1
|
Wu C, Tu T, Xie M, Wang Y, Yan B, Gong Y, Zhang J, Zhou X, Xie Z. Spatially resolved transcriptome of the aging mouse brain. Aging Cell 2024; 23:e14109. [PMID: 38372175 PMCID: PMC11113349 DOI: 10.1111/acel.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Brain aging is associated with cognitive decline, memory loss and many neurodegenerative disorders. The mammalian brain has distinct structural regions that perform specific functions. However, our understanding in gene expression and cell types within the context of the spatial organization of the mammalian aging brain is limited. Here we generated spatial transcriptomic maps of young and old mouse brains. We identified 27 distinguished brain spatial domains, including layer-specific subregions that are difficult to dissect individually. We comprehensively characterized spatial-specific changes in gene expression in the aging brain, particularly for isocortex, the hippocampal formation, brainstem and fiber tracts, and validated some gene expression differences by qPCR and immunohistochemistry. We identified aging-related genes and pathways that vary in a coordinated manner across spatial regions and parsed the spatial features of aging-related signals, providing important clues to understand genes with specific functions in different brain regions during aging. Combined with single-cell transcriptomics data, we characterized the spatial distribution of brain cell types. The proportion of immature neurons decreased in the DG region with aging, indicating that the formation of new neurons is blocked. Finally, we detected changes in information interactions between regions and found specific pathways were deregulated with aging, including classic signaling WNT and layer-specific signaling COLLAGEN. In summary, we established a spatial molecular atlas of the aging mouse brain (http://sysbio.gzzoc.com/Mouse-Brain-Aging/), which provides important resources and novel insights into the molecular mechanism of brain aging.
Collapse
Affiliation(s)
- Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Tianxiang Tu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Sun Z, Wang M, Xu L, Li Q, Zhao Z, Liu X, Meng F, Liu J, Wang W, Li C, Jiang S. PPARγ/Adiponectin axis attenuates methamphetamine-induced conditional place preference via the hippocampal AdipoR1 signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110758. [PMID: 36972780 DOI: 10.1016/j.pnpbp.2023.110758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant. The adipocyte-derived hormone adiponectin has a broad spectrum of functions in the brain. However, limited research has been conducted on the effect of adiponectin signaling on METH-induced conditioned place preference (CPP) and knowledge of the underlying neural mechanisms is scarce. The METH induced adult male C57/BL6J mice model were used for testing the therapeutic activities of intraperitoneal injection of AdipoRon or Rosiglitazone, and AdipoR1 overexpression in hippocampal dentate gyrus (DG), and chemogenetic inhibiting the neural activity of DG, and the changes of neurotrophic factors, synaptic molecules, and glutamate receptors, and inflammatory cytokines were also measured. We found that adiponectin expression was significantly reduced in METH addicted patients and mice. Our findings also showed that injection of AdipoRon or Rosiglitazone alleviated the METH-induced CPP behavior. Moreover, the expression of AdipoR1 in the hippocampus was also reduced, and AdipoR1 overexpression blocked the development of METH-induced CPP behavior through regulatory effects on neurotrophic factors, synaptic molecules, and glutamate receptors. The observed inhibitory neural activity of the hippocampal dentate gyrus (DG) induced via a chemogenetic approach produced a therapeutic effect on the METH-induced CPP behavior. Finally, we identified an abnormal expression of some key inflammatory cytokines through the PPARγ/Adiponectin/AdipoR1 axis. This study demonstrates that adiponectin signaling is a promising diagnostic and therapeutic target for METH addiction.
Collapse
Affiliation(s)
- Zongyue Sun
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Meiqin Wang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lei Xu
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Zhongyi Zhao
- Department of Physiology, Binzhou Medical University, Shandong 264003, China
| | - Xuehao Liu
- Department of Physiology, Binzhou Medical University, Shandong 264003, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China.
