axon function, removal of extracellular Ca2+ during ischemia remarkably promotes axon function recovery in young white matter. However, these same approaches hinder axon function recovery and fail to protect oligodendrocytes in aging white matter. The obligatory GluN1 subunit of the NMDA receptor exhibits an age-specific expression pattern such that in young adult white matter, it is mostly localized on oligodendrocyte cell bodies, while in aging white matter, it is also observed on myelin processes. This age-dependent re-localization and redistribution pattern mimics GluN1 expression observed during development, but in reverse order. During development, GluN1 immunoreactivity traffics from astrocytes at postnatal day 4-11 (P4-11) to myelin processes at P12-18 and to oligodendrocytes cell bodies at P19-21. Although immature axons are more resistant to ischemia, blockade of NMDA receptors during ischemia at P4-11 and P12-18 worsens axon function recovery and fails to benefit axons at P19-21. Thus, age-specific expression patterns of NMDA receptor localization may seem to modulate the plasticity of oligodendrocytes and myelin in response to ischemia as a function of age in white matter. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
16
|
Ahmad AS, Satriotomo I, Fazal J, Nadeau SE, Doré S. Considerations for the Optimization of Induced White Matter Injury Preclinical Models. Front Neurol 2015; 6:172. [PMID: 26322013 PMCID: PMC4532913 DOI: 10.3389/fneur.2015.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
White matter (WM) injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in imaging technologies in the field of stroke have confirmed that WM injury plays an important role in the prognosis of stroke and suggest that WM protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of WM injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective WM injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective WM ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly, the ratio of WM to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general WM injury in animal models (stroke and non-stroke related) and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Irawan Satriotomo
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Jawad Fazal
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Stephen E Nadeau
- Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA ; Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Neuroscience, University of Florida , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Pharmaceutics, University of Florida , Gainesville, FL , USA ; Department of Psychology, University of Florida , Gainesville, FL , USA ; Department of Psychiatry, University of Florida , Gainesville, FL , USA
| |
Collapse
|
17
|
Lee CH, Park JH, Cho JH, Ahn JH, Bae EJ, Won MH. Differences in the protein expression levels of Trx2 and Prx3 in the hippocampal CA1 region between adult and aged gerbils following transient global cerebral ischemia. Mol Med Rep 2015; 12:2555-62. [PMID: 25955690 PMCID: PMC4464438 DOI: 10.3892/mmr.2015.3760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/15/2015] [Indexed: 11/25/2022] Open
Abstract
The thioredoxin (Trx) and peroxiredoxin (Prx) redox system is associated with neuronal damage and neuroprotective effects via the regulation of oxidative stress in brain ischemia. In the present study, ischemia-induced changes in the protein expression levels of Trx2 and Prx3 in the stratum pyramidale (SP) of the hippocampal CA1 region were investigated in adult and aged gerbils, subjected to 5 min of transient global cerebral ischemia, using immunohistochemistry and western blot analysis. In the adult ischemia-group, minimal Trx2 immunoreactivity was detected in the SP 2 days after ischemia-reperfusion. In the aged animals, the Trx2 immunoreactivity in the sham-group was marginally lower compared with that in the adult sham-group. In the aged ischemia-group, Trx2 immunoreactivity in the SP was significantly higher 1, 2 and 4 days post-ischemia, compared with that in the adult ischemia-group and, in the 5 days post-ischemia group, Trx2 immunoreactivity was significantly decreased in the SP. Prx3 immunoreactivity in the SP of the adult ischemia-group was significantly decreased from 4 days after ischemia-reperfusion. In the aged animals, Prx3 immunoreactivity in the sham-group was also marginally lower compared with that in the adult sham-group. Prx3 immunoreactivity in the aged ischemia-group was also significantly higher 1, 2 and 4 days post-ischemia, compared with the adult ischemia-group; however, the Prx3 immunoreactivity was significantly decreased 5 days post-ischemia. The western blot analyses revealed that the pattern of changes in the protein levels of Trx2 and Prx3 in the adult and aged hippocampal CA1 region following ischemic damage were similar to the results obtained in the immunohistochemical data. These findings indicated that cerebral ischemia lead to different protein expression levels of Trx2 and Prx3 in the hippocampal CA1 region between adult and aged gerbils, and these differences may be associated with more delayed neuronal death in the aged gerbil hippocampus following transient global cerebral ischemia.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 330‑714, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Eun Joo Bae
