1
|
Rostom MM, Rashwan AA, Sotiropoulou CD, Hozayen SZ, Abdelhamid AM, Abdelhalim MM, Eltahtawy O, Emara HM, Elemam NM, Kontos CK, Youness RA. MIAT: A pivotal oncogenic long noncoding RNA tunning the hallmarks of solid malignancies. Transl Oncol 2025; 54:102329. [PMID: 40014977 PMCID: PMC11910686 DOI: 10.1016/j.tranon.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non-coding RNAs (LncRNAs) have emerged as intriguing players in cellular regulation, challenging the traditional view of non-coding RNAs as mere "dark genome". Non-coding DNA makes up most of the human genome and plays a pivotal role in cancer development. These RNA molecules, which do not code for proteins, have captivated researchers with their diverse and crucial roles in gene regulation, chromatin dynamics, and other cellular processes. In several physiological and pathological circumstances, lncRNAs serve critical functions. This review will tackle the complex function of the lncRNA myocardial infarction-associated transcript (MIAT) in various solid malignancies. A special emphasis would be directed on the correlation between cancer patients' clinicopathological features and the expression profile of MIAT. MIAT is a oncogenic regulator in many malignant tumors, where it can control the growth, invasion, metastasis, and resistance to death of cells. As a result, MIAT is thought to be a possible biomarker and therapeutic target for cancer patients. The biological functions, mechanisms and potential clinical implications of MIAT during carcinogenesis and finally the current possible therapeutic approaches targeting MIAT are also outlined in this review.
Collapse
Affiliation(s)
- Monica M Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Alaa A Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Sama Z Hozayen
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | | | - Miriam Mokhtar Abdelhalim
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Omar Eltahtawy
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Hadir M Emara
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt; Department of Nanotechnology, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, UAE; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, UAE
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt.
| |
Collapse
|
2
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
3
|
Kudreyeva L, Kanysh F, Sarsenbayeva A, Abu M, Kamysbayev D, Kedelbayeva K. HER-2-Targeted Electrochemical Sensors for Breast Cancer Diagnosis: Basic Principles, Recent Advancements, and Challenges. BIOSENSORS 2025; 15:210. [PMID: 40277524 PMCID: PMC12024968 DOI: 10.3390/bios15040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
In this literature review, methods for the detection of breast cancer biomarkers and the operation of electrochemical sensors are considered. The work of sensors in the determination of breast cancer biomarkers was systematized, a comparative table with other methods was compiled, as was a classification of sensors depending on their intended use. The various traditional methods for the diagnosis of breast cancer biomarkers are described, including mammography, ultrasound, magnetic resonance imaging, positron emission computed tomography, computed tomography, single-photon emission computed tomography, and biopsy, and their advantages and disadvantages are presented. Key sensor parameters for the detection of breast cancer biomarkers are compared, such as the detection limit, linear detection range, response time, sensitivity, and other characteristics depending on the analyte being analyzed. Based on the reviewed scientific papers, the significance of electrochemical sensors in detecting the biomarkers of breast cancer is demonstrated. The types of tumor biomarkers identified by biosensors were analyzed, with a particular focus on HER2. Studies on HER2 detection using electrochemical methods are compared and systematized, and the features of electrochemical biosensors for determining this biomarker are characterized. Possible interfering agents affecting the accuracy of HER2 determination under experimental conditions are considered, their mechanisms of action are analyzed, and ways to eliminate them are proposed. This report provides a summary of the current aspects of scientific research on electrochemical sensors for the detection of breast cancer biomarkers. The development of electrochemical biosensors opens up new prospects for the early diagnosis and prognosis of breast cancer treatment.
Collapse
Affiliation(s)
- Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (F.K.); (M.A.); (D.K.)
| | - Fatima Kanysh
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (F.K.); (M.A.); (D.K.)
| | - Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (F.K.); (M.A.); (D.K.)
| | - Moldir Abu
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (F.K.); (M.A.); (D.K.)
| | - Duisek Kamysbayev
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (F.K.); (M.A.); (D.K.)
| | - Kamilya Kedelbayeva
- Department of Cardiology Asfendiyarov, Kazakh National Medical University, Almaty 050012, Kazakhstan;
| |
Collapse
|
4
|
Melone V, Palumbo D, Palo L, Brusco N, Salvati A, Tarallo A, Giurato G, Rizzo F, Nassa G, Weisz A, Tarallo R. LncRNA PVT1 links estrogen receptor alpha and the polycomb repressive complex 2 in suppression of pro-apoptotic genes in hormone-responsive breast cancer. Cell Death Dis 2025; 16:80. [PMID: 39922814 PMCID: PMC11807188 DOI: 10.1038/s41419-025-07423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
RNA-based therapeutics highlighted novel approaches to target either coding or noncoding molecules for multiple diseases treatment. In breast cancer (BC), a multitude of deregulated long noncoding RNAs (lncRNAs) have been identified as potential therapeutic targets also in the context of antiestrogen resistance, and the RNA binding activity of the estrogen receptor α (ERα) points additional potential candidates to interfere with estrogenic signaling. A set of lncRNAs was selected among ERα-associated RNAs in BC cell nuclei due to their roles in processes such as transcriptional regulation and epigenetic chromatin modifications. Native immunoprecipitation of nuclear ERα-interacting RNAs coupled to NGS (RIP-Seq) was performed in MCF-7 cells, leading to the identification of essential lncRNAs interacting with the receptor in multi-molecular regulatory complexes. Among these, PVT1, FGD5-AS1 and EPB41L4A-AS1 were selected for further investigation. Functional assays and transcriptome analysis following lncRNA knock-down indicated PVT1 as the master modulator of some of the most relevant BC hallmarks, such as cell proliferation, apoptosis, migration and response to hypoxia. In addition, targeted experiments identified PVT1 as a key factor in the composition of PRC2-ERα network involved in downregulation of tumor suppressor genes, including BTG2.
Collapse
Affiliation(s)
- Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Luigi Palo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Noemi Brusco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078, Pozzuoli, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
- Genome Research Center for Health, 84081, Baronissi, SA, Italy.
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, and Rete Oncologica Campana, 84131, Salerno, Italy.
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
5
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
6
|
Fadebi OO, Miya TV, Khanyile R, Dlamini Z, Marima R. Long Intergenic Non-Coding RNAs and BRCA1 in Breast Cancer Pathogenesis: Neighboring Companions or Nemeses? Noncoding RNA 2025; 11:9. [PMID: 39997609 PMCID: PMC11857994 DOI: 10.3390/ncrna11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (BRCA1) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of BRCA1-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with BRCA1 in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Olalekan Olatunde Fadebi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
7
|
Xiao S, Yu T, Yang F, Yuan H, Ni J. LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling. Biochem Cell Biol 2025; 103:1-11. [PMID: 39772898 DOI: 10.1139/bcb-2024-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The paper aimed to reveal the impacts and the possible mechanism of action of lectin mannose-binding 2 protein (LMAN2) in HER2-positive breast cancer (BC). The expression, prognostic potential of LMAN2, and the correlation between LMAN2 and HEAT repeat containing 3 (HEATR3) in BC were analyzed in TCGA database. Intact, Mentha, and BioGrid databases predicted LMAN2-HEATR3 interactions. Reverse transcription-quantitative PCR and Western blot examined LMAN2 expression. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays, respectively, detected the aggressive cellular biological behaviors including proliferation, migration, and invasion. Western blot analyzed the expression of matrix metalloproteinases, HEATR3, and protein kinase B (Akt)/extracellular signal-regulated kinase (ERK)/nuclear factor-kappaB (NF-κB) signaling-related proteins. Co-immunoprecipitation assay was used to prove the relationship of LMAN2 with HEATR3. Enzyme-linked immunosorbent assay detected inflammatory cytokine levels. LMAN2 was overexpressed in HER2-positive BC tissues and cells and indicated unfavorable prognosis of BC patients. LMAN2 knockdown suppressed HER2-positive BC cell proliferation, migration, and invasion. LMAN2 interacted with and had a positive correlation with HEATR3. HEATR3 up-regulation reversed the repressive role of LMAN2 interference in the progression of HER2-positive BC, Akt/ERK/NF-κB signaling, and inflammatory response. Altogether, LMAN2 silencing might exert anti-tumor and anti-inflammatory properties and inactivate Akt/ERK/NF-κB signaling in HER2-positive BC via binding to HEATR3.