| |
Collapse
|
3
|
Che X, Bai Y, Cai J, Liu Y, Li Y, Yin M, Xu T, Wu C, Yang J. Hippocampal neurogenesis interferes with extinction and reinstatement of methamphetamine-associated reward memory in mice. Neuropharmacology 2021; 196:108717. [PMID: 34273388 DOI: 10.1016/j.neuropharm.2021.108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Drugs of abuse, including morphine and cocaine, can reduce hippocampal neurogenesis (HN). Whereas promotion of HN is being increasingly recognized as a promising strategy for treating morphine and cocaine addiction. The present study is focused on exploring the changes of HN during methamphetamine (METH) administration and further clarify if HN is involved in METH-associated reward memory. After successfully establishing the conditioned place preference (CPP) paradigm to simulate the METH-associated reward memory in C57BL/6 mice, we observed that HN was significantly inhibited during METH (2 mg/kg, i. p.) administration and returned to normal after the extinction of METH CPP, as indicated by the immunostaining of bromodeoxyuridine (BrdU) and doublecortin (DCX) in the hippocampus. To promote/inhibit HN levels, 7,8-dihydroxyflavone (DHF), a small tyrosine kinase receptor B (TrkB) agonist and temozolomide (TMZ), an alkylating agent, were administered intraperitoneally (i.p.), respectively. The data showed that either DHF (5 mg/kg, i. p.) or TMZ (25 mg/kg, i. p.) pre-treatment before METH administration could significantly prolong extinction and enhance reinstatement of the reward memory. Notably, DHF treatment after METH administration significantly facilitated extinction and inhibited METH reinstatement, while TMZ treatment resulted in opposite effects. The present study indicated that METH administration could induce a temporal inhibitory effect on HN. More importantly, promotion of HN after the acquisition of METH-associated reward memory, but not inhibition of HN or promotion of HN before the acquisition of reward memory, could facilitate METH extinction and inhibit METH reinstatement, indicating the beneficial effect of HN on METH addiction by erasing the according reward memory.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Meixue Yin
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
4
|
Peyton L, Oliveros A, Choi DS, Jang MH. Hippocampal regenerative medicine: neurogenic implications for addiction and mental disorders. Exp Mol Med 2021; 53:358-368. [PMID: 33785869 PMCID: PMC8080570 DOI: 10.1038/s12276-021-00587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Psychiatry & Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
5
|
Bulin SE, Simmons SJ, Richardson DR, Latchney SE, Deutsch HM, Yun S, Eisch AJ. Indices of dentate gyrus neurogenesis are unaffected immediately after or following withdrawal from morphine self-administration compared to saline self-administering control male rats. Behav Brain Res 2020; 381:112448. [PMID: 31870778 PMCID: PMC7036141 DOI: 10.1016/j.bbr.2019.112448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Opiates - including morphine - are powerful analgesics with high abuse potential. In rodents, chronic opiate exposure or self-administration negatively impacts hippocampal-dependent function, an effect perhaps due in part to the well-documented opiate-induced inhibition of dentate gyrus (DG) precursor proliferation and neurogenesis. Recently, however, intravenous (i.v.) morphine self-administration (MSA) was reported to enhance the survival of new rat DG neurons. To reconcile these disparate results, we used rat i.v. MSA to assess 1) whether a slightly-higher dose MSA paradigm also increases new DG neuron survival; 2) how MSA influences cells in different stages of DG neurogenesis, particularly maturation and survival; and 3) if MSA-induced changes in DG neurogenesis persist through a period of abstinence. To label basal levels of proliferation, rats received the S-phase marker bromodeoxyuridine (BrdU, i.p.) 24 -h prior to 21 days (D) of i.v. MSA or saline self-administration (SSA). Either immediately after SA (0-D) or after 4 weeks in the home cage (28-D withdrawal), stereology was used to quantify DG proliferating precursors (or cells in cell cycle; Ki67+ cells), neuroblast/immature neurons (DCX+ cells), and surviving DG granule cells (BrdU+ cells). Analysis revealed the number of DG cells immunopositive for these neurogenesis-relevant markers was similar between MSA and SSA rats at the 0-D or 28-D timepoints. These negative data highlight the impact experimental parameters, timepoint selection, and quantification approach have on neurogenesis results, and are discussed in the context of the large literature showing the negative impact of opiates on DG neurogenesis.
Collapse
Affiliation(s)
- Sarah E Bulin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah E Latchney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurobiology, St. Mary's College of Maryland, St. Mary's City, MD, 20686-3001
| | - Hannah M Deutsch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|