1
|
Yang F, Liu Y, Wang P, Wang X, Chu M, Wang P. Mutation of the ETS1 3'UTR interacts with miR-216a-3p to regulate granulosa cell apoptosis in sheep. Theriogenology 2023; 210:133-142. [PMID: 37499371 DOI: 10.1016/j.theriogenology.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
ETS1, an important member of the ETS transcription factor family, is involved in a variety of physiological processes in living organisms, such as cell development, differentiation, proliferation and apoptosis, and is thought to be associated with embryonic development and reproduction. However, the polymorphism of ETS1 has been rarely studied, and its potential impact on the formation of reproductive traits in sheep remains unclear. Here, we first analyzed polymorphisms of ETS1 in a population of 382 small-tailed Han sheep with a lambing number record using the Kompetitive Allele Specific PCR (KASP) technique. The results showed the presence of a SNP locus rs161611767 (T > C) in the 3'UTR of ETS1. The association analysis showed the lambing number of first, second and third parity in the individuals with the CC genotype (2.51 ± 0.108, 2.51 ± 0.179, 1.27 ± 0.196) was higher than that of individuals with the TT genotype (1.79 ± 0.086, 1.56 ± 0.102, 0.56 ± 0.100) (P < 0.05). Then, molecular biotechnologies were used to investigate the effects of the EST1 rs161611767 mutant locus on host gene expression in sheep and the underlying mechanism of its effect on sheep reproduction. The RT‒qPCR results showed that the expression of ETS1 was higher in individuals with the CC genotype than in those with the TT genotype (P < 0.05). The dual luciferase reporter assay showed that the luciferase activity of ETS1 in sheep with the TT genotype was decreased compared to CC genotype (P < 0.05), confirming the existence of EST1 rs161611767 in the 3'UTR as a functional SNP. Given that the 3'UTR is an important regulatory region of gene transcription and translation, we performed bioinformatics prediction and confirmed that the SNP rs161611767 of ETS1 was a direct functional target of miR-216a-3p using dual luciferase activity assay, and the binding capacity of allele T was stronger than that of allele C. Subsequently, the cell transfection results showed that miR-216a-3p suppressed the endogenous expression of ETS1 in sheep primary granulosa cells (GCs). Finally, CCK-8, EdU, WB detection of marker proteins and flow cytometry were used to detect the effects of miR-216a-3p on GCs viability and proliferation/apoptosis, respectively. The results showed that miR-216a-3p inhibited the proliferation of GCs while promoting apoptosis of GCs. In conclusion, these results demonstrate that the SNP rs161611767 of ETS1 is associated with lambing number in small-tailed Han sheep, and miR-216a-3p can act as a regulatory element binding to the T mutation in rs161611767 to regulate ETS1 expression and affect GCs development, which may indirectly affect the number of lambs in sheep. These studies provide evidence for the involvement of ETS1 polymorphisms in sheep reproduction and are expected to provide new insights to elucidate the molecular genetic mechanisms of lambing traits in sheep.
Collapse
Affiliation(s)
- Fan Yang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Ruan X, Cui G, Li C, Sun Z. Pan-Cancer Analysis Reveals PPRC1 as a Novel Prognostic Biomarker in Ovarian Cancer and Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040784. [PMID: 37109742 PMCID: PMC10146118 DOI: 10.3390/medicina59040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: As is well understood, peroxisome proliferator-activated receptor gamma cofactor-related 1 (PPRC1) plays a central role in the transcriptional control of the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) process, yet its critical role in pan-cancer remains unclear. Materials and Methods: In this paper, the expression levels of PPRC1 in different tumor tissues and corresponding adjacent normal tissues were analyzed based on four databases: The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), and Tumor Immune Estimation Resource (TIMER). Meanwhile, the prognostic value of PPRC1 was inferred using Kaplan-Meier plotter and forest-plot studies. In addition, the correlation between PPRC1 expression and tumor immune cell infiltration, immune checkpoints, and the tumor-stemness index was analyzed using TCGA and TIMER databases. Results: According to our findings, the expression level of PPRC1 was found to be different in different cancer types and there was a positive correlation between PPRC1 expression and prognosis in several tumor types. In addition, PPRC1 expression was found to be significantly correlated with immune cell infiltration, immune checkpoints, and the tumor-stemness index in both ovarian and hepatocellular carcinoma. Conclusions: PPRC1 demonstrated promising potential as a novel biomarker in pan-cancer due to its potential association with immune cell infiltration, expression of immune checkpoints, and the tumor-stemness index.
