1
|
Li H, Li F, Chen Z, Wu E, Dai X, Li D, An H, Zeng S, Wang C, Yang L, Long C. Glutamatergic CYLD deletion leads to aberrant excitatory activity in the basolateral amygdala: association with enhanced cued fear expression. Neural Regen Res 2025; 20:3259-3272. [PMID: 39715097 PMCID: PMC11881721 DOI: 10.4103/nrr.nrr-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 12/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway. CYLD is well studied in non-neuronal cells, yet under-investigated in the brain, where it is highly expressed. Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses, neuroinflammation, fear memory, and anxiety- and autism-like behaviors. However, the precise role of CYLD in glutamatergic neurons is largely unknown. Here, we first proposed involvement of CYLD in cued fear expression. We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons. Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice. Further, loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation, impaired excitatory synaptic transmission, and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice. Altogether, our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal, synaptic, and microglial activation. This may contribute, at least in part, to cued fear expression.
Collapse
Affiliation(s)
- Huidong Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Faqin Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Erwen Wu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaoxi Dai
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Danni Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Haojie An
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Shiyi Zeng
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chunyan Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
3
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Du J, Diao H, Zhou X, Zhang C, Chen Y, Gao Y, Wang Y. Post-traumatic stress disorder: a psychiatric disorder requiring urgent attention. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:219-243. [PMID: 37724188 PMCID: PMC10388753 DOI: 10.1515/mr-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 09/20/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a severe and heterogenous psychiatric disorder that was first defined as a mental disorder in 1980. Currently, the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) and the International Classification of Diseases 11th Edition (ICD-11) offer the most widely accepted diagnostic guidelines for PTSD. In both diagnostic categories, experiencing a traumatic event (TE) is the necessary criterion for diagnosing PTSD. The TEs described in the DSM-5 include actual or threatened death, serious injury, sexual violence, and other extreme stressors, either directly or indirectly. More than 70% of adults worldwide are exposed to a TE at least once in their lifetime, and approximately 10% of individuals develop PTSD after experiencing a TE. The important features of PTSD are intrusion or re-experiencing fear memories, pervasive sense of threat, active avoidance, hyperarousal symptoms, and negative alterations of cognition and mood. Individuals with PTSD have high comorbidities with other psychiatric diseases, including major depressive disorder, generalized anxiety disorder, and substance use disorder. Multiple lines of evidence suggest that the pathophysiology of PTSD is complex, involving abnormal neural circuits, molecular mechanisms, and genetic mechanisms. A combination of both psychotherapy and pharmacotherapy is used to treat PTSD, but has limited efficacy in patients with refractory PTSD. Because of the high prevalence, heavy burden, and limited treatments, PTSD is a psychiatric disorder that requires urgent attention. In this review, we summarize and discuss the diagnosis, prevalence, TEs, pathophysiology, and treatments of PTSD and draw attention to its prevention.
Collapse
Affiliation(s)
- Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Huapeng Diao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaojuan Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunkui Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2021; 530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orexin neurons play an important role in stress-related mental disorders including post-traumatic stress disorder (PTSD). Anxiety- and depression-related symptoms commonly occur in combination with PTSD. However, the role of the orexin system in mediating alterations in these affective symptoms remains unclear. The medial prefrontal cortex (mPFC) is implicated in both cognitive and emotional processing. In the present study, we investigated anxiety- and depression-related behavioral changes using the elevated plus maze, the sucrose preference test, and the open field test in male rats with single prolonged stress (SPS) induced-PTSD. The expression of orexin-A in the hypothalamus and orexin receptors (OX1R and OX2R) in the mPFC was detected and quantified by immunohistochemistry, western blotting, and real-time polymerase chain reaction. We found that the SPS rats exhibited enhanced levels of anxiety, reduced exploratory activities, and anhedonia. Furthermore, SPS resulted in reductions in the expression of orexin-A in the hypothalamus and the increased the expression of OX1R in the mPFC. The intracerebroventricular administration of orexin-A alleviated behavioral changes in SPS rats and partly restored the increased levels of OX1R in the mPFC. These results suggest that the orexin system plays a role in the anxiety- and depression-related symptoms observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China.,Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Śmiałowska M, Zięba B, Domin H. A role of noradrenergic receptors in anxiolytic-like effect of high CRF in the rat frontal cortex. Neuropeptides 2021; 88:102162. [PMID: 34062382 DOI: 10.1016/j.npep.2021.102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide widely distributed in the brain as a hormonal modulator and neurotransmitter. The best known behavioral function of CRF is activation of stress and anxiety via the hypothalamus and limbic structures but the role of CRF in the cortex is still poorly understood. Our previous studies have shown anxiolytic-like effects of high doses of CRF injected into the Fr2 frontal cortex and involvement of CRF1 receptors (R) in that effect. These results seemed to be controversial as most other studies suggested anxiogenic and not anxiolytic effects of CRF1R stimulation. Since stress is associated with adrenergic system, in the present study, we focused on participation of alpha1 and alpha2 or beta adrenergic receptors in the anxiolytic-like effect of CRF. Moreover, we verified whether these effects of CRF in the Fr2 were really connected with CRF1R. Male Wistar rats were bilaterally microinjected with CRF in a dose of 0.2 μg/1 μl/site or with the specific agonist of CRF1R, stressin 1 (0.2-0.0125 μg/1 μl/site) into the Fr2 area. The elevated plus maze (EPM) test was performed 30 min later to assess the anxiolysis. An involvement of noradrenergic receptors in the CRF induced anxiolytic-like effect in the Fr2 was studied by pretreatment with the alpha1 antagonist prazosin, alpha2 agonist clonidine, alpha2 antagonist RS 79948 or beta antagonist propranolol, 20-30 min before CRF. The influence on anxiety was assessed in the EPM test. The results show that anxiolytic behavior after CRF microinjection into the Fr2 area seems to be mainly connected with the CRF1R activation because a similar effect was observed after stressin 1 administration and it was blocked by CRF1R antagonist. The results observed after administration of noradrenergic ligands indicated that anxiolytic effects of CRF in the Fr2 engaged the alpha1 and alpha2 adrenergic receptors but not beta receptors.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland.
