1
|
Lejay A, Wu WW, Kuntz SH, Feinberg MW. What Is the Best Experimental Model for Developing Novel Therapeutics in Peripheral Artery Disease? Arterioscler Thromb Vasc Biol 2024; 44:2264-2270. [PMID: 39441910 PMCID: PMC11501046 DOI: 10.1161/atvbaha.124.321163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
CLINICAL PROBLEM More than 200 million people worldwide have peripheral artery disease (PAD). PAD affects the quality of life and is associated with significant morbidity and mortality. Standard treatment for severe cases of PAD is surgical or endovascular revascularization. However, up to 30% of patients are not candidates for open or endovascular procedures, due to high operative risk or unfavorable vascular involvement. Furthermore, revascularization procedures may be insufficient to adequately improve microvascular tissue perfusion, wound healing, or limb salvage. Accordingly, regardless of advances in treatment modalities, outcomes of patients with PAD have remained unfavorable. Therefore, new medical therapeutic approaches are much needed. Small animal models are indispensable tools for the understanding of PAD physiopathology and the development of novel medical therapies. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM ANIMAL MODELS Development of animal models that more closely mimic the pathophysiology (with occlusive atherothrombosis and chronic development of limb ischemia) can incorporate the cardiovascular risk factors associated with this disease state, and focus on more clinically relevant outcomes is critical. In practice, this means using both animals that develop atherosclerosis and methods for the application of gradual arterial occlusion to induce hind limb ischemia. Doing so will likely help identify novel targets for intervention and overcome some principal challenges confronted by previous clinical trials. While various rodent models are discussed, the optimal animal model is yet to be defined.
Collapse
Affiliation(s)
- Anne Lejay
- Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, France (A.L., S.H.K.)
- Research Unit 3072 Mitochondria, Oxidative Stress and Muscular Plasticity, Strasbourg Biomedicine Research Center, France (A.L., S.H.K.)
| | - Winona W Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital (W.W.W., M.W.F.), Harvard Medical School, Boston, MA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center (W.W.W.), Harvard Medical School, Boston, MA
| | - Salomé H Kuntz
- Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, France (A.L., S.H.K.)
- Research Unit 3072 Mitochondria, Oxidative Stress and Muscular Plasticity, Strasbourg Biomedicine Research Center, France (A.L., S.H.K.)
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital (W.W.W., M.W.F.), Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Chan AH, Hu C, Chiang GC, Ekweume C, Huang NF. Chronic nicotine impairs the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells in a murine model of peripheral arterial disease. JVS Vasc Sci 2023; 4:100115. [PMID: 37519333 PMCID: PMC10372313 DOI: 10.1016/j.jvssci.2023.100115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Objective Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model.
Collapse
Affiliation(s)
- Alex H.P. Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA
| | - Caroline Hu
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA
| | - Gladys C.F. Chiang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA
| | - Chisomaga Ekweume
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA
- College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA
- Department of Chemical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Dang B, Jia W, Ma S, Zhang X, Huang Y, Huang W, Han D, Zhang K, Zhao F, Zhang Y, Xu Z. Characterization of a novel nornicotine-degrading strain Mycolicibacterium sp. SMGY-1XX from a nornicotine-degrading consortium and preliminary elucidation of its biodegradation pathway by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131777. [PMID: 37290356 DOI: 10.1016/j.jhazmat.2023.131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Nicotine and nornicotine are all toxic alkaloids involved in the formation of carcinogenic tobacco-specific nitrosamines. Microbes play an important role in removing these toxic alkaloids and their derivatives from tobacco-polluted environments. By now, microbial degradation of nicotine has been well studied. However, limited information is available on the microbial catabolism of nornicotine. In the present study, a nornicotine-degrading consortium was enriched from a river sediment sample and characterized by metagenomic sequencing using a combination of Illumina and Nanopore technologies. The metagenomic sequencing analysis demonstrated that Achromobacter, Azospirillum, Mycolicibacterium, Terrimonas, and Mycobacterium were the dominant genera in the nornicotine-degrading consortium. A total of 7 morphologically distinct bacterial strains were isolated from the nornicotine-degrading consortium. These 7 bacterial strains were characterized by whole genome sequencing and examined for their ability to degrade nornicotine. Based on a combination of 16 S rRNA gene similarity comparisons, 16 S rRNA gene-based phylogenetic analysis, and ANI analysis, the accurate taxonomies of these 7 isolated strains were identified. These 7 strains were identified as Mycolicibacterium sp. strain SMGY-1XX, Shinella yambaruensis strain SMGY-2XX, Sphingobacterium soli strain SMGY-3XX, Runella sp. strain SMGY-4XX, Chitinophagaceae sp. strain SMGY-5XX, Terrimonas sp. strain SMGY-6XX, Achromobacter sp. strain SMGY-8XX. Among these 7 strains, Mycolicibacterium sp. strain SMGY-1XX, which has not been reported previously to have the ability to degrade nornicotine or nicotine, was found to be capable of degrading nornicotine, nicotine as well as myosmine. The degradation intermediates of nornicotine and myosmine by Mycolicibacterium sp. strain SMGY-1XX were determined and the nornicotine degradation pathway in strain SMGY-1XX was proposed. Three novel intermediates, myosmine, pseudooxy-nornicotine, and γ-aminobutyrate, were identified during the nornicotine degradation process. Further, the most likely candidate genes responsible for nornicotine degradation in Mycolicibacterium sp. strain SMGY-1XX were identified by integrating genomic analysis, transcriptomic analysis, and proteomic analysis. The findings in this study will help to expand our understanding on the microbial catabolism of nornicotine and nicotine and provide new insights into the nornicotine degradation mechanism by consortia and pure culture, laying a foundation for the application of strain SMGY-1XX for the removal, biotransformation, or detoxification of nornicotine.