Collapse
Affiliation(s)
- Xingqiu Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Integrated Chinese and Western Medicine, Red Cross Hospital of Yulin City, Yulin 537000, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Changyu Li
- Department of Rehabilitation Medicine, Red Cross Hospital of Yulin City, Yulin 537000, China
| | - Zhiguang Sun
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Ji LY, Wei M, Liu YY, Di ZL, Li SZ. miR‑497/MIR497HG inhibits glioma cell proliferation by targeting CCNE1 and the miR‑588/TUSC1 axis. Oncol Rep 2021; 46:255. [PMID: 34664678 PMCID: PMC8548781 DOI: 10.3892/or.2021.8206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Emerging evidence has shown that microRNA (miR)-497 serves pivotal roles in tumorigenesis, cancer progression, metastasis and chemotherapy resistance in several types of cancer. In the present study, the expression and biological functions of miR-497 host gene (MIR497HG) were investigated in glioma tissue. The expression levels of miR-497 and MIR497HG were measured in glioma, adjacent non-cancerous and normal brain tissue and their association with the prognosis of patients with glioma were analyzed. The biological roles of miR-497 and MIR497HG were investigated in glioma cell lines. In addition, bioinformatics analysis, luciferase reporter assay and functional experiments were performed to identify and validate the downstream targets of miR-497 or MIR497HG. The expression levels of miR-497 and MIR497HG were downregulated in glioma tissue and cell lines compared with those in adjacent non-cancerous and normal brain tissue and normal human cortical neuron cell line. Patients with low miR-497 or MIR497HG expression levels exhibited a poor prognostic outcome. In addition, forced overexpression of miR-497 or MIR497HG significantly inhibited the proliferation and cell cycle progression of glioma cell lines. Furthermore, the results indicated that miR-497 and MIR497HG exerted their biological functions by direct targeting of cyclin E1 and miR-588/tumor suppressor candidate 1. In summary, the data indicated that miR-497 and MIR497HG served as tumor suppressors and may be used as potential therapeutic targets and prognostic biomarkers in glioma.
Collapse
Affiliation(s)
- Li-Ya Ji
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Ming Wei
- Department of Neurology, Weishou Hospital of Luoyang, Luoyang, Henan 471000, P.R. China
| | - Yuan-Yuan Liu
- Department of Neurology, Weishou Hospital of Luoyang, Luoyang, Henan 471000, P.R. China
| | - Zheng-Li Di
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
4
|
Li SZ, Ren KX, Zhao J, Wu S, Li J, Zang J, Fei Z, Zhao JL. miR-139/PDE2A-Notch1 feedback circuit represses stemness of gliomas by inhibiting Wnt/β-catenin signaling. Int J Biol Sci 2021; 17:3508-3521. [PMID: 34512162 PMCID: PMC8416740 DOI: 10.7150/ijbs.62858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023] Open
Abstract
Rationale: The malignant phenotypes of glioblastomas (GBMs) are primarily attributed to glioma stem cells (GSCs). Our previous study and other reports have suggested that both miR-139 and its host gene PDE2A are putative antitumor genes in various cancers. The aim of this study was to investigate the roles and mechanisms of miR-139/PDE2A in GSC modulation. Methods: Clinical samples were used to determine miR-139/PDE2A expression. Patient-derived glioma stem-like cells (PD-GSCs) were stimulated for immunofluorescent staining, sphere formation assays and orthotopic GBM xenograft models. Bioinformatic analysis and further in vitro experiments demonstrated the downstream molecular mechanisms of miR-139 and PDE2A. OX26/CTX-conjugated PEGylated liposome (OCP) was constructed to deliver miR-139 or PDE2A into glioma tissue specifically. Results: We demonstrated that miR-139 was concomitantly transcribed with its host gene PDE2A. Both PDE2A and miR-139 indicated better prognosis of gliomas and were inversely correlated with GSC stemness. PDE2A or miR-139 overexpression suppressed the stemness of PD-GSCs. FZD3 and β-catenin, which induced Wnt/β-catenin signaling activation, were identified as targets of miR-139 and mediated the effects of miR-139 on GSCs. Meanwhile, PDE2A suppressed Wnt/β-catenin signaling by inhibiting cAMP accumulation and GSK-3β phosphorylation, thereby modulating the self-renewal of PD-GSCs. Notably, Notch1, which is also a target of miR-139, suppressed PDE2A/miR-139 expression directly via downstream Hes1, indicating that miR-139 promoted its own expression by the miR-139-Notch1/Hes1 feedback circuit. Expectedly, targeted overexpression miR-139 or PDE2A in glioma with OCP system significantly repressed the stemness and decelerated glioma progression. Conclusions: Our findings elaborate on the inhibitory functions of PDE2A and miR-139 on GSC stemness and tumorigenesis, which may provide new prognostic markers and therapeutic targets for GBMs.