| | - Barbara Zięba
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| |
Collapse
|
7
|
Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci 2021; 15:699592. [PMID: 34234655 PMCID: PMC8257081 DOI: 10.3389/fnbeh.2021.699592] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Despite decades of research on the neurobiology of major depressive disorder (MDD), the mechanisms underlying its expression remain unknown. The medial prefrontal cortex (mPFC), a hub region involved in emotional processing and stress response elaboration, is highly impacted in MDD patients and animal models of chronic stress. Recent advances showed alterations in the morphology and activity of mPFC neurons along with profound changes in their transcriptional programs. Studies at the circuitry level highlighted the relevance of deciphering the contributions of the distinct prefrontal circuits in the elaboration of adapted and maladapted behavioral responses in the context of chronic stress. Interestingly, MDD presents a sexual dimorphism, a feature recognized in the molecular field but understudied on the circuit level. This review examines the recent literature and summarizes the contribution of the mPFC circuitry in the expression of MDD in males and females along with the morphological and functional alterations that change the activity of these neuronal circuits in human MDD and animal models of depressive-like behaviors.
Collapse
Affiliation(s)
- Thibault P. Bittar
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Saha R, Kriebel M, Anunu R, Volkmer H, Richter-Levin G. Intra-amygdala metaplasticity modulation of fear extinction learning. Eur J Neurosci 2020; 55:2455-2463. [PMID: 33305403 DOI: 10.1111/ejn.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
The amygdala is a key brain region involved in emotional memory formation. It is also responsible for memory modulation in other brain areas. Under extreme conditions, amygdala modulation may lead to the generation of abnormal plasticity and trauma-related psychopathologies. However, the amygdala itself is a dynamic brain region, which is amenable to long-term plasticity and is affected by emotional experiences. These alterations may modify the way the amygdala modulates activity and plasticity in other related brain regions, which in turn may alter the animal's response to subsequent challenges in what could be termed as "Behavioral metaplasticity."Because of the reciprocal interactions between the amygdala and other emotion processing regions, such as the medial prefrontal cortex (mPFC) or the hippocampus, experience-induced intra-amygdala metaplasticity could lead to alterations in mPFC-dependent or hippocampus-dependent behaviors. While initiated by alterations within the basolateral amygdala (BLA), such alterations in other brain regions may come to be independent of BLA modulation, thus establishing what may be termed "Trans-regional metaplasticity." In this article, we review evidence supporting the notions of intra-BLA metaplasticity and how this may develop into "Trans-regional metaplasticity." Future research is needed to understand how such dynamic metaplastic alterations contribute to developing psychopathologies, and how this knowledge may be translated into promoting novel interventions in psychopathologies associated with fear, stress, and trauma.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hansjuergen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Sex-dimorphic role of prefrontal oxytocin receptors in social-induced facilitation of extinction in juvenile rats. Transl Psychiatry 2020; 10:356. [PMID: 33077706 PMCID: PMC7572379 DOI: 10.1038/s41398-020-01040-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022] Open
Abstract
We previously reported that in the adult animal extinction in pairs resulted in enhanced extinction, showing that social presence can reduce previously acquired fear responses. Based on our findings that juvenile and adult animals differ in the mechanisms of extinction, here we address whether the social presence of a conspecific affects extinction in juvenile animals similarly to adults. We further address whether such presence has a different impact on juvenile males and females. To that end, we examined in our established experimental setting whether conditioned male and female animals extinguish contextual fear memory better while in pairs. Taking advantage of the role of oxytocin (OT) in the mediation of extinction memory and social interaction, we also study the effect of antagonizing the OT receptors (OTR) either systemically or in the prefrontal cortex on social interaction-induced effects of fear extinction. The results show that social presence accelerates extinction in males and females as compared to the single condition. Yet, we show differential and opposing effects of an OTR antagonist in both sexes. Whereas in females, the systemic application of an OTR antagonist is associated with impaired extinction, it is associated with enhanced extinction in males. In contrast, prefrontal OT is not engaged in extinction in juvenile males, while is it is critical in females. Previously reported differences in the levels of prefrontal OT between males and females might explain the differences in OT action. These results suggest that even during the juvenile period, critical mechanisms are differently involved in the regulation of fear in males and females.
