1
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
2
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
3
|
Al-Shalan HAM, Zhou L, Dong Z, Wang P, Nicholls PK, Boughton B, Stumbles PA, Greene WK, Ma B. Systemic perturbations in amino acids/amino acid derivatives and tryptophan pathway metabolites associated with murine influenza A virus infection. Virol J 2023; 20:270. [PMID: 37990229 PMCID: PMC10664681 DOI: 10.1186/s12985-023-02239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is the only influenza virus causing flu pandemics (i.e., global epidemics of flu disease). Influenza (the flu) is a highly contagious disease that can be deadly, especially in high-risk groups. Worldwide, these annual epidemics are estimated to result in about 3 to 5 million cases of severe illness and in about 290,000 to 650,000 respiratory deaths. We intend to reveal the effect of IAV infection on the host's metabolism, immune response, and neurotoxicity by using a mouse IAV infection model. METHODS 51 metabolites of murine blood plasma (33 amino acids/amino acid derivatives (AADs) and 18 metabolites of the tryptophan pathway) were analyzed by using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry with Electrospray Ionization at the acute (7 days post-infection (dpi)), resolution (14 dpi), and recovery (21 dpi) stages of the virus infection in comparison with controls. RESULTS Among the 33 biogenic amino acids/AADs, the levels of five amino acids/AADs (1-methylhistidine, 5-oxoproline, α-aminobutyric acid, glutamine, and taurine) increased by 7 dpi, whereas the levels of ten amino acids/AADs (4-hydroxyproline, alanine, arginine, asparagine, cysteine, citrulline, glycine, methionine, proline, and tyrosine) decreased. By 14 dpi, the levels of one AAD (3-methylhistidine) increased, whereas the levels of five amino acids/AADs (α-aminobutyric acid, aminoadipic acid, methionine, threonine, valine) decreased. Among the 18 metabolites from the tryptophan pathway, the levels of kynurenine, quinolinic acid, hydroxykynurenine increased by 7 dpi, whereas the levels of indole-3-acetic acid and nicotinamide riboside decreased. CONCLUSIONS Our data may facilitate understanding the molecular mechanisms of host responses to IAV infection and provide a basis for discovering potential new mechanistic, diagnostic, and prognostic biomarkers and therapeutic targets for IAV infection.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Lu Zhou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifan Dong
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Berin Boughton
- Australian National Phenome Centre, Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Philip A Stumbles
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
4
|
Diniz EJB, Scorza FA, Rodrigues FMS, de Mello CB, Bonetti TCDS, Bortoluci KR, Mari JDJ. The impact of inflammatory and metabolic markers on depression, anxiety, and cognition after COVID-19: a narrative review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2023; 46:e20220599. [PMID: 37368949 PMCID: PMC11790113 DOI: 10.47626/2237-6089-2022-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES There has been growing concern about the long-term effects of coronavirus disease 2019 (COVID-19) on mental health. The biological factors common to psychiatric conditions and COVID-19 are not yet fully understood. METHODOS We narratively reviewed prospective longitudinal studies that measured metabolic or inflammatory markers and assessed psychiatric sequelae and cognitive impairment in individuals with COVID-19 at least 3 months after infection. A literature search identified three relevant cohort studies. RESULTS Overall, depressive symptomatology and cognitive deficits persisted for up to 1 year after COVID-19; depression and cognitive changes were predicted by acute inflammatory markers, and changes in these markers correlated with changes in depressive symptomatology; female sex, obesity, and the presence of inflammatory markers were associated with more severe clusters of physical and mental health status in patients' self-perceived recovery; and plasma metabolic profiles of patients continued to differ from those of healthy controls 3 months after hospital discharge, which were associated with widespread alterations in neuroimaging, reflecting issues with white matter integrity. CONCLUSION In individuals affected by COVID-19, prolonged exposure to stress and alterations in metabolic and inflammatory markers play a central role in psychiatric sequelae and cognitive deficits in the long term.