Collapse
Affiliation(s)
- San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kai-Xi Ren
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhao
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Zang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hong HC, Chuang CH, Huang WC, Weng SL, Chen CH, Chang KH, Liao KW, Huang HD. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics 2020; 10:8771-8789. [PMID: 32754277 PMCID: PMC7392022 DOI: 10.7150/thno.46142] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Triple-negative breast cancer (TNBC), which has the highest recurrence rate and shortest survival time of all breast cancers, is in urgent need of a risk assessment method to determine an accurate treatment course. Recently, miRNA expression patterns have been identified as potential biomarkers for diagnosis, prognosis, and personalized therapy. Here, we investigate a combination of candidate miRNAs as a clinically applicable signature that can precisely predict relapse in TNBC patients after surgery. Methods: Four total cohorts of training (TCGA_TNBC and GEOD-40525) and validation (GSE40049 and GSE19783) datasets were analyzed with logistic regression and Gaussian mixture analyses. We established a miRNA signature risk model and identified an 8-miRNA signature for the prediction of TNBC relapse. Results: The miRNA signature risk model identified ten candidate miRNAs in the training set. By combining 8 of the 10 miRNAs (miR-139-5p, miR-10b-5p, miR-486-5p, miR-455-3p, miR-107, miR-146b-5p, miR-324-5p and miR-20a-5p), an accurate predictive model of relapse in TNBC patients was established and was highly correlated with prognosis (AUC of 0.80). Subsequently, this 8-miRNA signature prognosticated relapse in the two validation sets with AUCs of 0.89 and 0.90. Conclusion: The 8-miRNA signature predictive model may help clinicians provide a prognosis for TNBC patients with a high risk of recurrence after surgery and provide further personalized treatment to decrease the chance of relapse.
Collapse
Affiliation(s)
- Hsiao-Chin Hong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong Province 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong Province 518172, China
| | - Cheng-Hsun Chuang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
| | - Wei-Chih Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Come True Biomedical Inc., Taichung 408, Taiwan, ROC
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan, ROC
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan, ROC
- MacKay Junior College of Medicine, Nursing and Management College, Taipei City 112, Taiwan, ROC
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City 30071, Taiwan, ROC
| | - Kuang-Hsin Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
| | - Kuang-Wen Liao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong Province 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong Province 518172, China
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 30068, Taiwan, ROC
| |
Collapse
|
7
|
Li SZ, Hu YY, Zhao JL, Zang J, Fei Z, Han H, Qin HY. Downregulation of FHL1 protein in glioma inhibits tumor growth through PI3K/AKT signaling. Oncol Lett 2020; 19:3781-3788. [PMID: 32382330 PMCID: PMC7202308 DOI: 10.3892/ol.2020.11476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023] Open
Abstract
Human four-and-a-half LIM domains protein 1 (FHL1) is a member of the FHL protein family, which serves an important role in multiple cellular events by interacting with transcription factors using its cysteine-rich zinc finger motifs. A previous study indicated that FHL1 was downregulated in several types of human cancer and served a role as a tumor suppressive gene. The overexpression of FHL1 inhibited tumor cell proliferation. However, to the best of our knowledge, there is no evidence to confirm whether FHL1 affected glioma growth, and the molecular mechanisms through which FHL1 represses tumor development remain unclear. In the present study, the expression level of FHL1 was determined using immunohistochemical staining in 114 tumor specimens from patients with glioma. The results indicated that FHL1 expression was negatively associated with the pathological grade of gliomas. Furthermore, Kaplan-Meier survival curves demonstrated that the patients with an increased FHL1 expression exhibited a significantly longer survival time, suggesting that FHL1 may be a prognostic marker for glioma. The protein level of FHL1 was relatively increased in the U251 glioma cell line compared with that in the U87 cell line. Therefore, FHL1 was knocked down in U251 by siRNA and overexpressed in U87, and it was identified that FHL1 significantly decreased the activation of PI3K/AKT signaling by interacting with AKT. Further experiments verified that FHL1 inhibited the growth of gliomas in vivo by modulating PI3K/AKT signaling. In conclusion, the results of the present study demonstrated that FHL1 suppressed glioma development through PI3K/AKT signaling.