Collapse
|
10
|
Fréchou M, Margaill I, Marchand-Leroux C, Beray-Berthat V. Behavioral tests that reveal long-term deficits after permanent focal cerebral ischemia in mouse. Behav Brain Res 2018; 360:69-80. [PMID: 30500429 DOI: 10.1016/j.bbr.2018.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
Abstract
Efforts are still needed regarding the research of therapeutics for ischemic stroke. While in experimental studies the protective effect of pharmacological agents is often highlighted by a reduction of the lesion size evaluated in the short term (days), in clinical studies a functional recovery of patients suffering from stroke is expected on the long-term (months and years). Long-term functional preclinical studies are highly recommended to evaluate potential neuroprotective agents for stroke, rather than an assessment of the infarction size at a short time point. The present study thus aimed to select among various behavioral tests those able to highlight long-term deficits (3 months) after cerebral ischemia in mice. Permanent focal cerebral ischemia was carried out in male Swiss mice by intraluminal occlusion of the left middle cerebral artery (MCA). Fourteen behavioral tests were assessed from 7 days to 90 days after ischemia (locomotor activity, neurological score, exit circle test, grip and string tests, chimney test, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test, novel object recognition test). The present study clearly identified a battery of behavioral tests able to highlight deficits up to 3 months in our mouse model of permanent MCA occlusion (locomotor activity, neurological score, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test and novel object recognition test). This battery of behavioral tests highlighting long-term deficits is useful to study future neuroprotective strategies for stroke treatment.
Collapse
Affiliation(s)
- Magalie Fréchou
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| |
Collapse
|
11
|
The vicious cycle of itch and anxiety. Neurosci Biobehav Rev 2018; 87:17-26. [PMID: 29374516 DOI: 10.1016/j.neubiorev.2018.01.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/28/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022]
Abstract
Chronic itch is associated with increased stress, anxiety, and other mood disorders. In turn, stress and anxiety exacerbate itch, leading to a vicious cycle that affects patient behavior (scratching) and worsens disease prognosis and quality of life. This cycle persists across chronic itch conditions of different etiologies and even to some extent in healthy individuals, suggesting that the final common pathway for itch processing (the central nervous system) plays a major role in the relationship between itch and anxiety. Pharmacological and nonpharmacological treatments that reduce anxiety have shown promising anti-itch effects. Further research is needed to establish specific central mechanisms of the itch-anxiety cycle and provide new targets for treatment.
Collapse
|
12
|
Conditioned task-set competition: Neural mechanisms of emotional interference in depression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:269-289. [PMID: 27943159 DOI: 10.3758/s13415-016-0478-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Depression has been associated with increased response times at the incongruent-, neutral-, and negative-word trials of the classical and emotional Stroop tasks (Epp et al., Clinical Psychology Review, 32, 316-328, 2012). Response-time slowdown effects at incongruent- and negative-word trials of the Stroop tasks were reported to correlate with depressive severity, indicating strong relevance of the effects to the symptomatology. This study proposes a novel integrative computational model of neural mechanisms of both the classical and emotional Stroop effects, drawing on the previous prominent theoretical explanations of performance at the classical Stroop task (Cohen, Dunbar, & McClelland, Psychological Review, 97, 332-361, 1990; Herd, Banich, & O'Reilly, Journal of Cognitive Neuroscience, 18, 22-32, 2006), and in addition suggesting that negative emotional words represent conditioned stimuli for future negative outcomes. The model is shown to explain the classical Stroop effect and the slow (between-trial) emotional Stroop effect with biologically plausible mechanisms, providing an advantage over the previous theoretical accounts (Matthews & Harley, Cognition & Emotion, 10, 561-600, 1996; Wyble, Sharma, & Bowman, Cognition & Emotion, 22, 1019-1051, 2008). Simulation results suggested a candidate mechanism responsible for the pattern of depressive performance at the classical and the emotional Stroop tasks. Hyperactivity of the amygdala, together with increased inhibitory influence of the amygdala over dopaminergic neurotransmission, could be at the origin of the performance deficits.
Collapse
|
13
|
Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189. eNeuro 2017; 4:eN-NWR-0387-16. [PMID: 28828401 PMCID: PMC5562300 DOI: 10.1523/eneuro.0387-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.