Collapse
Affiliation(s)
- Elton Jorge Bessa Diniz
- Universidade Federal de São PauloEscola Paulista de MedicinaDepartamento de Psiquiatria e Psicologia MédicaSão PauloSPBrazilDepartamento de Psiquiatria e Psicologia Médica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Fulvio Alexandre Scorza
- UNIFESPEPMDepartamento de Neurologia/NeurocirurgiaSão PauloSPBrazilDisciplina de Neurociências, Departamento de Neurologia/Neurocirurgia, EPM, UNIFESP, São Paulo, SP, Brazil.
| | - Fabrício Maués Santos Rodrigues
- Universidade Federal de São PauloEscola Paulista de MedicinaDepartamento de Psiquiatria e Psicologia MédicaSão PauloSPBrazilDepartamento de Psiquiatria e Psicologia Médica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Claudia Berlim de Mello
- UNIFESPEPMDepartamento de PsicobiologiaSão PauloSPBrazilDepartamento de Psicobiologia, EPM, UNIFESP, São Paulo, SP, Brazil.
| | | | - Karina Ramalho Bortoluci
- UNIFESPEPMDepartamento de FarmacologiaSão PauloSPBrazilDepartamento de Farmacologia, EPM, UNIFESP, São Paulo, SP, Brazil.
| | - Jair de Jesus Mari
- Universidade Federal de São PauloEscola Paulista de MedicinaDepartamento de Psiquiatria e Psicologia MédicaSão PauloSPBrazilDepartamento de Psiquiatria e Psicologia Médica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Federica G, Giuseppina F, Veronica L, Gianpaolo Z, Massimo T, Veronica DM, Giuseppe S, Maria TA. An untargeted metabolomic approach to investigate antiviral defence mechanisms in memory leukocytes secreting anti-SARS-CoV-2 IgG in vitro. Sci Rep 2023; 13:629. [PMID: 36635345 PMCID: PMC9835734 DOI: 10.1038/s41598-022-26156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Evidence shows that individuals infected by SARS-CoV-2 experience an altered metabolic state in multiple organs. Metabolic activities are directly involved in modulating immune responses against infectious diseases, yet our understanding of how host metabolism relates to inflammatory responses remains limited. To better elucidate the underlying biochemistry of the leukocyte response, we focused our analysis on possible relationships between SARS-CoV-2 post-infection stages and distinct metabolic pathways. Indeed, we observed a significant altered metabolism of tryptophan and urea cycle pathways in cultures of peripheral blood mononuclear cells obtained 60-90 days after infection and showing in vitro IgG antibody memory for spike-S1 antigen (n = 17). This work, for the first time, identifies metabolic routes in cell metabolism possibly related to later stages of immune defence against SARS-CoV-2 infection, namely, when circulating antibodies may be absent but an antibody memory is present. The results suggest reprogramming of leukocyte metabolism after viral pathogenesis through activation of specific amino acid pathways possibly related to protective immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Gevi Federica
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Fanelli Giuseppina
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Lelli Veronica
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Zarletti Gianpaolo
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Tiberi Massimo
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - De Molfetta Veronica
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Scapigliati Giuseppe
- Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100, Viterbo, Italy.
| | - Timperio Anna Maria
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy.
| |
Collapse
|
6
|
Agamah FE, Bayjanov JR, Niehues A, Njoku KF, Skelton M, Mazandu GK, Ederveen THA, Mulder N, Chimusa ER, 't Hoen PAC. Computational approaches for network-based integrative multi-omics analysis. Front Mol Biosci 2022; 9:967205. [PMID: 36452456 PMCID: PMC9703081 DOI: 10.3389/fmolb.2022.967205] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
Advances in omics technologies allow for holistic studies into biological systems. These studies rely on integrative data analysis techniques to obtain a comprehensive view of the dynamics of cellular processes, and molecular mechanisms. Network-based integrative approaches have revolutionized multi-omics analysis by providing the framework to represent interactions between multiple different omics-layers in a graph, which may faithfully reflect the molecular wiring in a cell. Here we review network-based multi-omics/multi-modal integrative analytical approaches. We classify these approaches according to the type of omics data supported, the methods and/or algorithms implemented, their node and/or edge weighting components, and their ability to identify key nodes and subnetworks. We show how these approaches can be used to identify biomarkers, disease subtypes, crosstalk, causality, and molecular drivers of physiological and pathological mechanisms. We provide insight into the most appropriate methods and tools for research questions as showcased around the aetiology and treatment of COVID-19 that can be informed by multi-omics data integration. We conclude with an overview of challenges associated with multi-omics network-based analysis, such as reproducibility, heterogeneity, (biological) interpretability of the results, and we highlight some future directions for network-based integration.