Collapse
Affiliation(s)
- San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi-Yang Hu
- Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun-Long Zhao
- Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Biochemistry and Molecular Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zang
- Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Biochemistry and Molecular Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
MicroRNA-144 represses gliomas progression and elevates susceptibility to Temozolomide by targeting CAV2 and FGF7. Sci Rep 2020; 10:4155. [PMID: 32139705 PMCID: PMC7058039 DOI: 10.1038/s41598-020-60218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common tumor in central nervous system with poor prognosis. Due to the limitation of histological classification in earlier diagnosis and individualized medicine, it is necessary to combine the molecular signatures and the pathological characteristics of gliomas. Lots of microRNAs presented abnormal expression in gliomas and modulated gliomas development. Exploration the miRNAs profile is helpful for the diagnosis, therapy and prognosis of gliomas. It has been demonstrated that miR-144 plays important roles in solid tumors. However, the detail mechanisms remained unrevealed. In this study, we have demonstrated the level of miR-144 decreased in glioma tissues from patients, especially in gliomas with higher grades. MiR-144 was also validated have lower expression in glioma cell lines compared with cortical neuron cell by using qRT-PCR. The in vitro functional experiment indicated miR-144 improved gliomas progression through repressing proliferation, sensitizing to chemotherapeutics and inhibiting metastasis. We further identified fibroblast growth factor 7 (FGF7) and Caveolin 2 (CAV2) were target genes of miR-144 by luciferase reporter assay and western blotting. The mechanisms study suggested forced FGF7 expression elevated Akt activation and decreased reactive oxygen species (ROS) generation. The MTT and cell cycle assay indicated miR-144 suppressed glioma cells proliferation through modulating FGF mediated Akt signaling pathway. Meanwhile, miR-144 promoted Temozolomide (TMZ) induced apoptosis in glioma cells via increasing ROS production by using FACS. On the other hand, CAV2, as another target of miR-144, accelerated glioma cells migration and invasion via promoting glioma cells EMT progress. Retrieved expression of FGF7 or CAV2 rescued the proliferation and migration function mediated by miR-144. Furthermore, the in vivo experiments in PDX models displayed the anti-tumor function of miR-144, which could be retrieved by overexpression of FGF7 and CAV2. Taken together, these findings indicated miR-144 acted as a potential target against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new therapeutic strategy and prognostic indicator for gliomas.
Collapse
|
9
|
Nakamura M, Hayashi M, Konishi H, Nunode M, Ashihara K, Sasaki H, Terai Y, Ohmichi M. MicroRNA-22 enhances radiosensitivity in cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression. Oncol Lett 2020; 19:2213-2222. [PMID: 32194719 PMCID: PMC7038919 DOI: 10.3892/ol.2020.11344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) influence the expression of their target genes post-transcriptionally and serve an important role in multiple cellular processes. The downregulation of miR-22 is associated with a poor prognosis in cervical cancer. However, the mechanisms underlying miR-22-mediated gene regulation and its function are yet to be elucidated. In the present study, the effect of miR-22 expression on the radiosensitivity of cervical cancer was investigated. First, miR-22 was either up- or downregulated to evaluate the regulation of the MYC-binding protein (MYCBP) in four cervical cancer cell lines (C-4I, SKG-II and SiHa). Notably, MYCBP expression was inversely associated with miR-22 induction. A dual-luciferase reporter gene assay revealed that miR-22 directly targets the MYCBP 3'-untranslated region. Subsequently, the level of human telomerase reverse transcriptase component (hTERT; an E-box-containing c-Myc target gene) was analyzed after the up- or downregulation of miR-22. Notably, miR-22-mediated repression of MYCBP reduced hTERT expression. In addition, the influence of miR-22 on radiosensitivity in C-4I, SKG-II and SiHa cells was examined using a clonogenic assay and in mouse xenograft models. Upregulation of miR-22 was associated with increased radiosensitivity. Furthermore, lentiviral transduction of miR-22 reduced the Ki-67 index while increasing the TUNEL index in xenograft tissue. The current findings indicate the potential utility of miR-22 in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
10
|