Collapse
Affiliation(s)
- Sujian Xiao
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Tong Yu
- Blood Transfusion Department, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Fulan Yang
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Huozhong Yuan
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Jun Ni
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
8
|
Norouzi R, Mohamadzade Z, Norouzi R, Norouzi R, Esmaeili R, Soltani BM. In-silico and in-vitro evidence suggest LINC01405 as a sponge for miR-29b and miR-497-5p, and a potential regulator of Wnt, PI3K, and TGFB signaling pathways in breast carcinoma. Cancer Rep (Hoboken) 2024; 7:e1972. [PMID: 38225865 PMCID: PMC10849987 DOI: 10.1002/cnr2.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Carcinoma of the breast, a prevailing factor in female mortality worldwide, involves dysregulation of lncRNAs and microRNAs. AIM The main goal of this research was to predict and experimentally examine the LINC01405 expression status in breast cancer subtypes, along with investigation of its interaction with miR-29b and miR-497-5p that results in regulating PI3-Kinase, WNT, and TGF-beta signaling pathways. METHODS AND RESULTS We performed a meta-analysis of five GEO datasets, encompassing microarray and RNA-seq data, to identify differentially expressed genes. The Cancer Genome Atlas transcriptome dataset was also analyzed to determine essential gene modules, associated with different stages of breast cancer by weighted gene co-expression networks. In addition, networks of drug-gene interactions were constructed to explore potential treatment options. LINC01405 as a microRNA sponge was chosen and examined. furthermore, downstream target genes were discovered. Experimental validation consisted of plasmid constructs used in cell culture experiments, RT-qPCR for expression analysis, and cell cycle assays. Our bioinformatics findings showed higher LINC01405 expression in Basal-like triple-negative breast carcinoma. In contrast, lower expression in Luminal samples was observed compared with normal samples, which was consistently observed in both breast cancer tissues and cell lines. LINC01405 expression level was correlated with miR-29b and miR-497 levels. The MDA-MB-231 cell line demonstrated higher LINC01405 expression and lower miR-29b and miR-497 expression levels. However, SKBR3 and MCF7 cells had lower LINC01405 expression and higher miR-29b and miR-497 levels, suggesting a regulatory role for LINC01405 as a competing endogenous RNA. This was experimentally confirmed when LINC01405 was overexpressed in SKBR3 cells, and the common target genes of miR-29b and miR-497 were upregulated. Additionally, LINC01405 upregulation led to the increased cell populations, proliferation, and upregulation of critical cancer-related genes, including AKT1, AKT3, mTOR, WNT3A, SMAD3, CYCLIN D1, CYCLIN D2, BCL2, and GSK3B. CONCLUSION We revealed the differential expression of LINC01405 in several types of breast cancer and its role in regulating signaling pathways, potentially via scavenging miRNAs. These findings clarified the role of LINC01405 in breast cancer development and identified potential therapeutic targets.
Collapse
Affiliation(s)
- Romina Norouzi
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Zahra Mohamadzade
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Rambod Norouzi
- Molecular Biosciences DepartmentAutonomous University of MadridMadridSpain
| | | | - Rezvan Esmaeili
- Genetics Department, Center for Breast Cancer ResearchMotamed Cancer InstituteTehranIran
| | - Bahram M. Soltani
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
9
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Santana-da-Silva MN, Sena-dos-Santos C, Cáceres-Durán MÁ, de Souza FG, Gobbo AR, Pinto P, Salgado CG, dos Santos SEB. ncRNAs: an unexplored cellular defense mechanism in leprosy. Front Genet 2023; 14:1295586. [PMID: 38116294 PMCID: PMC10729009 DOI: 10.3389/fgene.2023.1295586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Leprosy is an infectious disease primarily caused by the obligate intracellular parasite Mycobacterium leprae. Although it has been considered eradicated in many countries, leprosy continues to be a health issue in developing nations. Besides the social stigma associated with it, individuals affected by leprosy may experience nerve damage leading to physical disabilities if the disease is not properly treated or early diagnosed. Leprosy is recognized as a complex disease wherein socioenvironmental factors, immune response, and host genetics interact to contribute to its development. Recently, a new field of study called epigenetics has emerged, revealing that the immune response and other mechanisms related to infectious diseases can be influenced by noncoding RNAs. This review aims to summarize the significant advancements concerning non-coding RNAs in leprosy, discussing the key perspectives on this novel approach to comprehending the pathophysiology of the disease and identifying molecular markers. In our view, investigations on non-coding RNAs in leprosy hold promise and warrant increased attention from researches in this field.
Collapse
Affiliation(s)
- Mayara Natália Santana-da-Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Imunologia, Seção de Virologia (SAVIR), Instituto Evandro Chagas, Ananindeua, Brazil
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Miguel Ángel Cáceres-Durán
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Felipe Gouvea de Souza
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Angelica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Sidney Emanuel Batista dos Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| |
Collapse
|
11
|
Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, Baran N. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol 2023; 13:1259034. [PMID: 38033495 PMCID: PMC10682792 DOI: 10.3389/fonc.2023.1259034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Orak G, Rezaei HB, Ameli F, Maghsoodi F, Cheraghzade M, Adelipour M. The expression of lncRNAs CASC2, NEAT1, LINC00299 in breast cancer tissues and their relationship with the XBP1 splicing rate in Iranian patients during 2014-2019: A cross-sectional study. Health Sci Rep 2023; 6:e1552. [PMID: 37706018 PMCID: PMC10495808 DOI: 10.1002/hsr2.1552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Background and Aims Breast cancer is a leading cause of incidence and mortality in women globally. Identifying new molecular markers can aid in cancer diagnosis, targeted therapy, and treatment monitoring. This study aimed to measure the expression of the X-box binding protein 1 (XBP1) gene, an index of the unfolded protein response (UPR), and long noncoding RNAs (lncRNAs), including Nuclear Enriched Abundant Transcript 1 (NEAT1), Cancer Susceptibility Candidate 2 (CASC2), and Long Intergenic Nonprotein Coding RNA 299 (LINC00299), as possible regulators of the UPR pathway. Methods Total RNA was extracted from 40 samples of breast tumor tissues and their respective controls. The expression level of lncRNAs CASC2, NEAT1, and LINC00299 was quantified using reverse transcription-polymerase chain reaction (RT-PCR). The ratio of the spliced form of XBP1 to its unspliced form (XBP1u) was determined by PCR and electrophoresis. Results The results showed a 2.8-fold increase in the ratio of XBP1s/u in breast cancer tissues compared to adjacent nonmalignant samples (p < 0.05). Additionally, the level of lncRNAs NEAT1, CASC2, and LINC00299 in breast tumor tissues increased significantly by twofold, 1.5-fold, and 2.3-fold, respectively, compared to adjacent nonmalignant samples (p < 0.05). Conclusions Based on the association between the expression of lncRNAs CASC2, LINC00299, and NEAT1 and the XBP1s/u ratio, these lncRNAs could be potential regulators of the UPR pathway. Also, CASC2 and NEAT1 genes could be suggested as suitable biomarkers to distinguish cancerous tissue from noncancerous breast tissue due to their significant increase in expression in cancerous samples compared to adjacent noncancerous.