Collapse
|
14
|
von Piekartz H, Lüers J, Daumeyer H, Mohr G. [Is kinesiophobia associated with changes in left/right judgment and emotion recognition during a persisting pain condition? : A cross-sectional study]. Schmerz 2017; 31:483-488. [PMID: 28536815 DOI: 10.1007/s00482-017-0220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study is to investigate the effects of kinesiophobia on emotion recognition and left/right judgement. MATERIALS AND METHODS A total of 67 patients with chronic musculoskeletal pain were tested. In all, 24 patients achieved a score >37 on the Tampa Scale of Kinesiophobia and were included in the study. The ability to recognize basic emotions coded through facial expression was assessed using the Facially Expressed Emotion Labeling (FEEL) test. Left/right judgement was evaluated using a special Face-mirroring Assessment and Treatment program. The Toronto Alexithymia Scale-26 (TAS-26) was used to assess if the patients showed signs of alexithymia. RESULTS The FEEL score of patients with kinesiophobia was significantly lower (p = 0.019). The recognition of the basic emotions fear (p = 0.026), anger (p = 0.027), and surprise (p = 0.014) showed significant differences in comparison to unaffected subjects. The basic emotion surprise was recognized more often by patients with kinesiophobia (p = 0.014). Only Scale 1 of the TAS-26 (identification problems of emotions) showed a significant difference between patients with kinesiophobia (p = 0.008) and healthy subjects. CONCLUSION The results show that kinesiophobic patients have altered recognition of emotions, problems in left/right judgement, and show signs of alexithymia.
Collapse
Affiliation(s)
- H von Piekartz
- Abt. Physiotherapie und Rehabilitationswissenschaften, Hochschule Osnabrück, Caprivistr. 30, 49076, Osnabrück, Deutschland.
| | - J Lüers
- Abt. Physiotherapie und Rehabilitationswissenschaften, Hochschule Osnabrück, Caprivistr. 30, 49076, Osnabrück, Deutschland
| | - H Daumeyer
- Abt. Physiotherapie und Rehabilitationswissenschaften, Hochschule Osnabrück, Caprivistr. 30, 49076, Osnabrück, Deutschland
| | - G Mohr
- Hochschule Osnabrück, Abteilung Bewegungsstudien, Osnabrück, Deutschland
| |
Collapse
|
15
|
Schayek R, Maroun M. Dissociation in the effects of stress and D1 receptors activation on basolateral amygdalar LTP in juvenile and adult animals. Neuropharmacology 2017; 113:511-518. [DOI: 10.1016/j.neuropharm.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
|
16
|
Mayerhofer R, Fröhlich EE, Reichmann F, Farzi A, Kogelnik N, Fröhlich E, Sattler W, Holzer P. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain Behav Immun 2017; 60:174-187. [PMID: 27751870 PMCID: PMC5419569 DOI: 10.1016/j.bbi.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Microbial metabolites are known to affect immune system, brain, and behavior via activation of pattern recognition receptors such as Toll-like receptor 4 (TLR4). Unlike the effect of the TLR4 agonist lipopolysaccharide (LPS), the role of other TLR agonists in immune-brain communication is insufficiently understood. We therefore hypothesized that the TLR2 agonist lipoteichoic acid (LTA) causes immune activation in the periphery and brain, stimulates the hypothalamic-pituitary-adrenal (HPA) axis and has an adverse effect on blood-brain barrier (BBB) and emotional behavior. Since LTA preparations may be contaminated by LPS, an extract of LTA (LTAextract), purified LTA (LTApure), and pure LPS (LPSultrapure) were compared with each other in their effects on molecular and behavioral parameters 3h after intraperitoneal (i.p.) injection to male C57BL/6N mice. The LTAextract (20mg/kg) induced anxiety-related behavior in the open field test, enhanced the circulating levels of particular cytokines and the cerebral expression of cytokine mRNA, and blunted the cerebral expression of tight junction protein mRNA. A dose of LPSultrapure matching the amount of endotoxin/LPS contaminating the LTAextract reproduced several of the molecular and behavioral effects of LTAextract. LTApure (20mg/kg) increased plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 and interferon-γ, and enhanced the transcription of TNF-α, interleukin-1β and other cytokines in the amygdala and prefrontal cortex. These neuroinflammatory effects of LTApure were associated with transcriptional down-regulation of tight junction-associated proteins (claudin 5, occludin) in the brain. LTApure also enhanced circulating corticosterone, but failed to alter locomotor and anxiety-related behavior in the open field test. These data disclose that TLR2 agonism by LTA causes peripheral immune activation and initiates neuroinflammatory processes in the brain that are associated with down-regulation of BBB components and activation of the HPA axis, although emotional behavior (anxiety) is not affected. The results obtained with an LTA preparation contaminated with LPS hint at a facilitatory interaction between TLR2 and TLR4, the adverse impact of which on long-term neuroinflammation, disruption of the BBB and mental health warrants further analysis.