Collapse
Affiliation(s)
- Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoping Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou 450002, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanchong Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuwei Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol 2021; 898:173996. [PMID: 33684450 DOI: 10.1016/j.ejphar.2021.173996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Angiogenesis accelerates tissue regeneration in a variety of ischemic conditions including myocardial infarction (MI). Here we tested the hypothesis that angiogenesis induced by α7-nicotinic acetylcholine receptors (α7-nAChRs) mitigates histopathological, electrocardiographic, and molecular consequences of MI in rats. These profiles were evaluated in the isoprenaline (85 mg/kg/day i. p. For 2 days) MI rat model treated with or without nicotine or PHA-543613 (PHA, selective α7-nAChR agonist). Isoprenaline-insulted rats showed (i) ECG signs of MI such as significant ST-segment elevations and prolonged QT-intervals, (ii) deteriorated left ventricular histopathological scoring and elevated inflammatory cell infiltration, (iii) reduced immunohistochemical expression of cardiac CD34, a surrogate marker of capillary density, (iv) decreased cardiac expression of iNOS and α7-nAChRs, and (v) adaptive increases in cardiac HO-1 expression and plasma angiogenic markers such as vascular endothelial growth factor (VEGF) and nitric oxide (NO). These effects of isoprenaline, except cardiac iNOS and α7-nAChRs downregulation, were ameliorated in rats treated with a low dose (20 μg/kg/day s. c. For 16 days) of nicotine or PHA. We also show that concurrent α7-nAChR blockade by methyllycaconitine (MLA, 40 μg/kg/day, for 16 days) reversed the ECG, histopathological, and capillary density effects of nicotine, thereby reinforcing the advantageous cardioprotective and anti-ischemic roles of α7-nAChRs in this setting. The observed results showed promising effects on isoprenaline induced myocardial damage. In conclusion, the activation of α7-nAChRs by doses of nicotine or PHA in the microgram scale promotes neovascularization and offers a promising therapeutic strategy for MI. CATEGORY: Cardiovascular Pharmacology.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
7
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
8
|
Wang F, Wang H, Liu X, Yu H, Huang X, Huang W, Wang G. Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury. J Cell Mol Med 2021; 25:1783-1795. [PMID: 33470533 PMCID: PMC7875921 DOI: 10.1111/jcmm.16287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Neuregulin‐1 (NRG‐1) is reported to be cardioprotective through the extracellular‐regulated protein kinase (ERK) 1/2 pathway in myocardial ischaemia‐reperfusion injury (MIRI). NOX4‐induced ROS activated NLRP3 inflammasome and exacerbates MIRI. This study aims to investigate whether NRG‐1 can suppress NOX4 by ERK1/2 and consequently inhibit the NLRP3/caspase‐1 signal in MIRI. The myocardial infarct size (IS) was measured by TTC‐Evans blue staining. Immunohistochemical staining, real‐time quantitative PCR (RT‐qPCR) and Western blotting were used for detection of the factors, such as NOX4, ERK1/2, NLRP3, caspase‐1 and IL‐1β .The IS in the NRG‐1 (3 μg/kg, intravenous) group was lower than that in the IR group. Immunohistochemical analysis revealed NRG‐1 decreased 4HNE and NOX4. The RT‐qPCR and Western blot analyses revealed that NRG‐1 mitigated the IR‐induced up‐regulation of NOX4 and ROS production. Compared with the IR group, the NRG‐1 group exhibited a higher level of P‐ERK1/2 and a lower level of NLRP3. In the Langendorff model, PD98059 inhibited ERK1/2 and up‐regulated the expression of NOX4, NLRP3, caspase‐1 and IL‐1β, which exacerbated oxidative stress and inflammation. In conclusion, NRG‐1 can reduce ROS production by inhibiting NOX4 through ERK1/2 and inhibit the NLRP3/caspase‐1 pathway to attenuate myocardial oxidative damage and inflammation in MIRI.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuejing Liu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiaomin Huang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
9
|
Manakil J, Miliankos A, Gray M, George R. Self-Perceived Oral Symptoms Associated with Nicotine Replacement Therapy. ORAL HEALTH & PREVENTIVE DENTISTRY 2020; 18:757-763. [PMID: 32895659 PMCID: PMC11654543 DOI: 10.3290/j.ohpd.a45079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/21/2019] [Indexed: 11/06/2022]
Abstract
PURPOSE This study aimed to evaluate the experience of specific oral and dental symptoms or side effects as reported by patients following the use of nicotine replacement therapy (NRT) products. MATERIALS AND METHODS The study involved paper-based confidential survey questionnaires accessible for a period of 8 months to patients attending the School of Dentistry Dental Clinic, Griffith University, Australia. This study recorded demography, smoking history, NRT use history, and specific oral and systemic symptoms. The data was assessed and grouped into three divisions: those with no history of NRT use, current and former users of NRT, and current users of NRT. RESULTS Current users of NRT reported a statistically significantly higher incidence of all oral symptoms and increased incidence of systemic symptoms, as compared to those with no history of NRT use. There was no statistically significant difference between current and former users of NRT for almost all symptoms. CONCLUSIONS A correlative relationship has been observed between the use of NRT products and patients' reported oral symptoms. This study showed a statistically significantly higher incidence of oral symptoms in current and former NRT users. The reported oral side effects and compounding risk profiles show an imperative need for further research into nicotine replacement therapy products' impact on oral health status and treatment outcomes in dental patients using NRT.