Collapse
Affiliation(s)
- Ghazal Orak
- Department of Clinical Biochemistry, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Babaahmadi Rezaei
- Department of Clinical Biochemistry, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hyperlipidemia Research CenterAhvaz Jundishapur University of Medical ScienceAhvazIran
| | - Fereshteh Ameli
- Department of Pathology, School of MedicineTehran University of Medical ScienceTehranIran
| | - Fatemeh Maghsoodi
- Department of Public HealthAbadan University of Medical SciencesAbadanIran
| | - Maryam Cheraghzade
- Department of Clinical Biochemistry, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Cellular and Molecular Research Center, Medical Basic Science Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
13
|
Selem NA, Nafae H, Manie T, Youness RA, Gad MZ. Let-7a/cMyc/CCAT1/miR-17-5p Circuit Re-sensitizes Atezolizumab Resistance in Triple Negative Breast Cancer through Modulating PD-L1. Pathol Res Pract 2023; 248:154579. [PMID: 37301086 DOI: 10.1016/j.prp.2023.154579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenically hot tumor. The immune checkpoint blockades (ICBs) have been recently emerged as promising therapeutic candidates for several malignancies including TNBC. Yet, the development of innate and/or adaptive resistance by TNBC patients towards ICBs such as programmed death-ligand 1 (PD-L1) inhibitors (e.g. Atezolizumab) shed the light on importance of identifying the underlying mechanisms regulating PD-L1 in TNBC. Recently, it was reported that non-coding RNAs (ncRNAs) perform a fundamental role in regulating PD-L1 expression in TNBC. Hence, this study aims to explore a novel ncRNA axis tuning PD-L1 in TNBC patients and investigate its possible involvement in fighting Atezolizumab resistance. METHODS In-silico screening was executed to identify ncRNAs that could potentially target PD-L1. Screening of PD-L1 and the nominated ncRNAs (miR-17-5p, let-7a and CCAT1 lncRNA) was performed in BC patients and cell lines. Ectopic expression and/or knockdown of respective ncRNAs were performed in MDA-MB-231. Cellular viability, migration and clonogenic capacities were evaluated using MTT, scratch assay and colony-forming assay, respectively. RESULTS PD-L1 was upregulated in BC patients, especially in TNBC patients. PD-L1 is positively associated with lymph node metastasis and high Ki-67 in recruited BC patients. Let-7a and miR-17-5p were nominated as potential regulators of PD-L1. Ectopic expression of let-7a and miR-17-5p caused a noticeable reduction in PD-L1 levels in TNBC cells. In order to investigate the whole ceRNA circuit regulating PD-L1 in TNBC, intensive bioinformatic studies were performed. The lncRNA, Colon Cancer-associated transcript 1 (CCAT1), was reported to target PD-L1 regulating miRNAs. Results showed that CCAT1 is an upregulated oncogenic lncRNA in TNBC patients and cell lines. CCAT1 siRNAs induced a noticeable reduction in PD-L1 levels and a marked increase in miR-17-5p level, building up a novel regulatory axis CCAT1/miR-17-5p/PD-L1 in TNBC cells that was tuned by the let-7a/c-Myc engine. On the functional level, co-treatment of CCAT-1 siRNAs and let-7a mimics efficiently relieved Atezolizumab resistance in MDA-MB-231 cells. CONCLUSION The present study revealed a novel PD-L1 regulatory axis via targeting let-7a/c-Myc/CCAT/miR-17-5p. Additionally, it sheds the light on the potential combinational role of CCAT-1 siRNAs and Let-7a mimics in relieving Atezolizumab resistance in TNBC patients.
Collapse
Affiliation(s)
- Noha A Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Nafae
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt; Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.
| | - Mohamed Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
14
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
15
|
Petrone I, dos Santos EC, Binato R, Abdelhay E. Epigenetic Alterations in DCIS Progression: What Can lncRNAs Teach Us? Int J Mol Sci 2023; 24:8733. [PMID: 37240077 PMCID: PMC10218364 DOI: 10.3390/ijms24108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Some transcripts that are not translated into proteins can be encoded by the mammalian genome. Long noncoding RNAs (lncRNAs) are noncoding RNAs that can function as decoys, scaffolds, and enhancer RNAs and can regulate other molecules, including microRNAs. Therefore, it is essential that we obtain a better understanding of the regulatory mechanisms of lncRNAs. In cancer, lncRNAs function through several mechanisms, including important biological pathways, and the abnormal expression of lncRNAs contributes to breast cancer (BC) initiation and progression. BC is the most common type of cancer among women worldwide and has a high mortality rate. Genetic and epigenetic alterations that can be regulated by lncRNAs may be related to early events of BC progression. Ductal carcinoma in situ (DCIS) is a noninvasive BC that is considered an important preinvasive BC early event because it can progress to invasive BC. Therefore, the identification of predictive biomarkers of DCIS-invasive BC progression has become increasingly important in an attempt to optimize the treatment and quality of life of patients. In this context, this review will address the current knowledge about the role of lncRNAs in DCIS and their potential contribution to the progression of DCIS to invasive BC.