- Department of Pediatrics, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| |
Collapse
|
18
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
19
|
Baltan S. Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. ADVANCES IN NEUROBIOLOGY 2014; 11:151-70. [PMID: 25236728 PMCID: PMC8937575 DOI: 10.1007/978-3-319-08894-5_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The central nervous system white matter is damaged during an ischemic stroke and therapeutic strategies derived from experimental studies focused exclusively on young adults and gray matter have been unsuccessful in the more clinically relevant aging population. The risk for stroke increases with age and the white matter inherently becomes more susceptible to injury as a function of age. Age-related changes in the molecular architecture of white matter determine the principal injury mechanisms and the functional outcome. A prominent increase in the main plasma membrane Na(+)-dependent glutamate transporter, GLT-1/EAAT2, together with increased extracellular glutamate levels may reflect an increased need for glutamate signaling in the aging white matter to maintain its function. Mitochondria exhibit intricate dynamics to efficiently buffer Ca(2+), to produce sufficient ATP, and to effectively scavenge reactive oxygen species (ROS) in response to excitotoxicity to sustain axon function. Aging exacerbates mitochondrial fusion, leading to progressive alterations in mitochondrial dynamics and function, presumably to effectively buffer increased Ca(2+) load and ROS production. Interestingly, these adaptive adjustments become detrimental under ischemic conditions, leading to increased and early glutamate release and a rapid exhaustion of mitochondrial capacity to sustain energy status of axons. Consequently, protective interventions in young white matter become injurious or ineffective to promote recovery in aging white matter after an ischemic episode. An age-specific understanding of the mechanisms of injury processes in white matter is vital in order to design dynamic therapeutic approaches for stroke victims.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC30, Cleveland, OH, 44195, USA,
| |
Collapse
|
20
|
Goncharenko K, Eftekharpour E, Velumian AA, Carlen PL, Fehlings MG. Changes in gap junction expression and function following ischemic injury of spinal cord white matter. J Neurophysiol 2014; 112:2067-75. [PMID: 25080569 DOI: 10.1152/jn.00037.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions are widely present in spinal cord white matter; however, their role in modulating the dynamics of axonal dysfunction remains largely unexplored. We hypothesized that inhibition of gap junctions reduces the loss of axonal function during oxygen and glucose deprivation (OGD). The functional role of gap junctions was assessed by electrophysiological recordings of compound action potentials (CAPs) in Wistar rat spinal cord slices with the sucrose gap technique. The in vitro slices were subjected to 30-min OGD. Gap junction connexin (Cx) mRNA expression was determined by qPCR and normalized to β-actin. A 30-min OGD resulted in reduction of CAPs to 14.8 ± 4.6% of their pre-OGD amplitude (n = 5). In the presence of gap junction blockers carbenoxolone (Cbx; 100 μM) and 1-octanol (Oct; 300 μM), the CAP reduction in OGD was to only 35.7 ± 5.7% of pre-OGD amplitude in Cbx (n = 9) and to 37.4 ± 8.9% of pre-OGD amplitude in Oct (n = 10). Both drugs also noticeably prolonged the half-decline time of CAP amplitudes in OGD from 6.0 min in no-drug conditions to 9.6 min in the presence of Cbx and to 7.7 min in the presence of Oct, suggesting that blocking gap junctions reduces conduction loss during OGD. With application of Cbx and Oct in the setting of OGD, expression of Cx30 and Cx43 mRNA was downregulated. Our data provide new insights into the role of gap junctions in white matter ischemia and reveal the necessity of a cautious approach in determining detrimental or beneficial effects of gap junction blockade in white matter ischemia.