Collapse
Affiliation(s)
- Jane Manakil
- Senior Lecturer, School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Australia. Helped with planning the study design, questionnaire and statistics; initial write-up
| | - Andrew Miliankos
- General Dentist, Victoria, Australia. Survey distribution and management of questionnaire; collection of survey and data uploading; data analysis
| | - Megan Gray
- Lecturer, Coordinator, Clinical Outplacements, DOH Contact Officer, School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Australia. Data processing; writing the manuscript
| | - Roy George
- Discipline Head Endodontics, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia. Planning data presentation; reassigning the data analysis; proofreading the manuscript
| |
Collapse
|
10
|
Toledo-Arruda AC, Sousa Neto IVD, Vieira RP, Guarnier FA, Caleman-Neto A, Suehiro CL, Olivo CR, Cecchini R, Prado CM, Lin CJ, Durigan JLQ, Martins MA. Aerobic exercise training attenuates detrimental effects of cigarette smoke exposure on peripheral muscle through stimulation of the Nrf2 pathway and cytokines: a time-course study in mice. Appl Physiol Nutr Metab 2020; 45:978-986. [PMID: 32813570 DOI: 10.1139/apnm-2019-0543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cigarette smoke (CS) exposure reduces skeletal muscle function; however, the mechanisms involved have been poorly investigated. The current study evaluated the temporal effects of aerobic exercise training on oxidant and antioxidant systems as well as inflammatory markers in skeletal muscle of mice exposed to CS. Mice were randomly allocated to control, exercise, smoke, and smoke+exercise groups and 3 time points (4, 8, and 12 weeks; n = 12 per group). Exercise training and CS exposure were performed for 30 min/day, twice a day, 5 days/week for 4, 8, and 12 weeks. Aerobic exercise improved functional capacity and attenuated the increase in the cachexia index induced by CS exposure after 12 weeks. Concomitantly, exercise training downregulated tumor necrosis factor α concentration, glutathione oxidation, and messenger RNA (mRNA) expression of Keap1 (P < 0.01) and upregulated interleukin 10 concentration, total antioxidant capacity, and mRNA expression of Nrf2, Gsr, and Txn1 (P < 0.01) in muscle. Exercise increased mRNA expression of Hmox1 compared with the control after 12 weeks (P < 0.05). There were no significant differences between smoke groups for superoxide dismutase activity and Hmox1 mRNA expression. Exercise training improved the ability of skeletal muscle to adequately upregulate key antioxidant and anti-inflammatory defenses to detoxify electrophilic compounds induced by CS exposure, and these effects were more pronounced after 12 weeks. Novelty Exercise attenuates oxidative stress in skeletal muscle from animals exposed to CS via Nrf2 and glutathione pathways. Exercise is a helpful tool to control the inflammatory balance in skeletal muscle from animals exposed to CS. These beneficial effects were evident after 12 weeks.
Collapse
Affiliation(s)
- Alessandra C Toledo-Arruda
- Department of Clinical Medicine (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
- Department of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Ivo Vieira de Sousa Neto
- Graduate Program of Sciences and Technology of Health, University of Brasília, Brasília, DF 72220-900, Brazil
| | - Rodolfo P Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP 12245-520, Brazil
- Postgraduate Programs in Bioengineering and Biomedical Engineering, Brazil University, São Paulo, SP 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP 11060-001, Brazil
- Anhembi Morumbi University, School of Medicine, São José dos Campos, SP 12230-002, Brazil
| | - Flávia A Guarnier
- Department of Pathology, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Agostinho Caleman-Neto
- Department of Clinical Medicine (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | - Camila L Suehiro
- Department of Pathology, (LIM-22), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | - Clarice R Olivo
- Department of Clinical Medicine (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | - Rubens Cecchini
- Department of Pathology, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Carla M Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Chin J Lin
- Department of Pathology, (LIM-22), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | | | - Milton A Martins
- Department of Clinical Medicine (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
11
|
Verhaegen A, Van Gaal L. Vaping and Cardiovascular Health: the Case for Health Policy Action. CURRENT CARDIOVASCULAR RISK REPORTS 2019. [DOI: 10.1007/s12170-019-0634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Koga M, Kanaoka Y, Okamoto M, Nakao Y, Inada K, Takayama S, Kataoka Y, Yamauchi A. Varenicline aggravates atherosclerotic plaque formation in nicotine-pretreated ApoE knockout mice due to enhanced oxLDL uptake by macrophages through downregulation of ABCA1 and ABCG1 expression. J Pharmacol Sci 2019; 142:9-15. [PMID: 31771811 DOI: 10.1016/j.jphs.2019.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
Varenicline is a widely used and effective drug for smoking cessation. We previously reported that varenicline aggravates atherosclerosis in apolipoprotein E knockout (ApoE KO) mice. However, it remains unknown whether varenicline affects cardiovascular events in patients with nicotine addiction. Here, we examined the effect of varenicline on atherosclerotic plaque formation in nicotine-pretreated ApoE KO mice and oxidized low-density lipoprotein (oxLDL) uptake in nicotine-treated peritoneal macrophages. Varenicline caused significant progression of plaque formation in the whole aorta and aortic root and further accelerated the increased formation of a macrophage-rich plaque area in the aortic root in nicotine-pretreated ApoE KO mice. Varenicline (10 μM) enhanced oxLDL uptake in peritoneal macrophages. Furthermore, this treatment significantly further lowered the decreased protein levels of ATP-binding cassette (ABC) transporter without affecting the expression of scavenger receptors LOX-1 and CD36 in RAW264.7 cells treated with 100 nM nicotine. Varenicline enhanced nicotine-induced oxLDL uptake in macrophages through decreased expression of cholesterol efflux transporters ABCA1 and ABCG1 and thereby progressed atherosclerotic plaque formation. Taken together, we tentatively conclude that nicotine exposure before and/or during varenicline treatment can aggravate varenicline-increased atherosclerotic plaque formation and progression. Therefore, this enhanced risk requires special consideration when prescribing varenicline to smoker patients.
Collapse
Affiliation(s)
- Mitsuhisa Koga
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuki Kanaoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mana Okamoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuki Nakao
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Koshun Inada
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saki Takayama
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
13
|
Price LR, Martinez J. Biological effects of nicotine exposure: A narrative review of the scientific literature. F1000Res 2019; 8:1586. [PMID: 32595938 PMCID: PMC7308884 DOI: 10.12688/f1000research.20062.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 09/07/2023] Open
Abstract
The emergence of new tobacco heating products and electronic nicotine delivery systems (ENDS) is changing the way humans are exposed to nicotine. The purpose of this narrative review is to provide a broad overview of published scientific literature with respect to the effects of nicotine on three key health-related areas: 1) cardiovascular risk, 2) carcinogenesis and 3) reproductive outcomes. These areas are known to be particularly vulnerable to the effects of cigarette smoke, and in addition, nicotine has been hypothesized to play a role in disease pathogenesis. Acute toxicity will also be discussed. The literature to February 2019 suggests that there is no increased cardiovascular risk of nicotine exposure in consumers who have no underlying cardiovascular pathology. There is scientific consensus that nicotine is not a direct or complete carcinogen, however, it remains to be established whether it plays some role in human cancer propagation and metastasis. These cancer progression pathways have been proposed in models in vitro and in transgenic rodent lines in vivo but have not been demonstrated in cases of human cancer. Further studies are needed to determine whether nicotine is linked to decreased fertility in humans. The results from animal studies indicate that nicotine has the potential to act across many mechanisms during fetal development. More studies are needed to address questions regarding nicotine exposure in humans, and this may lead to additional guidance concerning new ENDS entering the market.