Collapse
Affiliation(s)
- Igor Petrone
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Everton Cruz dos Santos
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Renata Binato
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| |
Collapse
|
16
|
Zarei M, Malekzadeh K, Omidi M, Mousavi P. Clinical significance of long non-coding RNA ZEB2-AS1 and EMT-related markers in ductal and lobular breast cancer. Cancer Rep (Hoboken) 2023; 6:e1826. [PMID: 37088469 PMCID: PMC10172159 DOI: 10.1002/cnr2.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Breast cancer is considered the most prevalent type of cancer in women and accounts for a high rate of death. A body of research has demonstrated that lncRNAs have a regulatory function in human diseases, especially cancers. ZEB2-AS1 is known as an oncogenic lncRNA in various types of cancers, and its deregulation may contribute to cancer development and progression. Therefore, we aimed to reveal the association of ZEB2-AS1 expression with epithelial-mesenchymal transition (EMT) markers, as a hallmark of cancer progression, in a clinical setting. METHODS A recent study suggested that ZEB2-AS1 is significantly involved in EMT. Here we intended to explore the roles of lncRNA ZEB2-AS1 in breast cancer (BC) using bioinformatics tools and laboratory settings. We first evaluated the expression of ZEB2-AS1 mRNA in tumor and healthy control tissues by lnCAR database. Furthermore, ZEB2-AS1 expression level, ZEB2, E-cadherin, and vimentin was measured via qRT-PCR in 30 paired ductal and lobular carcinoma tissues from breast cancer patients and the normal adjacent ones. The correlation between the lncRNA ZEB2-AS1 expression and clinicopathological characteristics of the breast cancer patients was evaluated. RESULTS ZEB2-AS1 showed an upregulation in breast cancer tissues (p = .04) compared to normal adjacent samples. In addition, its level was higher in breast cancer patients with advanced Stages (III & IV) (n = 18) compared to early Stages (I & II) (n = 12) (p = .04). Moreover, ZEB2 (p = .01) and vimentin (p = .02) expression were upregulated in the BC sample, but the expression level of E-cadherin (p = .02) was downregulated when compared with the adjacent normal tissues. By comparison of the expression of EMT-markers between different stages of breast cancer, overexpression of ZEB2 (p = .04) and vimentin (p = .04) and down expression of E-cadherin (p = .03) was observed in advance stages. CONCLUSIONS Collectively, our findings suggest that ZEB2-AS1 expression is significantly upregulated in tumor tissues, especially in advanced stages and ZEB2-AS1 is associated with the aggressiveness of tumors by functioning as putative oncogenic lncRNA. In addition, a combination of ZEB2-AS1 and these EMT markers in breast cancer potentiates these genes as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
17
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
18
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
19
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
20
|
Ageeli EA, Attallah SM, Mohamed MH, Almars AI, Kattan SW, Toraih EA, Fawzy MS, Darwish MK. Migration/Differentiation-Associated LncRNA SENCR rs12420823*C/T: A Novel Gene Variant Can Predict Survival and Recurrence in Patients with Breast Cancer. Genes (Basel) 2022; 13:1996. [PMID: 36360233 PMCID: PMC9690295 DOI: 10.3390/genes13111996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have key roles in tumor development and the progress of many cancers, including breast cancer (BC). This study aimed to explore for the first time the association of the migration/differentiation-associated lncRNA SENCR rs12420823C/T variant with BC risk and prognosis. Genotyping was carried out for 203 participants (110 patients and 93 controls) using the TaqMan allelic discrimination technique. The corresponding clinicopathological data, including the recurrence/survival times, were analyzed with the different genotypes. After adjustment by age and risk factors, the T/T genotype carrier patients were more likely to develop BC under homozygote comparison (T/T vs. C/C: OR = 8.33, 95% CI = 2.44-25.0, p = 0.001), dominant (T/T-C/T vs. C/C: OR = 3.70, 95% CI = 1.72-8.33, p = 0.027), and recessive (T/T vs. C/T-C/C: OR = 2.17, 95% CI = 1.08-4.55, p < 0.001) models. Multivariate logistic regression analysis showed that the T/T genotype carriers were more likely to be triple-negative sub-type (OR = 2.66, 95% CI = 1.02-6.95, p = 0.046), at a higher risk of recurrence (OR = 3.57, 95% CI = 1.33-9.59, p = 0.012), and had short survival times (OR = 3.9, 95% CI = 1.52-10.05, p = 0.005). Moreover, Cox regression analysis supported their twofold increased risk of recurrence (HR = 2.14, 95% CI = 1.27-3.59, p = 0.004). Furthermore, the predictive nomogram confirmed the high weight for SENCR rs12420823*T/T and C/T genotypes in predicting recurrence within the first year. The Kaplan-Meier survival curve demonstrated low disease-free survival (T/T: 12.5 ± 1.16 months and C/T: 15.9 ± 0.86 months versus C/C: 22.3 ± 0.61 months, p < 0.001). In conclusion, the LncRNA SENCR rs12420823*C/T may be associated with an increased risk of BC in women and could be a promising genetic variant for predicting recurrence and survival.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Samy M. Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Clinical Pathology, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Marwa Hussein Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Marwa K. Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Ismailia 41522, Egypt
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwaiiyah 19257, Saudi Arabia
| |
Collapse
|
21
|
LincRNAs and snoRNAs in Breast Cancer Cell Metastasis: The Unknown Players. Cancers (Basel) 2022; 14:cancers14184528. [PMID: 36139687 PMCID: PMC9496948 DOI: 10.3390/cancers14184528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in research have led to earlier diagnosis and targeted therapies against breast cancer, which has resulted in reduced breast cancer-related mortality. However, the majority of breast cancer-related deaths are due to metastasis of cancer cells to other organs, a process that has not been fully elucidated. Among the factors and genes implicated in the metastatic process regulation, non-coding RNAs have emerged as crucial players. This review focuses on the role of long intergenic noncoding RNAs (lincRNAs) and small nucleolar RNAs (snoRNAs) in breast cancer cell metastasis. LincRNAs are transcribed between two protein-coding genes and are longer than 200 nucleotides, they do not code for a specific protein but function as regulatory molecules in processes such as cell proliferation, apoptosis, epithelial-to-mesenchymal transition, migration, and invasion while most of them are highly elevated in breast cancer tissues and seem to function as competing endogenous RNAs (ceRNAs) inhibiting relevant miRNAs that specifically target vital metastasis-related genes. Similarly, snoRNAs are 60-300 nucleotides long and are found in the nucleolus being responsible for the post-transcriptional modification of ribosomal and spliceosomal RNAs. Most snoRNAs are hosted inside intron sequences of protein-coding and non-protein-coding genes, and they also regulate metastasis-related genes affecting related cellular properties.
Collapse
|
22
|
Khan AQ, Ahmad F, Raza SS, Zarif L, Siveen KS, Sher G, Agha MV, Rashid K, Kulinski M, Buddenkotte J, Uddin S, Steinhoff M. Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases. Semin Cancer Biol 2022; 83:208-226. [PMID: 32717336 DOI: 10.1016/j.semcancer.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Skin, the largest organ of human body, is vital for the existence and survival of human beings. Further, developmental and physiological mechanisms associated with cutaneous biology are vital for homeostasis as their deregulations converge towards pathogenesis of a number of skin diseases, including cancer. It has now been well accepted that most of the transcribed human genome lacks protein translational potential and has been termed as non-coding RNAs (nc-RNAs), which includes circular RNA (circRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA (miRNA), long noncoding RNA (lncRNA), and piwi-interacting RNA (piRNAs). These nc-RNAs have gained great attention in both preclinical and clinical research as they are critical in most of the regulatory mechanisms of biological homeostasis and disease development by controlling the gene expression at transcriptional, post-transcriptional and epigenetic level. In this review we have illustrated how nc-RNAs are critical in the development and maintenance of cutaneous homeostasis and functioning and also, most importantly, how the dysregulated expression and functioning of nc-RNAs play critical role in the pathogenesis of cutaneous diseases including cancer and the autoimmune skin diseases. Considering the vital role of nc-RNAs in cancer resistance, metastasis and autoimmune diseases, we have also highlighted their role as promising prognostic and therapeutic targets for the cutaneous diseases.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Lubna Zarif
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
23
|
Hu X, Zhang Q, Xing W, Wang W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front Pharmacol 2022; 13:814971. [PMID: 35814205 PMCID: PMC9263262 DOI: 10.3389/fphar.2022.814971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective (s): In this mini-review, we aimed to discuss the Wnt/β-catenin signaling pathway modulation in triple-negative breast cancer, particularly the contribution of lncRNAs and miRNAs in its regulation and their possible entwining role in breast cancer pathogenesis, proliferation, migration, or malignancy.Background: Malignant tumor formation is very high for breast cancer in women and is a leading cause of death all over the globe. Among breast cancer subtypes, triple-negative breast cancer is rife in premenopausal women, most invasive, and prone to metastasis. Complex pathways are involved in this cancer’s pathogenesis, advancement, and malignancy, including the Wnt/β-catenin signaling pathway. This pathway is conserved among vertebrates and is necessary for sustaining cell homeostasis. It is regulated by several elements such as transcription factors, enhancers, non-coding RNAs (lncRNAs and miRNAs), etc.Methods: We evaluated lncRNAs and miRNAs differentially expressed in triple-negative breast cancer (TNBC) from the cDNA microarray data set literature survey. Using in silico analyses combined with a review of the current literature, we anticipated identifying lncRNAs and miRNAs that might modulate the Wnt/β-catenin signaling pathway.Result: The miRNAs and lncRNAs specific to triple-negative breast cancer have been identified based on literature and database searches. Tumorigenesis, metastasis, and EMT were all given special attention. Apart from cross-talk being essential for TNBC tumorigenesis and treatment outcomes, our results indicated eight upregulated and seven downregulated miRNAs and 19 upregulated and three downregulated lncRNAs that can be used as predictive or diagnostic markers. This consolidated information could be useful in the clinic and provide a combined literature resource for TNBC researchers working on the Wnt/β-catenin miRNA/lncRNA axis.Conclusion: In conclusion, because the Wnt pathway and miRNAs/lncRNAs can modulate TNBC, their intertwinement results in a cascade of complex reactions that affect TNBC and related processes. Their function in TNBC pathogenesis has been highlighted in molecular processes underlying the disease progression.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Wan Wang,
| |
Collapse
|
24
|
The Role of Hypoxia-Associated Long Non-Coding RNAs in Breast Cancer. Cells 2022; 11:cells11101679. [PMID: 35626715 PMCID: PMC9139647 DOI: 10.3390/cells11101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. In the United States, even with earlier diagnosis and treatment improvements, the decline in mortality has stagnated in recent years. More research is needed to provide better diagnostic, prognostic, and therapeutic tools for these patients. Long non-coding RNAs are newly described molecules that have extensive roles in breast cancer. Emerging reports have shown that there is a strong link between these RNAs and the hypoxic response of breast cancer cells, which may be an important factor for enhanced tumoral progression. In this review, we summarize the role of hypoxia-associated lncRNAs in the classic cancer hallmarks, describing their effects on the upstream and downstream hypoxia signaling pathway and the use of them as diagnostic and prognostic tools.