Collapse
Affiliation(s)
- Karina Goncharenko
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and
| | - Eftekhar Eftekharpour
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Velumian
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter L Carlen
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and
| | - Michael G Fehlings
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Fern RF, Matute C, Stys PK. White matter injury: Ischemic and nonischemic. Glia 2014; 62:1780-9. [PMID: 25043122 DOI: 10.1002/glia.22722] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Ischemic pathologies of white matter (WM) include a large proportion of stroke and developmental lesions while multiple sclerosis (MS) is the archetype nonischemic pathology. Growing evidence suggests other important diseases including neurodegenerative and psychiatric disorders also involve a significant WM component. Axonal, oligodendroglial, and astroglial damage proceed via distinct mechanisms in ischemic WM and these mechanisms evolve dramatically with maturation. Axons may pass through four developmental stages where the pattern of membrane protein expression influences how the structure responds to ischemia; WM astrocytes pass through at least two and differ significantly in their ischemia tolerance from grey matter astrocytes; oligodendroglia pass through at least three, with the highly ischemia intolerant pre-oligodendrocyte (pre-Oli) stage linking the less sensitive precursor and mature phenotypes. Neurotransmitters play a central role in WM pathology at all ages. Glutamate excitotoxicity in WM has both necrotic and apoptotic components; the latter mediated by intracellular pathways which differ between receptor types. ATP excitotoxicity may be largely mediated by the P2X7 receptor and also has both necrotic and apoptotic components. Interplay between microglia and other cell types is a critical element in the injury process. A growing appreciation of the significance of WM injury for nonischemic neurological disorders is currently stimulating research into mechanisms; with curious similarities being found with those operating during ischemia. A good example is traumatic brain injury, where axonal pathology can proceed via almost identical pathways to those described during acute ischemia.
Collapse
Affiliation(s)
- Robert F Fern
- Peninsula School of Medicine and Dentistry, University of Plymouth, United Kingdom
| | | | | |
Collapse
|
22
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|
23
|
Baltan S, Morrison RS, Murphy SP. Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics 2013; 10:798-807. [PMID: 23881453 PMCID: PMC3805855 DOI: 10.1007/s13311-013-0201-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding how epigenetics influences the process and progress of a stroke could yield new targets and therapeutics for use in the clinic. Experimental evidence suggests that inhibitors of zinc-dependent histone deacetylases can protect neurons, axons, and associated glia from the devastating effects of oxygen and glucose deprivation. While the specific enzymes involved have yet to be clearly identified, there are hints from somewhat selective chemical inhibitors and also from the use of specific small hairpin RNAs to transiently knockdown protein expression. Neuroprotective mechanisms implicated thus far include the upregulation of extracellular glutamate clearance, inhibition of p53-mediated cell death, and maintenance of mitochondrial integrity. The histone deacetylases have distinct cellular and subcellular localizations, and discrete substrates. As a number of chemical inhibitors are already in clinical use for the treatment of cancer, repurposing for the stroke clinic should be expedited.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA,
| | | | | |
Collapse
|
24
|
Damage to myelin and oligodendrocytes: a role in chronic outcomes following traumatic brain injury? Brain Sci 2013; 3:1374-94. [PMID: 24961533 PMCID: PMC4061868 DOI: 10.3390/brainsci3031374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence in the experimental and clinical traumatic brain injury (TBI) literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s) of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.
Collapse
|
25
|
Abstract
There is no question about the fact that astrocytes and other glial cells release neurotransmitters that activate receptors on neurons, glia and vascular cells, and that calcium is an important second messenger regulating the release. This occurs in cell culture, tissue slice and in vivo. Negative results from informative experiments designed to test the mechanism of calcium-dependent neurotransmitter release from astrocytes and the ensuing effects on synaptic transmission, have been cited as evidence calling into question whether astrocytes release neurotransmitters under normal circumstances with effects on synaptic transmission. The special feature section in this issue of Neuron Glia Biology addresses these issues and other aspects of neurotransmitter release from astrocytes in communicating with neurons and glial cells. Together these studies suggest that application of vocabulary and concepts developed for synaptic communication between neurons can lead to confusion and apparent paradoxes with respect to communication by extracellular signaling molecules released from glia in response to functional activity.