Collapse
Affiliation(s)
- Francis E. Agamah
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI-Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jumamurat R. Bayjanov
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Niehues
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kelechi F. Njoku
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michelle Skelton
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI-Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaston K. Mazandu
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI-Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI-Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| | - Peter A. C. 't Hoen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Quantum tunnelling in the context of SARS-CoV-2 infection. Sci Rep 2022; 12:16929. [PMID: 36209224 PMCID: PMC9547378 DOI: 10.1038/s41598-022-21321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral that knowledge of viral mechanisms is increased through as wide a research field as possible. To this end we propose that quantum biology might offer essential new insights into the problem, especially with regards to the important first step of virus-host invasion. Research in quantum biology often centres around energy or charge transfer. While this is predominantly in the context of photosynthesis there has also been some suggestion that cellular receptors such as olfactory or neural receptors might employ vibration assisted electron tunnelling to augment the lock-and-key mechanism. Quantum tunnelling has also been observed in enzyme function. Enzymes are implicated in the invasion of host cells by the SARS-CoV-2 virus. Receptors such as olfactory receptors also appear to be disrupted by COVID-19. Building on these observations we investigate the evidence that quantum tunnelling might be important in the context of infection with SARS-CoV-2. We illustrate this with a simple model relating the vibronic mode of, for example, a viral spike protein to the likelihood of charge transfer in an idealised receptor. Our results show a distinct parameter regime in which the vibronic mode of the spike protein enhances electron transfer. With this in mind, novel therapeutics to prevent SARS-CoV-2 transmission could potentially be identified by their vibrational spectra.
Collapse
|
8
|
Kumar R, Kumar V, Arya R, Anand U, Priyadarshi RN. Association of COVID-19 with hepatic metabolic dysfunction. World J Virol 2022; 11:237-251. [PMID: 36188741 PMCID: PMC9523326 DOI: 10.5501/wjv.v11.i5.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to be a global problem with over 438 million cases reported so far. Although it mostly affects the respiratory system, the involvement of extrapulmonary organs, including the liver, is not uncommon. Since the beginning of the pandemic, metabolic com-orbidities, such as obesity, diabetes, hypertension, and dyslipidemia, have been identified as poor prognostic indicators. Subsequent metabolic and lipidomic studies have identified several metabolic dysfunctions in patients with COVID-19. The metabolic alterations appear to be linked to the course of the disease and inflammatory reaction in the body. The liver is an important organ with high metabolic activity, and a significant proportion of COVID-19 patients have metabolic comorbidities; thus, this factor could play a key role in orchestrating systemic metabolic changes during infection. Evidence suggests that metabolic dysregulation in COVID-19 has both short- and long-term metabolic implications. Furthermore, COVID-19 has adverse associations with metabolic-associated fatty liver disease. Due to the ensuing effects on the renin-angiotensin-aldosterone system and ammonia metabolism, COVID-19 can have significant implications in patients with advanced chronic liver disease. A thorough understanding of COVID-19-associated metabolic dysfunction could lead to the identification of important plasma biomarkers and novel treatment targets. In this review, we discuss the current understanding of metabolic dysfunction in COVID-19, focusing on the liver and exploring the underlying mechanistic pathogenesis and clinical implications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Vijay Kumar
- Department of Medicine, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rahul Arya
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rajeev Nayan Priyadarshi
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| |
Collapse
|
9
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
10
|
Borges CV, Nunes A, Costa VE, Orsi RDO, Basilio LSP, Monteiro GC, Maraschin M, Lima GPP. Tryptophan and Biogenic Amines in the Differentiation and Quality of Honey. Int J Tryptophan Res 2022; 15:11786469221102098. [PMID: 35656455 PMCID: PMC9152190 DOI: 10.1177/11786469221102098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a natural product with beneficial properties to health and has different characteristics depending on the region of production and collection, flowering, and climate. The presence of precursor amino acids of- and biogenic amines can be important in metabolomic studies of differentiation and quality of honey. We analyzed 65 honeys from 11 distinct regions of the State of Santa Catarina (Brazil) as to the profile of amino acids and biogenic amines by HPLC. The highest L-tryptophan (Trp), 5-hydroxytryptophan (5-OH-Trp), and tryptamine (Tryp) levels were detected in Cfb climate and harvested in 2019. Although we have found high content of serotonin, dopamine, and L-dopa in Cfb climate, the highest values occurred in honey produced during the summer 2018 and at altitudes above 900 m. Results indicate that the amino acids and biogenic amine levels in honeys are good indicators of origin. These data warrant further investigation on the honey as source of amino acids precursor of serotonin, melatonin, and dopamine, what can guide the choice of food as source of neurotransmitters.