Collapse
|
25
|
Oghabi Bakhshaiesh T, Esmaeili R. Effects of noncoding RNAs in radiotherapy response in breast cancer: a systematic review. Cell Cycle 2022; 21:883-893. [PMID: 35108162 PMCID: PMC9037412 DOI: 10.1080/15384101.2022.2035915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Radiotherapy has an essential role in breast cancer treatment. However, tumor cells may be resistant to radiotherapy. Noncoding RNAs are considered regulators of different pathways which modulate radiotherapy. This systematic review classifies long noncoding RNAs, and microRNAs precipitated in the radiation response of breast cancer patients. A total of 14 microRNAs and 8 long noncoding RNAs were studied in this review. MiR-22, miR-200 c, Let7, and LINP1 as tumor suppressors increase the effect of radiotherapy in BC. However, some noncoding RNAs such as HOTAIR, NEAT1, and miR-21 are precipitated in radio-resistance breast cancers. Significant changes in the pattern of noncoding RNAs expression before and after radiotherapy make them a good candidate for the prognosis and prediction of radiotherapy response. MiR-21 and miR-182 can promote radio-resistance via cancer stem cells. At last, the molecular mechanisms initiating radio-resistance were also examined to find the candidate noncoding RNAs for the development of radiation-sensitized agents.
Collapse
Affiliation(s)
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran,CONTACT Rezvan Esmaeili No 146, Gandhi Street, Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Eteleeb AM, Thunuguntla PK, Gelev KZ, Tang CY, Rozycki EB, Miller A, Lei JT, Jayasinghe RG, Dang HX, White NM, Reis-Filho JS, Mardis ER, Ellis MJ, Ding L, Silva-Fisher JM, Maher CA. LINC00355 regulates p27 KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. NPJ Breast Cancer 2022; 8:49. [PMID: 35418131 PMCID: PMC9007952 DOI: 10.1038/s41523-022-00412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of 72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7 long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p27Kip. In summary, this is a key study discovering lncRNAs in LSR BC and LINC00355 association with epigenetic regulation and proliferation in BC.
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prasanth K Thunuguntla
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyla Z Gelev
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Miller
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Reyka G Jayasinghe
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Li Ding
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica M Silva-Fisher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- The McDonnell Genome Institute, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Zhang Y, Wang S. The possible role of long non-coding RNAs in recurrent miscarriage. Mol Biol Rep 2022; 49:9687-9697. [PMID: 35397764 PMCID: PMC9515028 DOI: 10.1007/s11033-022-07427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Recurrent miscarriage (RM) is a complicated disease in reproductive medicine that impacts many families. Currently, the etiology of RM is thought to include chromosome abnormalities, reproductive tract malformations, autoimmune dysfunction, infection, and environmental factors. However, the underlying mechanisms of RM remain unknown. At present, research on long non-coding RNAs (lncRNAs) is rapidly emerging and becoming a hot research topic in epigenetic studies. Recent studies revealed that lncRNAs are strongly linked to RM and play a crucial role in epigenetic, cell cycle, cell differentiation regulation, and other life activities. This article mainly reviews the difference in lncRNA expression in patients with RM and regulation of susceptibility, endometrial receptivity, and the maternal-fetal interface. Meanwhile, the correlation between lncRNAs and RM is expounded, which provides new insights for the early diagnosis and treatment of RM.
Collapse
Affiliation(s)
- Yanan Zhang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
28
|
Wu J, Liu H, Hu T, Wang S. Gene expression trend changes in breast cancer populations over two decades: insights from The Cancer Genome Atlas database. Hereditas 2022; 159:18. [PMID: 35317849 PMCID: PMC8939184 DOI: 10.1186/s41065-022-00230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer has remained the most common malignancy in women over the past two decades. As lifestyle and living environments have changed, alterations to the disease spectrum have inevitably occurred in this time. As molecular profiling has become a routine diagnostic and objective indicator of breast cancer etiology, we analyzed changes in gene expression in breast cancer populations over two decades using The Cancer Genome Atlas database. METHODS We performed Heatmap and Venn diagram analyses to identify constantly up- and down-regulated genes in breast cancer patients of this cohort. We used Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to visualize associated functional pathways. RESULTS We determined that three oncogenes, PD-L2, ETV5, and MTOR and 113 long intergenic non-coding RNAs (lincRNAs) were constantly up-regulated, whereas two oncogenes, BCR and GTF2I, one tumor suppression gene MEN1, and 30 lincRNAs were constantly down-regulated. Up-regulated genes were enriched in "focal adhesion" and "PI3K-Akt signaling" pathways, etc., and down-regulated genes were significantly enriched in "metabolic pathways" and "viral myocarditis". Eight up-regulated genes exhibited doubled or higher expression and the expression of three down-regulated genes was halved or lowered and correlated with long-term survival. CONCLUSIONS In this study, we found that gene expression and molecular pathway enrichments are constantly changing with time, importantly, some altered genes were associated with prognostics and are potential therapeutic targets, suggesting that the current molecular subtyping system must be updated to keep pace with this dynamic change.