Collapse
|
26
|
Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, Holcomb HH, Barker PB. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull 2013; 39:1096-104. [PMID: 23081992 PMCID: PMC3756774 DOI: 10.1093/schbul/sbs092] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.
Collapse
Affiliation(s)
- Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD;,To whom correspondence should be addressed; P O Box 21247, Baltimore, MD 21228, USA; tel: 410-402-6803; fax: 410-402-6077; e-mail:
| | - Kimberly Kontson
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD
| | - Richard A. Edden
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore MD;,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD
| | - He Zhu
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore MD;,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD
| | - Henry H. Holcomb
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD
| | - Peter B. Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore MD;,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD
| |
Collapse
|
27
|
Cojocaru GR, Popa-Wagner A, Stanciulescu EC, Babadan L, Buga AM. Post-stroke depression and the aging brain. J Mol Psychiatry 2013; 1:14. [PMID: 25408907 PMCID: PMC4223891 DOI: 10.1186/2049-9256-1-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/25/2013] [Indexed: 11/12/2022] Open
Abstract
Ageing is associated with changes in the function of various organ systems. Changes in the cardiovascular system affect both directly and indirectly the function in a variety of organs, including the brain, with consequent neurological (motor and sensory performance) and cognitive impairments, as well as leading to the development of various psychiatric diseases. Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of cerebral ischemia. This review discusses several animal models used for the study of PSD and summarizes recent findings in the genomic profile of the ageing brain, which are associated with age-related disorders in the elderly. Since stroke and depression are diseases with increased incidence in the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD. Finally, we discuss the relationship between ageing, circadian rhythmicity and PSD.
Collapse
Affiliation(s)
- Gabriel R Cojocaru
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock, Rostock, Germany
| | - Elena C Stanciulescu
- Faculty of Pharmacy, Chair of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, 200349 Romania
| | - Loredana Babadan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| | - Ana-Maria Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| |
Collapse
|
28
|
Rosenzweig S, Carmichael ST. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke 2013; 44:2579-86. [PMID: 23868277 DOI: 10.1161/strokeaha.113.001796] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Subcortical white matter stroke (WMS) constitutes up to 30% of all stroke subtypes. Mechanisms of oligodendrocyte and axon injury and repair play a central role in the damage and recovery after this type of stroke, and a comprehensive study of these processes requires a specialized experimental model that is different from common large artery, gray matter stroke models. Diminished recovery from stroke in aged patients implies that damage and repair processes are affected by advanced age, but such effects have not been studied in WMS. METHODS WMS was produced with focal microinjection of the vasoconstrictor N5-(1-iminoethyl)-L-ornithine into the subcortical white matter ventral to the mouse forelimb motor cortex in young adult (2 months), middle-aged (15 months), and aged mice (24 months). RESULTS WMS produced localized oligodendrocyte cell death with higher numbers of apoptotic cells and greater oxidative damage in aged brains than in young-adult brains. Increased expression of monocyte chemotactic protein-1 and tumor necrosis factor-α in motor cortex neurons correlated with a more distributed microglial activation in aged brains 7 days after WMS. At 2 months, aged mice displayed increased white matter atrophy and greater loss of corticostriatal connections compared with young-adult mice. Behavioral testing revealed an age-dependent exacerbation of forelimb motor deficits caused by the stroke, with decreased long-term functional recovery in aged animals. CONCLUSIONS Age has a profound effect on the outcome of WMS, with more prolonged cell death and oxidative damage, increased inflammation, greater secondary white matter atrophy, and a worse behavioral effect in aged versus young-adult mice.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
29
|
Abstract