Collapse
Affiliation(s)
- Leonie R. Price
- Scientific and Regulatory Affairs, Japan Tobacco International, Genève, Genève, 1202, Switzerland
| | - Javier Martinez
- Scientific and Regulatory Affairs, Japan Tobacco International, Genève, Genève, 1202, Switzerland
| |
Collapse
|
14
|
Price LR, Martinez J. Cardiovascular, carcinogenic and reproductive effects of nicotine exposure: A narrative review of the scientific literature. F1000Res 2019; 8:1586. [PMID: 32595938 PMCID: PMC7308884 DOI: 10.12688/f1000research.20062.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
The emergence of new tobacco heating products and electronic nicotine delivery systems (ENDS) is changing the way humans are exposed to nicotine. The purpose of this narrative review is to provide a broad overview of published scientific literature with respect to the effects of nicotine on three key health-related areas: 1) cardiovascular risk, 2) carcinogenesis and 3) reproductive outcomes. These areas are known to be particularly vulnerable to the effects of cigarette smoke, and in addition, nicotine has been hypothesized to play a role in disease pathogenesis. Acute toxicity will also be discussed. The literature to February 2019 suggests that there is no increased cardiovascular risk of nicotine exposure in consumers who have no underlying cardiovascular pathology. There is scientific consensus that nicotine is not a direct or complete carcinogen, however, it remains to be established whether it plays some role in human cancer propagation and metastasis. These cancer progression pathways have been proposed in models in vitro and in transgenic rodent lines in vivo but have not been demonstrated in cases of human cancer. Further studies are needed to determine whether nicotine is linked to decreased fertility in humans. The results from animal studies indicate that nicotine has the potential to act across many mechanisms during fetal development. More studies are needed to address questions regarding nicotine exposure in humans, and this may lead to additional guidance concerning new ENDS entering the market.
Collapse
Affiliation(s)
- Leonie R. Price
- Scientific and Regulatory Affairs, Japan Tobacco International, Genève, Genève, 1202, Switzerland
| | - Javier Martinez
- Scientific and Regulatory Affairs, Japan Tobacco International, Genève, Genève, 1202, Switzerland
| |
Collapse
|
15
|
Montaño-Velázquez BB, Benavides Méndez JC, García-Vázquez FJ, Conde-Vázquez E, Sánchez-Uribe M, Taboada-Murrieta CR, Jáuregui-Renaud K. Influence of Tobacco Smoke Exposure on the Protein Expression of α7 and α4 Nicotinic Acetylcholine Receptors in Squamous Cell Carcinoma Tumors of the Upper Aerodigestive Tract (Out of the Larynx). SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2018; 12:1178221818801316. [PMID: 31068752 PMCID: PMC6495442 DOI: 10.1177/1178221818801316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Purpose: To assess protein expression of α7 and α4 nicotinic acetylcholine receptors (nAChR) subtypes in squamous cell carcinoma of the upper aerodigestive track (out of the larynx) according to tobacco smoke exposure, considering the general characteristics of the patients. Methods: The α7 and α4 nAChR subtypes were assessed by immunohistochemistry in tumor samples from 33 patients with novel diagnosis of squamous cell carcinoma of the upper aerodigestive tract (out of the larynx). Results: Current smokers were middle-age men with alcohol consumption, whereas elderly women with no alcohol consumption prevailed among nonsmokers. Expression of α4 nAChR was high in all groups, with an influence of alcohol use, although expression of α7 nAChR was low in current smokers with alcohol use. Expression of α4 with no expression of α7 nAChR was associated with advanced disease. Conclusions: Squamous cell carcinoma tumors of the upper aerodigestive tract (out of the larynx) may show desensitization of α4 nAChR. Advanced disease at diagnosis might be associated with desensitization of α4 with decrease in α7 nAChR.
Collapse
Affiliation(s)
- Bertha B Montaño-Velázquez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Juan C Benavides Méndez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - Ernesto Conde-Vázquez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Magdalena Sánchez-Uribe
- Servicio de Anatomía Patológica, HE CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Cecilia R Taboada-Murrieta
- Servicio de Anatomía Patológica, HE CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Kathrine Jáuregui-Renaud
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
16
|
Rahimnia A, Rahimnia AH, Mobasher-Jannat A. Clinical and functional outcomes of vascularized bone graft in the treatment of scaphoid non-union. PLoS One 2018; 13:e0197768. [PMID: 29787613 PMCID: PMC5963744 DOI: 10.1371/journal.pone.0197768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/08/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction Scaphoid non-union is a challenging and complex problem. Various methods have been proposed for the management of patients with scaphoid non-union and to reduce the risk of complications. In this study, our aim was to evaluate the clinical and functional outcomes of using a vascularized bone graft in the treatment of scaphoid non-union. Methods Patients with scaphoid non-union who underwent 1,2 intercompartmental supraretinacular artery pedicled vascularized bone graft between January 2005 and January 2011 were enrolled. The parameters assessed included clinical and functional outcomes, radiological measures, and potential risk factors. Results Forty-one patients were finally included. Thirty patients achieved union (73%) and 11 did not. Smoking was a significant risk factor for non-union after the surgery. In patients who achieved union, grip strength and radioulnar abduction were greater in comparison to that in patients who did not achieve union. Functional measures, including the Disabilities of Arm and Shoulder score and the Modified Mayo Wrist Score, improved in patients with scaphoid union. The scaphoid length also improved significantly postoperatively in these patients. Conclusion Surgical treatment of scaphoid non-union using vascularized bone graft led to a high union rate with good clinical and functional outcomes. Smoking is a risk factor for non-union, even with the use of a vascularized bone graft. Avascular necrosis was not associated with an increased risk for non-union.