Collapse
Affiliation(s)
- Cristine Vanz Borges
- Health Sciences, Universidade Alto Vale do Rio do Peixe (UNIARP), Caçador, Santa Catarina, Brazil
| | - Aline Nunes
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Vladimir Eliodoro Costa
- Stable Isotope Center, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Ricardo de Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Leticia Silva Pereira Basilio
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gean Charles Monteiro
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
11
|
Dagenais-Lussier X, Loucif H, Beji C, Telittchenko R, Routy JP, van Grevenynghe J. Latest developments in tryptophan metabolism: Understanding its role in B cell immunity. Cytokine Growth Factor Rev 2021; 59:111-117. [DOI: 10.1016/j.cytogfr.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
|
12
|
Corrao S, Mallaci Bocchio R, Lo Monaco M, Natoli G, Cavezzi A, Troiani E, Argano C. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients 2021; 13:1261. [PMID: 33921297 PMCID: PMC8069903 DOI: 10.3390/nu13041261] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
More than one year has passed since the first cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome (SARS)-CoV-2 coronavirus were reported in Wuhan (China), rapidly evolving into a global pandemic. This infectious disease has become a major public health challenge in the world. Unfortunately, to date, no specific antivirals have been proven to be effective against COVID-19, and although a few vaccines are available, the mortality rate is not decreasing but is still increasing. One therapeutic strategy has been focused on infection prevention and control measures. In this regard, the use of nutraceutical supports may play a role against some aspect of the infection, particularly the inflammatory state and the immune system function of patients, thus representing a strategy to control the worst outcomes of this pandemic. For this reason, we performed an overview including meta-analyses and systematic reviews to assess the association among melatonin, vitamin C, vitamin D, zinc supplementation and inflammatory markers using three databases, namely, MEDLINE, PubMed Central and the Cochrane Library of Systematic Reviews. According to the evidence available, an intake of 50,000 IU/month of vitamin D showed efficacy in CRP. An amount of 1 to 2 g per day of vitamin C demonstrated efficacy both in CRP and endothelial function, and a dosage of melatonin ranging from 5 to 25 mg /day showed good evidence of efficacy in CRP, TNF and IL6. A dose of 50 mg/day of elemental zinc supplementation showed positive results in CRP. Based on the data reported in this review, the public health system could consider whether it is possible to supplement the current limited preventive measures through targeted nutraceutical large-scale administration.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, [PROMISE], University of Palermo, 90127 Palermo, Italy
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Raffaella Mallaci Bocchio
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Marika Lo Monaco
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Giuseppe Natoli
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Attilio Cavezzi
- Eurocenter Venalinfa, 63074 San Benedetto del Tronto, Italy;
| | - Emidio Troiani
- Cardiology Unit, State Hospital, Social Security Institute, 20, 47893 Cailungo, San Marino;
| | - Christiano Argano
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| |
Collapse
|
13
|