Aging increases the vulnerability of aging white matter to ischemic injury. Histone deacetylase (HDAC) inhibitors preserve young adult white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. In isolated optic nerve from 12-month-old mice, deprived of oxygen and glucose, we show that pan- and Class I-specific HDAC inhibitors promote functional recovery of axons. This protection correlates with preservation of axonal mitochondria. The cellular expression of HDAC 3 in the central nervous system (CNS), and HDAC 2 in optic nerve considerably changed with age, expanding to more cytoplasmic domains from nuclear compartments, suggesting that changes in glial cell protein acetylation may confer protection to aging axons. Our results indicate that manipulation of HDAC activities in glial cells may have a universal potential for stroke therapy across age groups.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| |
Collapse
|
30
|
Disruption of NMDA receptors in oligodendroglial lineage cells does not alter their susceptibility to experimental autoimmune encephalomyelitis or their normal development. J Neurosci 2012; 32:639-45. [PMID: 22238099 DOI: 10.1523/jneurosci.4073-11.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacological studies have suggested that oligodendroglial NMDA glutamate receptors (NMDARs) mediate white matter injury in a variety of CNS diseases, including multiple sclerosis (MS). We tested this hypothesis in experimental autoimmune encephalomyelitis (EAE), a model of human MS, by timed conditional disruption of oligodendroglial NR1, an essential subunit of functional NMDARs, using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system. We found that selective ablation of oligodendroglial NR1 did not alter the clinical severity of EAE elicited in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG-peptide), nor were there significant differences between the oligodendroglial NR1 KO and non-KO mice in numbers of axons lost in spinal cord dorsal funiculi or severity of spinal cord demyelination. Similarly, constitutive deletion of NR3A, a modulatory subunit of oligodendroglial NMDARs, did not alter the course of MOG-peptide EAE. Furthermore, conditional and constitutive ablation of NR1 in neonatal oligodendrocyte progenitor cells did not interrupt their normal maturation and differentiation. Collectively, our data suggest that oligodendroglial lineage NMDARs are neither required for timely postnatal development of the oligodendroglial lineage, nor significant participants in the pathophysiology of MOG-peptide EAE.
Collapse
|
31
|
Arai K, Pham LDD, Lo EH. Experimental Platforms for Assessing White Matter Pathophysiology in Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Van Impe A, Coxon JP, Goble DJ, Doumas M, Swinnen SP. White matter fractional anisotropy predicts balance performance in older adults. Neurobiol Aging 2011; 33:1900-12. [PMID: 21872363 DOI: 10.1016/j.neurobiolaging.2011.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.
Collapse
Affiliation(s)
- Annouchka Van Impe
- Research Center for Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, K.U. Leuven, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
33
|
Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:386-400. [PMID: 21871957 DOI: 10.1016/j.bbadis.2011.08.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
In this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci 2011; 31:3990-9. [PMID: 21411642 DOI: 10.1523/jneurosci.5379-10.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. In a pure WM tract (isolated mouse optic nerve), we show that pan- and class I-specific HDAC inhibitors, administered before or after a period of oxygen and glucose deprivation (OGD), promote functional recovery of axons and preserve WM cellular architecture. This protection correlates with the upregulation of an astrocyte glutamate transporter, delayed and reduced glutamate accumulation during OGD, preservation of axonal mitochondria and oligodendrocytes, and maintenance of ATP levels. Interestingly, the expression of HDACs 1, 2, and 3 is localized to astrocytes, suggesting that changes in glial cell gene transcription and/or protein acetylation may confer protection to axons. Our findings suggest that a therapeutic opportunity exists for the use of HDAC inhibitors, targeting mitochondrial energy regulation and excitotoxicity in ischemic WM injury.
Collapse
|
35
|
Li N, Kong X, Ye R, Yang Q, Han J, Xiong L. Age-Related Differences in Experimental Stroke: Possible Involvement of Mitochondrial Dysfunction and Oxidative Damage. Rejuvenation Res 2011; 14:261-73. [PMID: 21466386 DOI: 10.1089/rej.2010.1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nanlin Li
- Department of Vascular and Endocrine Surgery, Fourth Military Medical University, Xi'an, China
| | - Xiangwei Kong
- College of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ruidong Ye
- Department of Neurology, Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junliang Han
- Department of Neurology, Fourth Military Medical University, Xi'an, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, Hernangómez M, Montagne A, Liot G, Guaza C, Maubert E, Ali C, Vivien D, Docagne F. Tissue plasminogen activator prevents white matter damage following stroke. ACTA ACUST UNITED AC 2011; 208:1229-42. [PMID: 21576385 PMCID: PMC3173251 DOI: 10.1084/jem.20101880] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor-like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment.