Collapse
Affiliation(s)
- Alireza Rahimnia
- Trauma Research center, Department of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Abdolkarim Mobasher-Jannat
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
17
|
Zdanowski R, Leśniak M, Karczmarczyk U, Saracyn M, Bilski M, Kiepura A, Kubiak JZ, Lewicki S. The Effects of Isopropyl Methylphosphono-Fluoridate (IMPF) Poisoning on Tumor Growth and Angiogenesis in BALB/C Mice. Ann Transplant 2018; 23:105-111. [PMID: 29422483 PMCID: PMC6248063 DOI: 10.12659/aot.906548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Acetylcholinesterase (AChE) and cholinergic receptors have an important role in the immune system and angiogenesis. This work evaluated the effects of isopropyl methylphosphonofluoridate (IMPF), an irreversible inhibitor of AChE, on tumor growth and selected parameters associated with tumor angiogenesis. Material/Methods Experiments were performed on male BALB/c mice exposed to IMPF (study group) or saline buffer (control group) and inoculated with L-1 sarcoma; the number of new blood vessels (TIA test) and the level of αvβ3 integrin (131I-MAb-antiβ3 assay) were analyzed at seven, 14, or 21 days after implantation of the tumor cells. Results The IMPF poisoning affected tumor angiogenesis (TIA test). There was a statistically significant increase in the number of newly forming blood vessels in the group subjected to IMPF and inoculated with tumor cells. Conclusions This study showed that IMPF had a significant effect on the regulation of lymphocyte-induced angiogenesis and the modulation of angiogenic and pro-inflammatory cytokines secretion. The observed effects suggest involvement of neuronal and/or non-neuronal cholinergic signaling pathway.
Collapse
Affiliation(s)
- Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Urszula Karczmarczyk
- National Centre For Nuclear Research, Radioisotope Centre Polatom, Otwock, Poland
| | - Marek Saracyn
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Marek Bilski
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland.,CNRS UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, Rennes, France.,University Rennes 1, Faculty of Medicine, Rennes, France
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
18
|
Calcaterra V, Winickoff JP, Klersy C, Schiano LM, Bazzano R, Montalbano C, Musella V, Regalbuto C, Larizza D, Cena H. Smoke exposure and cardio-metabolic profile in youth with type 1 diabetes. Diabetol Metab Syndr 2018; 10:53. [PMID: 29989097 PMCID: PMC6035465 DOI: 10.1186/s13098-018-0355-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To evaluate the relationship between smoking and metabolic parameters in patients affected by type 1 diabetes (T1D). PATIENTS AND METHODS We enrolled 104 children and young adults (50 females and 54 males) with T1D (aged 16.4 ± 8.6 years). The subjects were divided into three groups according to their smoking habits: no smoking (NS), passive smoking (PS), active smoking (AS). The physical examination of the participants included nutritional status assessment by anthropometry and pubertal stage according to Marshall and Tanner as well as blood pressure measurement. In all patients, metabolic blood assays including fasting blood glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, and triglycerides were measured. Insulin resistance was determined by glucose disposal rate (eGDR). Physical activity was also recorded. RESULTS Significant differences in biochemical and functional parameters among the three groups were demonstrated, in particular for systolic (p = 0.002) and diastolic pressure (p = 0.02) and eGDR (p = 0.039). No differences in daily insulin dose (p = 0.75) and glycated hemoglobin (p = 0.39) were observed. AS group had significantly higher blood pressure (p < 0.05) and lower eGDR (p ≤ 0.001) compared to NS and PS. Significant difference was also detected between PS and NS in systolic and diastolic (p = 0.02) pressure and eGDR (p = 0.01). In a multivariable model adjusted for age, gender, BMI and physical activity, smoking habits did not maintain any independent association with metabolic parameters. CONCLUSION This is the first study in a Mediterranean population, looking at tobacco smoke and cardio-metabolic factors in youth with T1D. The relationship between smoking and unfavorable metabolic profile was demonstrated. On the basis of these findings, smoking tobacco should be considered an important modifiable risk factor for young patients with diabetes mellitus, highlighting the need for intensified smoking prevention and cessation programs.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico San Matteo, P.Le Golgi n.2, 27100 Pavia, Italy
| | - Jonathan P. Winickoff
- Department of Pediatrics, Harvard Medical School, MassGeneral Hospital for Children, Boston, MA USA
| | - Catherine Klersy
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Maria Schiano
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico San Matteo, P.Le Golgi n.2, 27100 Pavia, Italy
| | - Rossella Bazzano
- Department of Public Health, Experimental and Forensic Medicine, Laboratory of Dietetics and Clinical Nutrition, University of Pavia, Pavia, Italy
| | - Chiara Montalbano
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico San Matteo, P.Le Golgi n.2, 27100 Pavia, Italy
| | - Valeria Musella
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Corrado Regalbuto
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico San Matteo, P.Le Golgi n.2, 27100 Pavia, Italy
| | - Daniela Larizza
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico San Matteo, P.Le Golgi n.2, 27100 Pavia, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, Laboratory of Dietetics and Clinical Nutrition, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
20
|
Abstract
Cardiovascular safety is an important consideration in the debate on the benefits versus the risks of electronic cigarette (EC) use. EC emissions that might have adverse effects on cardiovascular health include nicotine, oxidants, aldehydes, particulates, and flavourants. To date, most of the cardiovascular effects of ECs demonstrated in humans are consistent with the known effects of nicotine. Pharmacological and toxicological studies support the biological plausibility that nicotine contributes to acute cardiovascular events and accelerated atherogenesis. However, epidemiological studies assessing Swedish smokeless tobacco, which exposes users to nicotine without combustion products, generally have not found an increased risk of myocardial infarction or stroke among users, but suggest that nicotine might contribute to acute cardiovascular events, especially in those with underlying coronary heart disease. The effects of aldehydes, particulates, and flavourants derived from ECs on cardiovascular health have not been determined. Although ECs might pose some cardiovascular risk to users, particularly those with existing cardiovascular disease, the risk is thought to be less than that of cigarette smoking based on qualitative and quantitative comparisons of EC aerosol versus cigarette smoke constituents. The adoption of ECs rather than cigarette smoking might, therefore, result in an overall benefit for public health.
Collapse
|
21
|
Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med 2016; 26:515-23. [PMID: 27079891 DOI: 10.1016/j.tcm.2016.03.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/03/2016] [Indexed: 02/09/2023]
Abstract
The cardiovascular safety of nicotine is an important question in the current debate on the benefits vs. risks of electronic cigarettes and related public health policy. Nicotine exerts pharmacologic effects that could contribute to acute cardiovascular events and accelerated atherogenesis experienced by cigarette smokers. Studies of nicotine medications and smokeless tobacco indicate that the risks of nicotine without tobacco combustion products (cigarette smoke) are low compared to cigarette smoking, but are still of concern in people with cardiovascular disease. Electronic cigarettes deliver nicotine without combustion of tobacco and appear to pose low-cardiovascular risk, at least with short-term use, in healthy users.