Mahalakshmi AM, Ray B, Tuladhar S, Bhat A, Paneyala S, Patteswari D, Sakharkar MK, Hamdan H, Ojcius DM, Bolla SR, Essa MM, Chidambaram SB, Qoronfleh MW. Does COVID-19 contribute to development of neurological disease? Immun Inflamm Dis 2021; 9:48-58. [PMID: 33332737 PMCID: PMC7860611 DOI: 10.1002/iid3.387] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) has been associated primarily with pneumonia, recent data show that the causative agent of COVID-19, the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect a large number of vital organs beyond the lungs, such as the heart, kidneys, and the brain. Thus, there is evidence showing possible retrograde transmission of the virus from the olfactory epithelium to regions of the brain stem. METHODS This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on COVID-19 repercussion on the central nervous system (CNS). Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS The angiotensin-converting enzyme 2 (ACE2) receptors being the receptor for the virus, the threat to the central nervous system is expected. Neurons and glial cells express ACE2 receptors in the CNS, and recent studies suggest that activated glial cells contribute to neuroinflammation and the devastating effects of SARS-CoV-2 infection on the CNS. The SARS-CoV-2-induced immune-mediated demyelinating disease, cerebrovascular damage, neurodegeneration, and depression are some of the neurological complications discussed here. CONCLUSION This review correlates present clinical manifestations of COVID-19 patients with possible neurological consequences in the future, thus preparing healthcare providers for possible future consequences of COVID-19.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Bipul Ray
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Abid Bhat
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | | | - Duraisamy Patteswari
- Division of Cognitive Neuroscience and Psychology, Faculty of Life SciencesJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Meena Kishore Sakharkar
- The Drug Discovery and Development Research Group, College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSKCanada
| | - Hamdan Hamdan
- Department of PhysiologyAl Faisal UniversityRiyadhSaudi Arabia
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of DentistryUniversity of the PacificSan FranciscoCaliforniaUSA
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of MedicineNazarbayev UniversityNur‐Sultan020000Kazakhstan
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMSSultan Qaboos UniversityMuscatOman
- Principal Investigator, Ageing and Dementia Research GroupSultan Qaboos UniversityMuscatOman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - M. Walid Qoronfleh
- Research & Policy DepartmentWorld Innovation Summit for Health (WISH)Qatar FoundationDohaQatar
- Research & Policy DivisionQ3CG Research InstituteYpsilantiMichiganUSA
| |
Collapse
|
14
|
Dabbish AM, Yonis N, Salama M, Essa MM, Qoronfleh MW. Inflammatory pathways and potential therapies for COVID-19: A mini review. EUR J INFLAMM 2021; 19. [DOI: 10.1177/20587392211002986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
The public health crisis of the novel coronavirus disease (COVID-19) is alarming since January 2020. COVID-19 genome (SARS-CoV-2) is related to other highly pathogenic coronaviruses SARS-CoV (severe acute respiratory syndrome coronavirus) and MERS-CoV (Middle East respiratory syndrome coronavirus). Amino acid substitutions in some of SARS-CoV-2 proteins resulted in mutations proposing more virulent and contagious properties for this novel virus. Coronavirus penetrates the host cell via endocytosis and once infected, immune responses are triggered to fight against the pathogen. Innate immune response activates major transcription factors to secrete proinflammatory cytokines and type 1 interferon response (T1INF) to induce antiviral immunity. While adaptive immunity initiates cascade of B-cells antibody mediated and T-cells cellular mediate immunities, several mechanisms are raised by SARS-CoV-2 to evade host immune response. Consequently, a surge of proinflammatory cytokines, known as cytokine storm (CS) are released. Failure to manage CS results in several pathological complications as acute respiratory distress syndrome (ARDS). Although researches have not discovered an effective treatment against SARS-CoV-2, recent therapeutic approaches recommending the use of anti-inflammatories in combination with antivirals and some repurposed drugs for COVID-19 patients. Future medications should be designed to target essential hallmarks in the CS to improve clinical outcomes.