Collapse
Affiliation(s)
- Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
17
|
Slouzkey I, Maroun M. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats. ACTA ACUST UNITED AC 2016; 23:723-731. [PMID: 27918278 PMCID: PMC5110989 DOI: 10.1101/lm.041806.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
Abstract
The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
18
|
Poirier GL, Hitora-Imamura N, Sandi C. Emergence in extinction of enhanced and persistent responding to ambiguous aversive cues is associated with high MAOA activity in the prelimbic cortex. Neurobiol Stress 2016; 5:1-7. [PMID: 27981191 PMCID: PMC5145910 DOI: 10.1016/j.ynstr.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
There is a great deal of individual variability in the emotional outcomes of potentially traumatic events, and the underlying mechanisms are only beginning to be understood. In order to further our understanding of individual trajectories to trauma, its vulnerability and resilience, we adapted a model of fear expression to ambiguous vs perfect cues in adult male rats, and examined long-term fear extinction, 2, 3, and 50 days from acquisition. After the final conditioned fear test, mitochondrial enzyme monoamine oxidase A (MAOA) function was examined. In order to identify associations between this function and behavioral expression, an a posteri median segregation approach was adopted, and animals were classified as high or low responding according to level of freezing to the ambiguous cue at remote testing, long after the initial extinction. Those individuals characterized by their higher response showed a freezing pattern that persisted from their previous extinction sessions, in spite of their acquisition levels being equivalent to the low-freezing group. Furthermore, unlike more adaptive individuals, freezing levels of high-freezing animals even increased at initial extinction, to almost double their acquisition session levels. Controlling for perfect cue response at remote extinction, greater ambiguous threat cue response was associated with enhanced prelimbic cortex MAOA functional activity. These findings underscore MAOA as a potential target for the development of interventions to mitigate the impact of traumatic experiences. Potentially traumatic event outcomes vary and mechanisms are poorly understood. We examined fear extinction of perfect or ambiguous cues in adult male rats. Higher freezing to ambiguous cue in extinction yet followed equivalent acquisition. Ambiguous cue response was associated with higher prelimbic cortex MAOA function. These findings support targeting MAOA to mitigate impact of traumatic experiences.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natsuko Hitora-Imamura
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Kussman BD, Aasted CM, Yücel MA, Steele SC, Alexander ME, Boas DA, Borsook D, Becerra L. Capturing Pain in the Cortex during General Anesthesia: Near Infrared Spectroscopy Measures in Patients Undergoing Catheter Ablation of Arrhythmias. PLoS One 2016; 11:e0158975. [PMID: 27415436 PMCID: PMC4944937 DOI: 10.1371/journal.pone.0158975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022] Open
Abstract
The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia.
Collapse
Affiliation(s)
- Barry D. Kussman
- Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher M. Aasted
- Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Meryem A. Yücel
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah C. Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark E. Alexander
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Boas
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Moench KM, Maroun M, Kavushansky A, Wellman C. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress. Neurobiol Stress 2016; 3:23-33. [PMID: 26844245 PMCID: PMC4730795 DOI: 10.1016/j.ynstr.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/07/2015] [Accepted: 12/05/2015] [Indexed: 11/26/2022] Open
Abstract
Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies.
Collapse
Affiliation(s)
- Kelly M. Moench
- Department of Psychological & Brain Sciences, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Mouna Maroun
- Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Cara Wellman
- Department of Psychological & Brain Sciences, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
21
|
Kao CY, He Z, Zannas AS, Hahn O, Kühne C, Reichel JM, Binder EB, Wotjak CT, Khaitovich P, Turck CW. Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. J Psychiatr Res 2016; 76:74-83. [PMID: 26897419 DOI: 10.1016/j.jpsychires.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 01/17/2023]
Abstract
Despite intense research efforts the molecular mechanisms affecting stress-vulnerable brain regions in posttraumatic stress disorder (PTSD) remain elusive. In the current study we have applied global transcriptomic profiling to a PTSD mouse model induced by foot shock fear conditioning. We compared the transcriptomes of prelimbic cortex, anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of amygdala, nucleus accumbens (NAc) and CA1 of the dorsal hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment by RNA sequencing. Differentially expressed (DE) genes were identified and clustered for in silico pathway analysis. Findings in relevant brain regions were further validated with immunohistochemistry. DE genes belonging to 11 clusters were identified including increased inflammatory response in ACC in shocked mice. In line with this finding, we noted higher microglial activation in ACC of shocked mice. Chronic fluoxetine treatment initiated in the aftermath of the trauma prevented inflammatory gene expression alterations in ACC and ameliorated PTSD-like symptoms, implying an important role of the immune response in PTSD pathobiology. Our results provide novel insights into molecular mechanisms affected in PTSD and suggest therapeutic applications with anti-inflammatory agents.