Collapse
Affiliation(s)
- Neal L Benowitz
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA; Center for Tobacco Control Research and Education, University of California, San Francisco, CA.
| | - Andrea D Burbank
- Center for Tobacco Control Research and Education, University of California, San Francisco, CA
| |
Collapse
|
22
|
Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A. Harmful effects of nicotine. Indian J Med Paediatr Oncol 2015; 36:24-31. [PMID: 25810571 PMCID: PMC4363846 DOI: 10.4103/0971-5851.151771] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel.
Collapse
Affiliation(s)
- Aseem Mishra
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Pankaj Chaturvedi
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Sourav Datta
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Snita Sinukumar
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Poonam Joshi
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Apurva Garg
- Department of Surgical Oncology, Head and Neck Services, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
Gullbrand SE, Peterson J, Mastropolo R, Lawrence JP, Lopes L, Lotz J, Ledet EH. Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo. J Orthop Res 2014; 32:1694-700. [PMID: 25185989 DOI: 10.1002/jor.22716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/21/2014] [Indexed: 02/04/2023]
Abstract
Intervertebral disc health is mediated in part by nutrient diffusion from the microvasculature in the adjacent subchondral bone. Evidence suggests that a reduction in nutrient diffusion contributes to disc degeneration, but the role of the microvasculature is unclear. The purpose of this study was to induce changes in the endplate microvasculature in vivo via pharmaceutical intervention and then correlate microvasculature characteristics to diffusion and disc health. New Zealand white rabbits were administered either nimodipine (to enhance microvessel density) or nicotine (to diminish microvessel density) daily for 8 weeks compared to controls. Trans-endplate diffusion and disc health were quantified using post-contrast enhanced magnetic resonance imaging (MRI). Histology was utilized to assess changes to the subchondral vasculature. Results indicate that nimodipine increased vessel area and vessel-endplate contact length, causing a significant increase in disc diffusion. Surprisingly, nicotine caused increases in vessel number and area but did not alter diffusion into the disc. The drug treatments did affect the microvasculature and diffusion, but the relationship between the two is complex and dependent on multiple factors which include vessel-endplate distance, and vessel-endplate contact length in addition to vessel density. Our data suggest that drugs can modulate these factors to augment or diminish small molecule transport.
Collapse
Affiliation(s)
- Sarah E Gullbrand
- Department of Biomedical Engineering, Rensselear Polytechnic Institute, JEC 7044, 110 8th Street, Troy, New York 1280
| | | | | | | | | | | | | |
Collapse
|
24
|
Kamath KP, Mishra S, Anand PS. Smokeless tobacco use as a risk factor for periodontal disease. Front Public Health 2014; 2:195. [PMID: 25368861 PMCID: PMC4202691 DOI: 10.3389/fpubh.2014.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kavitha P Kamath
- Department of Oral Pathology, People's Dental Academy , Bhopal , India
| | - Supriya Mishra
- Department of Periodontics, Maitri College of Dentistry and Research Centre , Anjora , India
| | - Pradeep S Anand
- Department of Dentistry, ESIC Medical College Hospital , Parippally , India
| |
Collapse
|
25
|
Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model. Transl Res 2014; 164:32-45. [PMID: 24811002 DOI: 10.1016/j.trsl.2014.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022]
Abstract
We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy.
Collapse
|
26
|
Liu CC, Yeh HI. Nicotine: A Double-Edged Sword in Atherosclerotic Disease. ACTA CARDIOLOGICA SINICA 2014; 30:108-113. [PMID: 27122776 PMCID: PMC4805015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/30/2014] [Indexed: 06/05/2023]
Abstract
UNLABELLED Chronic cigarette smoking is well-known to damage vascular endothelium, which initiates atherosclerosis by first manifesting as endothelial dysfunction and later progressing to cardiovascular diseases (CVD). Nicotine, a major component of tobacco smoke, is traditionally thought to be responsible for increased cardiovascular events through stimulation of the sympathetic nervous system, increased myocardial metabolic demand, impaired lipid metabolism, and activated platelet function. However, recent studies have demonstrated that nicotine, at lower doses, may be beneficial to the cardiovascular system. With binding to specific nicotinic acetylcholine receptors, nicotine can induce migration and proliferation of vascular cells, and hence enhances angiogenesis. Therefore, these seemingly inconsistent properties of nicotine may in fact give rise to novel and efficacious management strategies of CVD. KEY WORDS Angiogenesis; Atherosclerosis; nicotinic acetylcholine receptors (nAChRs); Nicotine.
Collapse
Affiliation(s)
- Chun-Chieh Liu
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
27
|
Hirche C, Heffinger C, Xiong L, Lehnhardt M, Kneser U, Bickert B, Gazyakan E. The 1,2-intercompartmental supraretinacular artery vascularized bone graft for scaphoid nonunion: management and clinical outcome. J Hand Surg Am 2014; 39:423-9. [PMID: 24444804 DOI: 10.1016/j.jhsa.2013.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/27/2013] [Accepted: 10/28/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the clinical outcome of 1,2-intercompartmental supraretinacular artery pedicled vascularized bone graft for scaphoid nonunion (SN). METHODS A retrospective study was performed to evaluate patients with SN and treated with 1,2-intercompartmental supraretinacular artery pedicled vascularized bone graft between 1997 and 2010. Functional measures, quality of life by Short Form SF-36 questionnaire, and analysis of risk factors were included. RESULTS Out of 39 patients who were eligible for the study, 11 were lost to follow-up. Out of the remaining 28 patients, union was achieved in 21 (75%). The mean length of follow-up was 63 ± 45 months. In hands with scaphoid union, the grip strength and the radioulnar active range of motion were less than the contralateral side but greater compared with patients with nonunion. Active extension-flexion was less compared with the noninjured hand but similar to patients with nonunion. Disabilities of the Arm, Shoulder and Hand (DASH) score decreased from 58 to 23 in dominant hands and from 46 to 13 in nondominant hands. Smoking was found to be a risk factor for nonunion. Patients with scaphoid union tended to higher scores in 8 domains of SF-36-Item Health Survey quality of life without significant difference. CONCLUSIONS Surgical treatment of SN with 1,2-intercompartmental supraretinacular artery pedicled vascularized bone graft provided a union rate comparable with other vascularized bone graft techniques. Previous scaphoid reconstruction with standard iliac crest bone graft was not associated with higher risk for secondary nonunion. There was an upward tendency seen in DASH score and quality of life after scaphoid union. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic IV.