Collapse
Affiliation(s)
- Areeg M Dabbish
- Biotechnology Graduate Program, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Nouran Yonis
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (IGHHE), The American University in Cairo, New Cairo, Egypt
| | - Musthafa M Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
15
|
Dhrisya C, Prasathkumar M, Becky R, Anisha S, Sadhasivam S, Essa MM, Chidambaram SB, Al-Balushi B, Guillemin GJ, Qoronfleh MW. Social and Biological Parameters Involved in Suicide Ideation During the COVID-19 Pandemic: A Narrative Review. Int J Tryptophan Res 2020; 13:1178646920978243. [PMID: 35185341 PMCID: PMC8851148 DOI: 10.1177/1178646920978243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022] Open
Abstract
Fear is an indispensable characteristic of any infectious disease, and the alarm will be further amplified when the infection spreads uncontrollable, unpredictable, and global. The novel corona virus (SARS CoV-2) lead Covid-19, has been declared as a global emergency by WHO as it has affected millions of people with a high mortality rate. The non-availability of medicine for Covid-19 and the various control measures such as social distancing, self-isolation, house quarantine, and the new normal implementation by different nations across the world to control the spread of Covid-19 made people vulnerable to fear and anxiety. As a result, considerable number of Covid-19-related suicidal deaths has been reported across the world during this pandemic. There have been several studies which describe the psychosocial aspects of suicidal ideation. However, the research on the biological aspects of suicidal ideation/suicidal risk factors that are related to pandemic are unreported. Hence this review article is intended to provide a comprehensive analysis of suicidal deaths during Covid-19 and also aimed to addresses the possible link between suicidal ideation and different factors, including psycho-social, behavioral, neurobiological factors (proximal, distal, and inflammatory) and immunity. The alterations in glutamatergic and GABAergic neurotransmitters had upregulated the GABARB3, GABARA4, GABARA3, GABARR1, GABARG2, and GAD2 gene expressions in suicidal victims. The changes in the Kynurenine (KYN) pathway, Hypothalamus-Pituitary-Adrenal axis (HPA axis) hyperactivation, and dysregulation of serotonin biosynthesis would significantly alter the brain chemistry in people with suicide ideation.
Collapse
Affiliation(s)
- Chenthamara Dhrisya
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Murugan Prasathkumar
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Robert Becky
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Salim Anisha
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Subramaniam Sadhasivam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
- Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Saravana Babu Chidambaram
- Centre for Experimental Pharmacology & Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru, India
| | - Buthainah Al-Balushi
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
16
|
Jayachandran SK, Anusuyadevi M, Essa MM, Qoronfleh MW. Decoding information on COVID-19: Ontological approach towards design possible therapeutics. INFORMATICS IN MEDICINE UNLOCKED 2020; 22:100486. [PMID: 33263073 PMCID: PMC7691137 DOI: 10.1016/j.imu.2020.100486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
To date, no effective preventive or curative medical interventions exist against COVID-19, caused by Severe Acute Respiratory Syndrome corona virus 2 (SARS CoV-2). The available interventions are only supportive and palliative in nature. Popular among the emerging explanations for the mortality from COVID-19 is "cytokine storm", attributed to the body's aggressive immune response to this novel pathogen. In less than a year the disease has spread to almost all countries, though the mortality rates have varied significantly from country to country based on factors such as the demographical mix of the population, prevalence of comorbidities, as well as prior exposure to viruses from the corona family. This review examines the current literature on mortality rates across the globe, explores the possible reasons, thereby decoding variations. COVID-19 researchers have noted unique characteristics in the structural and host-pathogen interaction and identified several possible target proteins and sites that could exhibit control over the entry of SARS CoV-2 into the host, which this paper reviews in detail. Identification of new targets, both in the virus and the host, may accelerate the search for effective vaccines and curative drugs against COVID-19. Further, the ontological approach of this review is likely to provide insights for researchers to anticipate and be ready for future mutant viruses that may emerge in future.
Collapse
Affiliation(s)
- Swaminathan K Jayachandran
- Drug Discovery and Molecular Cardiology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620204, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620204, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|