Collapse
Affiliation(s)
- Chi-Ya Kao
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg-Martinsried, Germany
| | - Zhisong He
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China
| | - Anthony S Zannas
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 27710 Durham, NC, USA
| | - Oliver Hahn
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China
| | - Claudia Kühne
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Judith M Reichel
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University Medical School, 30307 Atlanta, GA, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Philipp Khaitovich
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China.
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
22
|
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016; 10:63. [PMID: 27065827 PMCID: PMC4813092 DOI: 10.3389/fnbeh.2016.00063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Bryan Scot Barker
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Ali D Güler
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Michael M Scott
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
23
|
Oxytocin and Memory of Emotional Stimuli: Some Dance to Remember, Some Dance to Forget. Biol Psychiatry 2016; 79:203-12. [PMID: 26300273 DOI: 10.1016/j.biopsych.2015.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 12/27/2022]
Abstract
An ever-growing body of evidence suggests that the hypothalamic neuropeptide oxytocin plays a central role in the regulation of mammalian social behavior and relationships. Yet, mammalian social interactions are extremely complex, involving both approach and avoidance behaviors toward specific individuals. While in the past oxytocin was conceived merely as a prosocial molecule that nonselectively facilitated affiliative emotions and behavior, it is now recognized that oxytocin plays a role in a wide range of social relationships, some of which involve negative emotions such as fear, aggression, and envy and lead to avoidance behavior. However, the way by which a single molecule such as oxytocin contributes to contrasting emotions and opposite behaviors is yet to be discovered. Here, we discuss the role of oxytocin in the modulation of emotional memories in rodents, focusing on two paradigms: social recognition and fear conditioning, representing approach and avoidance behaviors, respectively. We review recent pioneering studies that address the complex effects of oxytocin in a mechanistic approach, using genetic animal models and brain region-specific manipulations of oxytocin activity. These studies suggest that the multiple roles of oxytocin in social and fear behavior are due to its local effects in various brain areas, most notably distinct regions of the amygdala. Finally, we propose a model explaining some of the contradictory effects of oxytocin as products of the balance between two networks in the amygdala that are controlled by the medial prefrontal cortex.
Collapse
|
24
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Płaźnik A. GABAergic control of the activity of the central nucleus of the amygdala in low- and high-anxiety rats. Neuropharmacology 2015; 99:566-76. [DOI: 10.1016/j.neuropharm.2015.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
|
25
|
Reuveni I, Bonne O, Giesser R, Shragai T, Lazarovits G, Isserles M, Schreiber S, Bick AS, Levin N. Anatomical and functional connectivity in the default mode network of post-traumatic stress disorder patients after civilian and military-related trauma. Hum Brain Mapp 2015; 37:589-99. [PMID: 26536845 DOI: 10.1002/hbm.23051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is characterized by unwanted intrusive thoughts and hyperarousal at rest. As these core symptoms reflect disturbance in resting-state mechanisms, we investigated the functional and anatomical involvement of the default mode network (DMN) in this disorder. The relation between symptomatology and trauma characteristics was considered. Twenty PTSD patients and 20 matched trauma-exposed controls that were exposed to a similar traumatic event were recruited for this study. In each group, 10 patients were exposed to military trauma, and 10 to civilian trauma. PTSD, anxiety, and depression symptom severity were assessed. DMN maps were identified in resting-state scans using independent component analysis. Regions of interest (medial prefrontal, precuneus, and bilateral inferior parietal) were defined and average z-scores were extracted for use in the statistical analysis. The medial prefrontal and the precuneus regions were used for cingulum tractography whose integrity was measured and compared between groups. Similar functional and anatomical connectivity patterns were identified in the DMN of PTSD patients and trauma-exposed controls. In the PTSD group, functional and anatomical connectivity parameters were strongly correlated with clinical measures, and there was evidence of coupling between the anatomical and functional properties. Type of trauma and time from trauma were found to modulate connectivity patterns. To conclude, anatomical and functional connectivity patterns are related to PTSD symptoms and trauma characteristics influence connectivity beyond clinical symptoms. Hum Brain Mapp 37:589-599, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inbal Reuveni
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Omer Bonne
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ruti Giesser
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tamir Shragai
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilad Lazarovits
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Moshe Isserles
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shaul Schreiber
- Psychiatry Department Sourasky Medical Center, Tel-Aviv, Israel
| | - Atira S Bick
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Maeng LY, Milad MR. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm Behav 2015; 76:106-17. [PMID: 25888456 PMCID: PMC4823998 DOI: 10.1016/j.yhbeh.2015.04.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/26/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic stress disorder. Despite the growing literature on this topic, the neural basis of these sex differences remains unclear, and the findings appear inconsistent. The neurobiological mechanisms of fear and stress in learning and memory processes have been extensively studied, and the crosstalk between these systems is beginning to explain the disproportionate incidence and differences in symptomatology and remission within these psychopathologies. In this review, we discuss the intersect between stress and fear mechanisms and their modulation by gonadal hormones and discuss the relevance of this information to sex differences in anxiety and fear-based disorders. Understanding these converging influences is imperative to the development of more effective, individualized treatments that take sex and hormones into account.