Collapse
Affiliation(s)
- Jinbo Wu
- Department of Breast Surgery, Peking University People's Hospital, Beijing, China
| | - Hongjun Liu
- Department of Breast Surgery, Peking University People's Hospital, Beijing, China
| | - Taobo Hu
- Department of Breast Surgery, Peking University People's Hospital, Beijing, China
| | - Shu Wang
- Department of Breast Surgery, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
29
|
ZeinElAbdeen YA, AbdAlSeed A, Youness RA. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer. J Mammary Gland Biol Neoplasia 2022; 27:79-99. [PMID: 35146629 DOI: 10.1007/s10911-022-09511-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a highly complex and heterogenous disease. Several oncogenic signaling pathways drive BC oncogenic activity, thus hindering scientists to unravel the exact molecular pathogenesis of such multifaceted disease. This highlights the urgent need to find a key regulator that tunes up such intertwined oncogenic drivers to trim the malignant transformation process within the breast tissue. The Insulin-like growth factor (IGF) signaling pathway is a tenacious axis that is heavily intertwined with BC where it modulates the amplitude and activity of vital downstream oncogenic signaling pathways. Yet, the complexity of the pathway and the interactions driven by its different members seem to aggravate its oncogenicity and hinder its target-ability. In this review, the authors shed the light on the stubbornness of the IGF signaling pathway and its potential regulation by non-coding RNAs in different BC subtypes. Nonetheless, this review also spots light on the possible transport systems available for efficient delivery of non-coding RNAs to their respective targets to reach a personalized treatment code for BC patients.
Collapse
Affiliation(s)
- Yousra Ahmed ZeinElAbdeen
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
| | - Amna AbdAlSeed
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
- University of Khartoum, Al-Gama a Avenue, 11115, Khartoum, Sudan
| | - Rana A Youness
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, 11586, Egypt.
| |
Collapse
|
30
|
Hong R, Sun H, Li D, Yang W, Fan K, Liu C, Dong L, Wang G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life (Basel) 2022; 12:342. [PMID: 35330093 PMCID: PMC8955405 DOI: 10.3390/life12030342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has the highest cancer incidence rate in women. Early screening of breast cancer can effectively improve the treatment effect of patients. However, the main diagnostic techniques available for the detection of breast cancer require the corresponding equipment, professional practitioners, and expert analysis, and the detection cost is high. Tumor markers are a kind of active substance that can indicate the existence and growth of the tumor. The detection of tumor markers can effectively assist the diagnosis and treatment of breast cancer. The conventional detection methods of tumor markers have some shortcomings, such as insufficient sensitivity, expensive equipment, and complicated operations. Compared with these methods, biosensors have the advantages of high sensitivity, simple operation, low equipment cost, and can quantitatively detect all kinds of tumor markers. This review summarizes the biosensors (2013-2021) for the detection of breast cancer biomarkers. Firstly, the various reported tumor markers of breast cancer are introduced. Then, the development of biosensors designed for the sensitive, stable, and selective recognition of breast cancer biomarkers was systematically discussed, with special attention to the main clinical biomarkers, such as human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER). Finally, the opportunities and challenges of developing efficient biosensors in breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kai Fan
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
31
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
32
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 2022; 49:705-715. [PMID: 34677714 DOI: 10.1007/s11033-021-06847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
33
|
Long Non-Coding RNAs at the Chromosomal Risk Loci Identified by Prostate and Breast Cancer GWAS. Genes (Basel) 2021; 12:genes12122028. [PMID: 34946977 PMCID: PMC8701176 DOI: 10.3390/genes12122028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key players in a variety of cellular processes. Deregulation of the lncRNAs has been implicated in prostate and breast cancers. Recently, germline genetic variations associated with cancer risk have been correlated with lncRNA expression and/or function. In addition, single nucleotide polymorphisms (SNPs) at well-characterized cancer-associated lncRNAs have been analyzed for their association with cancer risk. These SNPs may occur within the lncRNA transcripts or spanning regions that may alter the structure, function, and expression of these lncRNA molecules and contribute to cancer progression and may have potential as therapeutic targets for cancer treatment. Additionally, some of these lncRNA have a tissue-specific expression profile, suggesting them as biomarkers for specific cancers. In this review, we highlight some of the cancer risk-associated SNPs that modulated lncRNAs with a potential role in prostate and breast cancers and speculate on how these lncRNAs may contribute to cancer development.
Collapse
|
34
|
Golhani V, Ray SK, Mukherjee S. Role of MicroRNAs and Long Non-Coding RNAs in Regulating Angiogenesis in Human Breast Cancer- A Molecular Medicine Perspective. Curr Mol Med 2021; 22:882-893. [PMID: 34923940 DOI: 10.2174/1566524022666211217114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are proficient in regulating gene expression post-transcriptionally. Considering the recent trend in exploiting non-coding RNAs (ncRNAs) as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agents against angiogenesis is an important scientific aspect. An estimated 70% of the genome is actively transcribed, only 2% of which codes for known protein-coding genes. Long noncoding RNAs (lncRNAs) are a large and diverse class of RNAs > 200 nucleotides in length, and not translated into protein, and are of utmost importance and it governs the expression of genes in a temporal, spatial, and cell context-dependent manner. Angiogenesis is an essential process for organ morphogenesis and growth during development, and it is relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro-and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases, including breast cancer. Signaling pathways involved here are tightly controlled systems that regulate the appropriate timing of gene expression required for the differentiation of cells down a particular lineage essential for proper tissue development. Lately, scientific reports are indicating that ncRNAs, such as miRNAs, and lncRNAs, play critical roles in angiogenesis related to breast cancer. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signaling pathways regulated by these ncRNAs with molecular medicine perspective, are highlighted in this write-up.
Collapse
Affiliation(s)
- Vandana Golhani
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| | | | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
35
|
Selem NA, Youness RA, Gad MZ. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 2021; 6:174-186. [PMID: 34938928 PMCID: PMC8666458 DOI: 10.1016/j.ncrna.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play a vital role in the process of malignant transformation. In breast cancer (BC), lncRNAs field is currently under intensive investigations. Yet, the role of lncRNAs as promising diagnostic and/or prognostic biomarkers and as therapeutic target/tool among BC patients still needs a special focus from the biomedical scientists. In BC, triple negative breast cancer patients (TNBC) are the unlucky group as they are always represented with the worst prognosis and the highest mortality rates. For that reason, a special focus on TNBC and associated lncRNAs was addressed in this review. Colon cancer-associated transcript 1 (CCAT-1) is a newly discovered oncogenic lncRNA that has been emerged as a vital biomarker for diagnosis, prognosis and therapeutic interventions in multiple malignancies and showed differential expression among TNBC patients. In this review, the authors shed the light onto the general role of lncRNAs in BC and the specific functional activities, molecular mechanisms, competing endogenous ncRNA role of CCAT-1 in TNBC.
Collapse
Affiliation(s)
- Noha A. Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
36
|
Rahman MM, Hossain MT, Reza MS, Peng Y, Feng S, Wei Y. Identification of Potential Long Non-Coding RNA Candidates that Contribute to Triple-Negative Breast Cancer in Humans through Computational Approach. Int J Mol Sci 2021; 22:12359. [PMID: 34830241 PMCID: PMC8619140 DOI: 10.3390/ijms222212359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy identified in adult females, resulting in enormous financial losses worldwide. Owing to the heterogeneity as well as various molecular subtypes, the molecular pathways underlying carcinogenesis in various forms of BC are distinct. Therefore, the advancement of alternative therapy is required to combat the ailment. Recent analyses propose that long non-coding RNAs (lncRNAs) perform an essential function in controlling immune response, and therefore, may provide essential information about the disorder. However, their function in patients with triple-negative BC (TNBC) has not been explored in detail. Here, we analyzed the changes in the genomic expression of messenger RNA (mRNA) and lncRNA in standard control in response to cancer metastasis using publicly available single-cell RNA-Seq data. We identified a total of 197 potentially novel lncRNAs in TNBC patients of which 86 were differentially upregulated and 111 were differentially downregulated. In addition, among the 909 candidate lncRNA transcripts, 19 were significantly differentially expressed (DE) of which three were upregulated and 16 were downregulated. On the other hand, 1901 mRNA transcripts were significantly DE of which 1110 were upregulated and 791 were downregulated by TNBCs subtypes. The Gene Ontology (GO) analyses showed that some of the host genes were enriched in various biological, molecular, and cellular functions. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that some of the genes were involved in only one pathway of prostate cancer. The lncRNA-miRNA-gene network analysis showed that the lncRNAs TCONS_00076394 and TCONS_00051377 interacted with breast cancer-related micro RNAs (miRNAs) and the host genes of these lncRNAs were also functionally related to breast cancer. Thus, this study provides novel lncRNAs as potential biomarkers for the therapeutic intervention of this cancer subtype.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology/methods
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Ontology
- Gene Regulatory Networks
- Humans
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- MicroRNAs/classification
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Annotation
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/classification
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Triple Negative Breast Neoplasms/diagnosis
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, NY 13902, USA
| | - Md. Tofazzal Hossain
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; (T.H.); (S.R.)