Collapse
Affiliation(s)
- Christoph Hirche
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany.
| | - Christian Heffinger
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| | - Lingyun Xiong
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| | - Marcus Lehnhardt
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| | - Berthold Bickert
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| | - Emre Gazyakan
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, BG Trauma Center Ludwigshafen, Germany
| |
Collapse
|
28
|
Yin G, Sheu TJ, Menon P, Pang J, Ho HC, Shi S, Xie C, Smolock E, Yan C, Zuscik MJ, Berk BC. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice. PLoS One 2014; 9:e89127. [PMID: 24586541 PMCID: PMC3929643 DOI: 10.1371/journal.pone.0089127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT) and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31) were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.
Collapse
Affiliation(s)
- Guoyong Yin
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Prashanthi Menon
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hsin-Chiu Ho
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shanshan Shi
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chao Xie
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elaine Smolock
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chen Yan
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Zuscik
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bradford C. Berk
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nicotine effect on inflammatory and growth factor responses in murine cutaneous wound healing. Int Immunopharmacol 2013; 17:1155-64. [PMID: 24201082 DOI: 10.1016/j.intimp.2013.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022]
Abstract
The aim of the current study was to investigate the effect of nicotine in an experimental mouse model of cutaneous injury and healing responses, during the inflammatory phase of repair. Nicotine injection in full-thickness excisional skin wounds minimally affected inflammatory mediators like TNF, IL-6 and IL-12 while it induced a down-regulation in the expression of growth factors like VEGF, PDGF, TGF-β1 and TGF-β2, and the anti-inflammatory cytokine IL-10. Analysis of wound closure rate indicated no significant differences between nicotine and saline injected controls. In-vitro studies using bone marrow derived macrophages, resident peritoneal macrophages and RAW 264.7 macrophages, indicated that nicotine down-regulates TNF production. Moreover, nicotine was shown to down-regulate VEGF, PDGF and TGF-β1 in both bone marrow derived macrophages and RAW 264.7 cells. Using an NF-κB luciferase reporter RAW 264.7 cell line, we show that nicotine effects are minimally dependent on NF-κB inhibition. Moreover, nicotinic acetylcholine receptor (nAChR) subunit expression analyses indicated that while β2 nAChR subunit is expressed in mouse macrophages, α7 nAChR is not. In conclusion, while skin inflammatory parameters were not significantly affected by nicotine, a down-regulation of growth factor expression in both mouse skin and macrophages was observed. Reduced growth factor expression by nicotine might contribute, at least in part, to the overall detrimental effects of tobacco use in wound healing and skin diseases.
Collapse
|
30
|
Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:957-64. [PMID: 23757602 PMCID: PMC3734504 DOI: 10.1289/ehp.1306611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/07/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease. OBJECTIVE We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response. METHODS We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks. Lungs were examined at 7 days, 10 weeks, and 8 months after birth. RESULTS Gestational but not postnatal exposure to SS caused a typical BPD-like condition: suppressed angiogenesis [decreased vascular endothelial growth factor (VEGF), VEGF receptor, and CD34/CD31 (hematopoietic progenitor cell marker/endothelial cell marker)], irreversible hypoalveolarization, and significantly decreased levels of Clara cells, Clara cell secretory protein, and surfactant proteins B and C, without affecting airway ciliated cells. Importantly, concomitant exposure to SS and the nAChR antagonist mecamylamine during gestation blocked the development of BPD. CONCLUSIONS Gestational exposure to SS irreversibly disrupts lung development leading to a BPD-like condition with hypoalveolarization, decreased angiogenesis, and diminished lung secretory function. Nicotinic receptors are critical in the induction of gestational SS-induced BPD, and the use of nAChR antagonists during pregnancy may block CS-induced BPD.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci 2012; 91:1058-64. [PMID: 22796717 DOI: 10.1016/j.lfs.2012.06.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/24/2012] [Accepted: 06/27/2012] [Indexed: 11/26/2022]
Abstract
This paper describes the role of endothelial nicotinic acetylcholine receptors (nAChR) in diseases where pathological angiogenesis plays a role. An extensive review of the literature was performed, focusing on studies that investigated the effect of nicotine upon angiogenesis. Nicotine induces pathological angiogenesis at clinically relevant concentrations (i.e. at tissue and plasma concentrations similar to those of a light to moderate smoker). Nicotine promotes endothelial cell migration, proliferation, survival, tube formation and nitric oxide (NO) production in vitro, mimicking the effect of other angiogenic growth factors. These in vitro findings indicate that there may be an angiogenic component to the pathophysiology of major tobacco related diseases such as carcinoma, atherosclerosis, and age-related macular degeneration. Indeed, nicotine stimulates pathological angiogenesis in pre-clinical models of these disorders. Subsequently, it has been demonstrated that nicotine stimulates nAChRs on the endothelium to induce angiogenic processes, that these nAChRs are largely of the α7 homomeric type, and that there are synergistic interactions between the nAChRs and angiogenic growth factor receptors at the phosphoproteomic and genomic levels. These findings are of potential clinical relevance, and provide mechanistic insights into tobacco-related disease. Furthermore, these findings may lead to novel therapies for diseases characterized by insufficient or inappropriate angiogenesis.
Collapse
Affiliation(s)
- Jieun Lee
- Division of Cardiovascular Medicine, Stanford University School of Medicine, USA
| | | |
Collapse
|
32
|
Pathogenesis of abdominal aortic aneurysms: role of nicotine and nicotinic acetylcholine receptors. Mediators Inflamm 2012; 2012:103120. [PMID: 22529515 PMCID: PMC3317239 DOI: 10.1155/2012/103120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs), although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs) such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs). In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.