Collapse
Affiliation(s)
- Lisa Y Maeng
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| | - Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
27
|
Petri D, de Souza Silva M, Chao OH, Schnitzler A, Huston J. Serotonergic interaction between medial prefrontal cortex and mesotelencephalic DA system underlies cognitive and affective deficits in hemiparkinsonian rats. Neuroscience 2015; 307:51-63. [DOI: 10.1016/j.neuroscience.2015.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/25/2023]
|
28
|
Flores Á, Saravia R, Maldonado R, Berrendero F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci 2015. [DOI: 10.1016/j.tins.2015.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Otti A, Wohlschlaeger AM, Noll-Hussong M. Is the Medial Prefrontal Cortex Necessary for Theory of Mind? PLoS One 2015; 10:e0135912. [PMID: 26301900 PMCID: PMC4547759 DOI: 10.1371/journal.pone.0135912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/28/2015] [Indexed: 12/20/2022] Open
Abstract
Background Successful social interaction relies on the ability to attribute mental states to other people. Previous functional neuroimaging studies have shown that this process, described as Theory of Mind (ToM) or mentalization, is reliably associated with activation of the medial prefrontal cortex (mPFC). However, this study presents a novel and surprising finding that provides new insight into the role of the mPFC in mentalization tasks. Methodology/Principal Findings Twenty healthy individuals were recruited from a wide range of ages and social backgrounds. Participants underwent functional magnetic resonance imaging (fMRI) while viewing a well-established ToM visual paradigm involving moving triangles. Functional MRI data were analyzed using a classical general linear model. No activation was detected in the medial prefrontal cortex (mPFC) during movement patterns that typically elicit ToM. However, increased activity was observed in the right middle occipital gyrus, right temporoparietal junction (TPJ), left middle occipital gyrus and right inferior frontal gyrus. No correlation was found between participants’ age and BOLD response. Conclusions/Significance In contrast with previous neuroimaging research, our findings support the notion that mPFC function is not critical for reasoning about the mental states of others; furthermore, our data indicate that the right TPJ and right inferior frontal gyrus are able to perform mentalization without any contributions from the mPFC.
Collapse
Affiliation(s)
- Alexander Otti
- Klinik fuer Psychosomatische Medizin und Psychotherapie, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
- * E-mail:
| | - Afra M. Wohlschlaeger
- Abteilung fuer Neuroradiologie, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Michael Noll-Hussong
- Klinik fuer Psychosomatische Medizin und Psychotherapie, Universitaetsklinikum Ulm, Ulm, Germany
| |
Collapse
|
30
|
Wilson MA, Grillo CA, Fadel JR, Reagan LP. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiol Stress 2015; 1:195-208. [PMID: 26844236 PMCID: PMC4721288 DOI: 10.1016/j.ynstr.2015.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
- Corresponding author. Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Reis FMCV, Almada RC, Fogaça MV, Brandão ML. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats. Cereb Cortex 2015; 26:2639-49. [PMID: 25976757 DOI: 10.1093/cercor/bhv103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| | - Rafael C Almada
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Manoela V Fogaça
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcus L Brandão
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
32
|
Joels G, Lamprecht R. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory. Front Behav Neurosci 2014; 8:324. [PMID: 25324744 PMCID: PMC4179742 DOI: 10.3389/fnbeh.2014.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022] Open
Abstract
The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not apparent whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of conditioned taste aversion (CTA) memory that was formed after fear conditioning training in rats. Fear conditioning had no effect on retrieval of CTA memory but specifically impaired its extinction. Extinguished fear memory, after fear extinction training, had no effect on future CTA memory extinction. Fear conditioning had no effect on CTA memory extinction if CTA memory was formed before fear conditioning. Conditioned taste aversion had no effect on fear conditioning memory extinction. We conclude that active cued fear conditioning memory can affect specifically the extinction, but not the formation, of future different memory.