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahaman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Selim Reza
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; (T.H.); (S.R.)
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen 518060, China;
| | - Shengzhong Feng
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yanjie Wei
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
37
|
Ogunleye AJ, Romanova E, Medvedeva YA. Genome-wide regulation of CpG methylation by ecCEBPα in acute myeloid leukemia. F1000Res 2021; 10:204. [PMID: 34557292 PMCID: PMC8444155 DOI: 10.12688/f1000research.28146.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor
CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that
ecCEBPα (extra coding CEBP
α) - a lncRNA transcribed in the same direction as
CEBPα gene - regulates DNA methylation of
CEBPα promoter in
cis. Here, we hypothesize that
ecCEBPα could participate in the regulation of DNA methylation in
trans. Method: First, we retrieved the methylation profile of AML patients with mutated
CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the
ecCEBPα secondary structure in order to check the potential of
ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated
CEBPα locus, we show that
ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in
ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions.
ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for
ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.
Collapse
Affiliation(s)
- Adewale J Ogunleye
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Ekaterina Romanova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia A Medvedeva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation.,Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
38
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
39
|
Pi YN, Qi WC, Xia BR, Lou G, Jin WL. Long Non-Coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Front Immunol 2021; 12:697083. [PMID: 34295338 PMCID: PMC8290853 DOI: 10.3389/fimmu.2021.697083] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy (CIT) is considered a revolutionary advance in the fight against cancer. The complexity of the immune microenvironment determines the success or failure of CIT. Long non-coding RNA (lncRNA) is an extremely versatile molecule that can interact with RNA, DNA, or proteins to promote or inhibit the expression of protein-coding genes. LncRNAs are expressed in many different types of immune cells and regulate both innate and adaptive immunity. Recent studies have shown that the discovery of lncRNAs provides a novel perspective for studying the regulation of the tumor immune microenvironment (TIME). Tumor cells and the associated microenvironment can change to escape recognition and elimination by the immune system. LncRNA induces the formation of an immunosuppressive microenvironment through related pathways, thereby controlling the escape of tumors from immune surveillance and promoting the development of metastasis and drug resistance. Using lncRNA as a therapeutic target provides a strategy for studying and improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Cai Qi
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bai-Rong Xia
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Zhao Z, Guo Y, Liu Y, Sun L, Chen B, Wang C, Chen T, Wang Y, Li Y, Dong Q, Ai L, Wang R, Gu Y, Li X. Individualized lncRNA differential expression profile reveals heterogeneity of breast cancer. Oncogene 2021; 40:4604-4614. [PMID: 34131286 PMCID: PMC8266678 DOI: 10.1038/s41388-021-01883-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) play key regulatory roles in breast cancer. However, population-level differential expression analysis methods disregard the heterogeneous expression of lncRNAs in individual patients. Therefore, we individualized lncRNA expression profiles for breast invasive carcinoma (BRCA) using the method of LncRNA Individualization (LncRIndiv). After evaluating the robustness of LncRIndiv, we constructed an individualized differentially expressed lncRNA (IDElncRNA) profile for BRCA and investigated the subtype-specific IDElncRNAs. The breast cancer subtype-specific IDElncRNA showed frequent co-occurrence with alterations of protein-coding genes, including mutations, copy number variation and differential methylation. We performed hierarchical clustering to subdivide TNBC and revealed mesenchymal subtype and immune subtype for TNBC. The TNBC immune subtype showed a better prognosis than the TNBC mesenchymal subtype. LncRNA PTOV1-AS1 was the top differentially expressed lncRNA in the mesenchymal subtype. And biological experiments validated that the upregulation of PTOV1-AS1 could downregulate TJP1 (ZO-1) and E-Cadherin, and upregulate Vimentin, which suggests PTOV1-AS1 may promote epithelial-mesenchymal transition and lead to migration and invasion of TNBC cells. The mesenchymal subtype showed a higher fraction of M2 macrophages, whereas the immune subtype was more associated with CD4 + T cells. The immune subtype is characterized by genomic instability and upregulation of immune checkpoint genes, thereby suggesting a potential response to immunosuppressive drugs. Last, drug response analysis revealed lncRNA ENSG00000230082 (PRRT3-AS1) is a potential resistance biomarker for paclitaxel in BRCA treatment. Our analysis highlights that IDElncRNAs can characterize inter-tumor heterogeneity in BRCA and the new TNBC subtypes indicate novel insights into TNBC immunotherapy.