Collapse
Affiliation(s)
- Fernando Correa
- Institut National de la Santé et de la Recherche Médicale (INSERM), INSERM-U919, Caen Cedex, F-14074 France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and that can be initiated by disruption of glutamate homeostasis. Thus, inhibition of glutamate uptake by activated microglia can compromise glutamate homeostasis and induce oligodendrocyte excitotoxicity. Moreover, non-lethal, brief activation of kainate receptors in oligodendrocytes rapidly sensitizes these cells to complement attack as a consequence of oxidative stress. In addition to glutamate, ATP signalling can directly trigger oligodendrocyte excitotoxicity via activation of Ca(2+) -permeable P2X7 purinergic receptors, which mediates ischaemic damage to white matter (WM) and causes lesions that are reminiscent of multiple sclerosis (MS) plaques. Conversely, blockade of P2X7 receptors attenuates post-ischaemic injury to WM and ameliorates chronic experimental autoimmune encephalomyelitis, a model of MS. Importantly, P2X7 expression is elevated in normal-appearing WM in patients with MS, suggesting that signalling through this receptor in oligodendrocytes may be enhanced in this disease. Altogether, these observations reveal novel mechanisms by which altered glutamate and ATP homeostasis can trigger oligodendrocyte death. This review aims at summarizing current knowledge about the mechanisms leading to WM damage as a consequence of altered neurotransmitter signalling, and their relevance to disease. This knowledge will generate new therapeutic avenues to treat more efficiently acute and chronic WM pathology.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias and CIBERNED, Universidad del País Vasco, Leioa, Vizcaya, Spain Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain.
| |
Collapse
|
38
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2690] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen RL, Balami JS, Esiri MM, Chen LK, Buchan AM. Ischemic stroke in the elderly: an overview of evidence. Nat Rev Neurol 2010; 6:256-65. [PMID: 20368741 DOI: 10.1038/nrneurol.2010.36] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stroke mostly occurs in elderly people and patient outcomes after stroke are highly influenced by age. A better understanding of the causes of stroke in the elderly might have important practical implications not only for clinical management, but also for preventive strategies and future health-care policies. In this Review, we explore the evidence from both human and animal studies relating to the effect of old age-in terms of susceptibility, patient outcomes and response to treatment-on ischemic stroke. Several aging-related changes in the brain have been identified that are associated with an increase in vulnerability to ischemic stroke in the elderly. Furthermore, risk factor profiles for stroke and mechanisms of ischemic injury differ between young and elderly patients. Elderly patients with ischemic stroke often receive less-effective treatment and have poorer outcomes than younger individuals who develop this condition. Neuroprotective agents for ischemic stroke have been sought for decades but none has proved effective in humans. One contributing factor for this translational failure is that most preclinical studies have used young animals. Future research on ischemic stroke should consider age as a factor that influences stroke prevention and treatment, and should focus on the management of acute stroke in the elderly to reduce the incidence and improve outcomes in this vulnerable group.
Collapse
Affiliation(s)
- Ruo-Li Chen
- Nuffield Department of Medicine, University of Oxford, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
40
|
Abstract
Stroke is one of the leading causes of death and disability in developed countries. Since protecting neurons alone is not sufficient for stroke therapy, research has shifted to the rescue of multiple cell types in the brain. In particular, attention has focused on the study of how cerebral blood vessels and brain cells communicate with each other. Recent findings suggest that cerebral endothelial cells may secrete trophic factors that nourish neighboring cells. Although data are strongest in terms of supporting endothelial-neuronal interactions, it is likely that similar interactions occur in white matter as well. In this mini-review, we summarize recent advances in the dissection of cell-cell interactions in white matter. We examine two key concepts. First, trophic interactions between vessels and oligodendrocytes (OLGs) and oligodendrocyte precursor cells (OPCs) play critical roles in white matter homeostasis. Second, cell-cell trophic coupling is disturbed under diseased conditions that incur oxidative stress. White matter pathophysiology is very important in stroke. A deeper understanding of the mechanisms of oligovascular signaling in normal and pathologic conditions may lead us to new therapeutic targets for stroke and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|