Collapse
Affiliation(s)
- Gil Joels
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa Haifa, Israel ; Department of Biology, Faculty of Natural Sciences, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel ; Center for Brain and Behavior, University of Haifa Haifa, Israel
| |
Collapse
|
33
|
Keinath AT, Wang ME, Wann EG, Yuan RK, Dudman JT, Muzzio IA. Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus 2014; 24:1533-48. [PMID: 25045084 PMCID: PMC4447627 DOI: 10.1002/hipo.22333] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 12/11/2022]
Abstract
Compared with the dorsal hippocampus, relatively few studies have characterized neuronal responses in the ventral hippocampus. In particular, it is unclear whether and how cells in the ventral region represent space and/or respond to contextual changes. We recorded from dorsal and ventral CA1 neurons in freely moving mice exposed to manipulations of visuospatial and olfactory contexts. We found that ventral cells respond to alterations of the visuospatial environment such as exposure to novel local cues, cue rotations, and contextual expansion in similar ways to dorsal cells, with the exception of cue rotations. Furthermore, we found that ventral cells responded to odors much more strongly than dorsal cells, particularly to odors of high valence. Similar to earlier studies recording from the ventral hippocampus in CA3, we also found increased scaling of place cell field size along the longitudinal hippocampal axis. Although the increase in place field size observed toward the ventral pole has previously been taken to suggest a decrease in spatial information coded by ventral place cells, we hypothesized that a change in spatial scaling could instead signal a shift in representational coding that preserves the resolution of spatial information. To explore this possibility, we examined population activity using principal component analysis (PCA) and neural location reconstruction techniques. Our results suggest that ventral populations encode a distributed representation of space, and that the resolution of spatial information at the population level is comparable to that of dorsal populations of similar size. Finally, through the use of neural network modeling, we suggest that the redundancy in spatial representation along the longitudinal hippocampal axis may allow the hippocampus to overcome the conflict between memory interference and generalization inherent in neural network memory. Our results indicate that ventral population activity is well suited for generalization across locations and contexts.
Collapse
Affiliation(s)
- Alexander T Keinath
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
34
|
Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 2014; 45:31-42. [PMID: 24845174 PMCID: PMC4067951 DOI: 10.1016/j.psyneuen.2014.03.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/31/2023]
Abstract
The neuropeptide oxytocin (OT) is anxiolytic in rodents and humans. However, the specific brain regions where OT acts to regulate anxiety requires further investigation. The medial prefrontal cortex (mPFC) has been shown to play a role in the modulation of anxiety-related behavior. In addition, the mPFC contains OT-sensitive neurons, expresses OT receptors, and receives long range axonal projections from OT-producing neurons in the hypothalamus, suggesting that the mPFC may be a target where OT acts to diminish anxiety. To investigate this possibility, female rats were administered OT bilaterally into the prelimbic (PL) region of the mPFC and anxiety-like behavior assessed. In addition, to determine if the effects of OT on anxiety-like behavior are sex dependent and to evaluate the specificity of OT, male and female anxiety-like behavior was tested following delivery of either OT or the closely related neuropeptide arginine vasopressin (AVP) into the PL mPFC. Finally, the importance of endogenous OT in the regulation of anxiety-like behavior was examined in male and female rats that received PL infusions of an OT receptor antagonist (OTR-A). Overall, even though males and females showed some differences in their baseline levels of anxiety-like behavior, OT in the PL region of the mPFC decreased anxiety regardless of sex. In contrast, neither AVP nor an OTR-A affected anxiety-like behavior in males or females. Together, these findings suggest that although endogenous OT in the PL region of the mPFC does not influence anxiety, the PL mPFC is a site where exogenous OT may act to attenuate anxiety-related behavior independent of sex.
Collapse
|
35
|
Konishi J, Asami T, Hayano F, Yoshimi A, Hayasaka S, Fukushima H, Whitford TJ, Inoue T, Hirayasu Y. Multiple white matter volume reductions in patients with panic disorder: relationships between orbitofrontal Gyrus volume and symptom severity and social dysfunction. PLoS One 2014; 9:e92862. [PMID: 24663245 PMCID: PMC3963974 DOI: 10.1371/journal.pone.0092862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/26/2014] [Indexed: 12/11/2022] Open
Abstract
Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD.
Collapse
Affiliation(s)
- Jun Konishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fumi Hayano
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shunsuke Hayasaka
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroshi Fukushima
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thomas J. Whitford
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Tomio Inoue
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
36
|
Abstract
Whereas fear memories are rapidly acquired and enduring over time, extinction memories are slow to form and are susceptible to disruption. Consequently, behavioral therapies that involve extinction learning (e.g., exposure therapy) often produce only temporary suppression of fear and anxiety. This review focuses on the factors that are known to influence the relapse of extinguished fear. Several phenomena associated with the return of fear after extinction are discussed, including renewal, spontaneous recovery, reacquisition, and reinstatement. Additionally, this review describes recent work, which has focused on the role of psychological stress in the relapse of extinguished fear. Recent developments in behavioral and pharmacological research are examined in light of treatment of pathological fear in humans.
Collapse
|
37
|
McCarthy DM, Kabir ZD, Bhide PG, Kosofsky BE. Effects of prenatal exposure to cocaine on brain structure and function. PROGRESS IN BRAIN RESEARCH 2014; 211:277-89. [DOI: 10.1016/b978-0-444-63425-2.00012-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|