Collapse
Affiliation(s)
- Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - YingYing Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Northern Translational Medicine Research and Cooperation, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaoyao Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lichun Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuquan Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liqiang Ai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ran Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Xia Li
- Department of Bioinformatics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
41
|
Ghafouri-Fard S, Asadi M, Sohrabi B, Arsang-Jang S, Mehravaran E, Taheri M, Samsami M. Down-regulation of a panel of immune-related lncRNAs in breast cancer. Pathol Res Pract 2021; 224:153534. [PMID: 34175685 DOI: 10.1016/j.prp.2021.153534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Breast cancer is a common neoplasm among women. This type of cancer is among malignancies in which role of long non-coding RNAs (lncRNAs) has been extensively explored. Some recently recognized lncRNAs have been less investigated in this neoplastic condition. LncRNAs that regulate tumor immunity are among those contributing in the pathogenesis of cancer. In the present expression assay, we compared expressions of nine immune-related lncRNAs namely lnc-MICAL3-2 (AC016027.1), lnc-DDX31 (AL445645.1), LINC01063, LINC02381, ENST0000615051 (AC083809.1), AC009237.14 (lnc-TRIM43B-1), ENST0000603791, LINC1234 and AC008760.1 between breast cancer samples and their paired non-cancerous samples. Expression levels of lnc-MICAL3-2, lnc-DDX31, LINC01063, LINC02381, ENST0000615051 and lnc-TRIM43B-1 were significantly decreased in breast cancer samples compared with paired control tissues (Posterior mean difference= -2.774, -2.012, -2.012, -2.015, -0.884 and -2.872; P values= 0.019, 0.0001, 0.0001, 0.0001, 0.032 and 0.0001, respectively). Expression levels of these lncRNAs have been associated with a number of clinical characteristics of breast cancer patients. Lnc-TRIM43B-1 had the highest performance in distinguishing between tumoral and non-tumoral tissues (AUC=0.82, Sensitivity=76%, Specificity=73.24%). As these lncRNAs could differentiate tumor samples from control samples, they might be regarded as putative tissue markers for breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Asadi
- Department of Biology, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Behnoush Sohrabi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Shahram Arsang-Jang
- Cancer Gene therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Elham Mehravaran
- Motamed Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Department of Surgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Mansoori H, Darbeheshti F, Daraei A, Mokhtari M, Tabei MB, Abdollahzadeh R, Dastsooz H, Bastami M, Nariman-Saleh-Fam Z, Salmani H, Mansoori Y, Tahmasebi S. Expression signature of lncRNA APTR in clinicopathology of breast cancer: Its potential oncogenic function in dysregulation of ErbB signaling pathway. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Shi Y, Huang Q, Kong X, Zhao R, Chen X, Zhai Y, Xiong L. Current Knowledge of Long Non-Coding RNA HOTAIR in Breast Cancer Progression and Its Application. Life (Basel) 2021; 11:life11060483. [PMID: 34073224 PMCID: PMC8230351 DOI: 10.3390/life11060483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is one of the most devastating cancers with high morbidity and mortality in females worldwide. Breast tumorigenesis and further development present great uncertainty and complexity, and efficient therapeutic approaches still lack. Accumulating evidence indicates HOX transcript antisense intergenic RNA (HOTAIR) is dysregulated in cancers and has emerged as a novel hotspot in the field. In breast cancer, aberrant HOTAIR expression is responsible for advanced tumor progression by regulating multifarious signaling pathways. Besides, HOTAIR may act as competitive endogenous RNA to bind to several microRNAs and suppress their expressions, which can subsequently upregulate the levels of targeted downstream messenger RNAs, thereby leading to further cancer progression. In addition, HOTAIR works as a promising biomarker and predictor for breast cancer patients’ diagnosis or outcome prediction. Recently, HOTAIR is potentially considered to be a drug target. Here, we have summarized the induction of HOTAIR in breast cancer and its impacts on cell proliferation, migration, apoptosis, and therapeutic resistance, as well as elucidating the underlying mechanisms. This review aims to provide new insights into investigations between HOTAIR and breast cancer development and inspire new methods for studying the association in depth.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Qingyun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
| | - Xinyu Kong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xinyue Chen
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujia Zhai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
44
|
García-Cortés D, Hernández-Lemus E, Espinal-Enríquez J. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations. Front Genet 2021; 12:629475. [PMID: 33959148 PMCID: PMC8096206 DOI: 10.3389/fgene.2021.629475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Luminal A is the most common breast cancer molecular subtype in women worldwide. These tumors have characteristic yet heterogeneous alterations at the genomic and transcriptomic level. Gene co-expression networks (GCNs) have contributed to better characterize the cancerous phenotype. We have previously shown an imbalance in the proportion of intra-chromosomal (cis-) over inter-chromosomal (trans-) interactions when comparing cancer and healthy tissue GCNs. In particular, for breast cancer molecular subtypes (Luminal A included), the majority of high co-expression interactions connect gene-pairs in the same chromosome, a phenomenon that we have called loss of trans- co-expression. Despite this phenomenon has been described, the functional implication of this specific network topology has not been studied yet. To understand the biological role that communities of co-expressed genes may have, we constructed GCNs for healthy and Luminal A phenotypes. Network modules were obtained based on their connectivity patterns and they were classified according to their chromosomal homophily (proportion of cis-/trans- interactions). A functional overrepresentation analysis was performed on communities in both networks to observe the significantly enriched processes for each community. We also investigated possible mechanisms for which the loss of trans- co-expression emerges in cancer GCN. To this end we evaluated transcription factor binding sites, CTCF binding sites, differential gene expression and copy number alterations (CNAs) in the cancer GCN. We found that trans- communities in Luminal A present more significantly enriched categories than cis- ones. Processes, such as angiogenesis, cell proliferation, or cell adhesion were found in trans- modules. The differential expression analysis showed that FOXM1, CENPA, and CIITA transcription factors, exert a major regulatory role on their communities by regulating expression of their target genes in other chromosomes. Finally, identification of CNAs, displayed a high enrichment of deletion peaks in cis- communities. With this approach, we demonstrate that network topology determine, to at certain extent, the function in Luminal A breast cancer network. Furthermore, several mechanisms seem to be acting together to avoid trans- co-expression. Since this phenomenon has been observed in other cancer tissues, a remaining question is whether the loss of long distance co-expression is a novel hallmark of cancer.
Collapse
Affiliation(s)
- Diana García-Cortés
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
45
|
Zhao H, Dong H, Wang P, Zhu H. Long non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human prostate cancer cells in association with β-catenin signaling. Oncol Lett 2021; 21:472. [PMID: 33907582 PMCID: PMC8063240 DOI: 10.3892/ol.2021.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haijing Dong
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
46
|
Chang KC, Spector DL. MaTAR25: a long non-coding RNA involved in breast cancer progression. Mol Cell Oncol 2021; 8:1882286. [PMID: 33860086 DOI: 10.1080/23723556.2021.1882286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We recently reported on the role of Mammary Tumor Associated RNA 25 (MaTAR25) in mammary tumor cell proliferation, migration, and invasion. MaTAR25 interacts with transcriptional activator protein Pur-beta (Purb) to regulate its downstream targets such as Tensin1 in trans. The human ortholog of MaTAR25, LINC01271, is upregulated with human breast cancer stage and metastasis.
Collapse
Affiliation(s)
- Kung-Chi Chang
- Cold Spring Harbor Laboratory, New York, USA.,Molecular and Cellular Biology Program, Stony Brook University, New York, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, New York, USA.,Molecular and Cellular Biology Program, Stony Brook University, New York, USA
| |
Collapse
|
47
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
49
|
Rezaie F, Mokhtari MJ, Kalani M. Quercetin Arrests in G2 phase, Upregulates INXS LncRNA and Downregulates UCA1 LncRNA in MCF-7 Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:208-216. [PMID: 35178359 PMCID: PMC8800456 DOI: 10.22088/ijmcm.bums.10.3.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
One of the most prevalent malignancies, which have severe effects on women's health, is breast cancer. Quercetin, a flavonoid found in vegetables, tea, and fruits, is known to have bioactive properties, such as anti-inflammatory, anti-oxidant, as well as anti-cancer. Long non-coding RNAs (lncRNAs) have been recognized to function as primary regulators of diverse cellular processes, including differentiation, development, and cell fate. INXS and UCA1 are lncRNAs that are up regulated and down regulated respectively in cancer cells. This research aimed to assess the impact of quercetin on the expression of INXS and UCA1 genes in MCF-7 cells. Various quercetin concentrations at different times were used to treat MCF-7 cells. The cell viability and IC50 values were determined using MTT assay. Then, MCF-7 cells were incubated with various quercetin concentrations for 24, 48, and 72 h. Cell cycle analyses were evaluated by flow cytometry. The levels of INXS and UCA1 gene expression compared with the GAPDH gene at different concentrations of quercetin were quantified using real-time PCR method. Based on the results, quercetin exerted a dose- and time-dependent inhibitory impact on the viability of MCF-7 cells. Furthermore, quercetin induced cell cycle arrest at the G2 phase in MCF-7 cells. Also, quercetin induced INXS upregulation and UCA1 downregulation in the MCF-7 cell line. These data suggest that quercetin might increase cell death by up regulating INXS and down regulating UCA1 lncRNAs in MCF-7 cells.
Collapse
Affiliation(s)
- Fatemeh Rezaie
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
| | - Mohammad Javad Mokhtari
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.,Corresponding author: Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
50
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|