Collapse
|
33
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
34
|
Murphy SE, von Weymarn LB, Schutten MM, Kassie F, Modiano JF. Chronic nicotine consumption does not influence 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. Cancer Prev Res (Phila) 2011; 4:1752-60. [PMID: 22027684 DOI: 10.1158/1940-6207.capr-11-0366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nicotine replacement therapy is often used to maintain smoking cessation. However, concerns exist about the safety of long-term nicotine replacement therapy use in ex-smokers and its concurrent use in smokers. In this study, we determined the effect of nicotine administration on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumors in A/J mice. Female mice were administered a single dose of NNK (10 μmol) and 0.44 μmol/mL nicotine in the drinking water. Nicotine was administered 2 weeks prior to NNK, 44 weeks after NNK, throughout the experiment, or without NNK treatment. The average weekly consumption of nicotine-containing water was 15 ± 3 mL per mouse, resulting in an estimated daily nicotine dose of 0.9 μmol (0.15 mg) per mouse. Nicotine administration alone for 46 weeks did not increase lung tumor multiplicity (0.32 ± 0.1 vs. 0.53 ± 0.1 tumors per mouse). Lung tumor multiplicity in NNK-treated mice was 18.4 ± 4.5 and was not different for mice consuming nicotine before or after NNK administration, 21.9 ± 5.3 and 20.0 ± 5.4 tumors per mouse, respectively. Lung tumor multiplicity in animals consuming nicotine both before and after NNK administration was 20.4 ± 5.4. Tumor size and progression of adenomas to carcinomas was also not affected by nicotine consumption. In addition, nicotine consumption had no effect on the level of O(6)-methylguanine in the lung of NNK-treated mice. These negative findings in a commonly used model of human lung carcinogenesis should lead us to question the interpretation of the many in vitro studies that find that nicotine stimulates cancer cell growth.
Collapse
Affiliation(s)
- Sharon E Murphy
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
35
|
Nicotine reduces VEGF-secretion and phagocytotic activity in porcine RPE. Graefes Arch Clin Exp Ophthalmol 2011; 250:33-8. [DOI: 10.1007/s00417-011-1776-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022] Open
|
36
|
Yu M, Liu Q, Sun J, Yi K, Wu L, Tan X. Nicotine improves the functional activity of late endothelial progenitor cells via nicotinic acetylcholine receptors. Biochem Cell Biol 2011; 89:405-410. [PMID: 21774635 DOI: 10.1139/o11-032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to investigate whether nicotinic acetylcholine receptors (nAChRs) are involved in the modulation of functional activity of late endothelial progenitor cells (EPCs) induced by nicotine. Total mononuclear cells (MNCs) were isolated from human umbilical cord blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture plates. Late EPCs were positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (DiI-acLDL) uptake and fluorescein-isothiocyanate-conjugated Ulex europaeus agglutinin lectin (UEA-1) binding. Expression of von Willbrand factor (vWF), kinase insert domain receptor (KDR), and α7 nAChR was detected by indirect immunofluorescence staining. Late EPCs of 3-5 passages were treated for 32 h with either vehicle or nicotine with or without pre-incubation of nAChR antagonism, mecamylamine, or α-bungarotoxin. The viability, migration, and in vitro vasculogenesis activity of late EPCs were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, modified Boyden chamber assay, and in vitro angiogenesis assay, respectively. Late EPCs adhesion assay was performed by replating cells on fibronectin-coated plates, and then adherent cells were counted. Incubation with 10 nmol/L nicotine enhanced viable, migratory, adhesive, and in vitro vasculogenesis capacity of late EPCs. The effect of nicotine on late EPCs can be attenuated by mecamylamine or α-bungarotoxin. In conclusion, nicotine improves the functional activity of late EPCs via nAChRs.
Collapse
Affiliation(s)
- Min Yu
- Department of Cardiology, the First Affiliated Hospital, Shantou University Medical College, Guangdong, China
| | | | | | | | | | | |
Collapse
|
37
|
Park HS, Cho K, Park YJ, Lee T. Chronic nicotine exposure attenuates proangiogenic activity on human umbilical vein endothelial cells. J Cardiovasc Pharmacol 2011; 57:287-93. [PMID: 21383590 DOI: 10.1097/fjc.0b013e318206b5d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pathogenic mechanism of nicotine, a major product of smoking, on vascular endothelial cells is not well defined yet. The purpose of this study was to determine whether chronic exposure to nicotine alters angiogenic activity in human umbilical vein endothelial cells and to identify a potential role for endothelial nitric oxide synthase (eNOS) expression. Our study demonstrated that acute nicotine treatment enhanced nitric oxide release, eNOS activation, and proangiogenic activity. However, chronic nicotine exposure impaired proangiogenic function (decreased cell migration and tubular structure formation) in human umbilical vein endothelial cells compared with acute exposure, but sustained the antiapoptotic effect. These findings seem to be related to eNOS gene expression and nitric oxide production, which may be involved in the pathophysiology of chronic nicotine addicts.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
38
|
Chang E, Forsberg EC, Wu J, Bingyin Wang, Prohaska SS, Allsopp R, Weissman IL, Cooke JP. Cholinergic activation of hematopoietic stem cells: role in tobacco-related disease? Vasc Med 2011; 15:375-85. [PMID: 20926497 DOI: 10.1177/1358863x10378377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tobacco use is associated with an increase in the white blood cell (WBC) count. This association has been attributed to bronchopulmonary inflammation and/or infection. It is not known if nicotine itself may play a role. The objective of this study was to determine whether nicotine itself could affect the WBC count, and to determine whether this was due to a direct effect on hematopoietic stem cells (HSC). C57Bl6J mice received nicotine orally, and measurements of the WBC count, bone marrow and spleen cellularity, and HSC count were made. To determine the functionality of HSCs, irradiated animals received bone marrow transplants from vehicle or nicotine-treated mice. Nicotine increased leukocytes in the peripheral blood, bone marrow and spleen. The peripheral red cell and platelet count were unaffected. Nicotine increased the frequency of HSC in the bone marrow. Isolated long-term HSCs from nicotine-treated mice transplanted into irradiated mice regenerated all hematopoietic cell lineages, demonstrating the functional competence of those HSCs. HSCs expressed nicotinic acetylcholine receptors (nAChRs), as documented by FITC-conjugated alpha-bungarotoxin binding. Nicotine increased soluble Kit ligand, consistent with stem cell activation. In conclusion, the data suggest a new mechanism for the increased WBC associated with tobacco use. The effect of nicotine to activate hematopoiesis may contribute to tobacco-related diseases.
Collapse
Affiliation(s)
- Edwin Chang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|