Chen JA, Yu Y, Xue C, Chen XL, Cui GY, Li J, Li KF, Ren ZG, Sun RR. Low microRNA-139 expression associates with poor prognosis in patients with tumors: A meta-analysis. Hepatobiliary Pancreat Dis Int 2019; 18:321-331. [PMID: 30290990 DOI: 10.1016/j.hbpd.2018.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/20/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND microRNA-139 (miR-139) is dysregulated in various types of tumors and plays a key role in carcinogenesis. miR-139 may be used as a diagnostic and prognostic biomarker of cancers. However, the data from the literature are not consistent. The present study aimed to verify the prognostic and diagnostic values of miR-139 in solid tumors. DATA SOURCES PubMed, Web of Science and Embase databases were searched and publications from January 2011 to August 2017 were included. We used Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database to further validate this meta-analysis. RESULTS Eight individual studies from seven articles were included. Pooled analyses showed that low miR-139 expression was related to worse overall survival (OS) [hazard ratio (HR) = 2.27; 95% confidence intervals (CI): 1.74-2.95; P < 0.001] in solid tumors, including hepatocellular carcinoma (HCC) and glioblastoma multiforme (GBM), consisting with the results of TCGA. However, our results of CRC showed that low miR-139 expression was associated with poor OS which was contradictory with the results in TCGA database and need larger samples to validate the phenomenon; whereas for CRC patients, high miR-139 expression predicted poor RFS, which was in good accordance with TCGA results. The results of 27 microarrays from GEO database showed that miR-139 expression levels were lower in tumor tissues compared to adjacent non-tumor tissues or healthy tissues. Decreased miR-139 expression was also significantly correlated with poor differentiation grade (OR = 3.57; 95% CI: 1.44-8.85; P = 0.006). However, the combined data indicated that no associations between miR-139 expression and the following parameters such as age (pooled OR = 1.50; 95% CI: 0.69-3.24; P = 0.304), gender (pooled OR = 0.92; 95% CI: 0.56-1.51; P = 0.738), tumor size (pooled OR = 1.51; 95% CI: 0.69-3.31; P = 0.298), late tumor-node-metastasis stage (pooled OR = 1.63; 95% CI: 0.99-2.68; P = 0.057) and lymph-node-metastasis (pooled OR = 0.66; 95% CI: 0.34-1.28; P = 0.222). CONCLUSIONS Low miR-139 expression was related to poor prognosis in HCC and GBM, which could be regarded as a potential prognostic biomarker. However, its precise functional role in CRC still need to be further investigated through larger samples and multicenter studies.
Collapse
Affiliation(s)
- Jian-An Chen
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Yu
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chen Xue
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiao-Long Chen
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guang-Ying Cui
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Juan Li
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kong-Fei Li
- Department of Hematology, Yinzhou People's Hospital Affiliated to Medical College of Ningbo University, Ningbo 315040, China
| | - Zhi-Gang Ren
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ran-Ran Sun
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Wu DM, Wang S, Wen X, Han XR, Wang YJ, Fan SH, Zhang ZF, Shan Q, Lu J, Zheng YL. Long noncoding RNA nuclear enriched abundant transcript 1 impacts cell proliferation, invasion, and migration of glioma through regulating miR-139-5p/ CDK6. J Cell Physiol 2019; 234:5972-5987. [PMID: 30515782 DOI: 10.1002/jcp.27093] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
AIMS We aimed to explore the impact of long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) on cell proliferation, invasion, and migration of glioma. METHODS Differentially expressed genes were screened out from Gene Expression Omnibus data set based on the microarray analysis. The expression levels of lncRNA NEAT1, miR-139-5p, and CDK6 in glioma cells and tissues were examined by quantitative reverse transcription polymerase chain reaction, and the protein level of CDK6 in glioma cells was determined by western blot and immunohistochemistry. Glioma cell viability, cell cycle, and apoptosis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and flow cytometry, respectively, whereas cell invasion and migration were analyzed by transwell assay. The target relationships among NEAT1, miR-139-5p, and CDK6 were confirmed by dual-luciferase reporter gene assay. The effects of lncRNA NEAT1 on tumor growth were further testified through glioma xenografts in nude mice. RESULTS LncRNA NEAT1 and CDK6 were highly expressed in glioma tissues and cells, whereas miR-139-5p was lowly expressed. There were target relationships and correlations on expressions between miR-139-5p and NEAT1/ CDK6. NEAT1 and CDK6 could promote cell proliferation and metastasis of glioma cells and impeded cell apoptosis, whereas miR-139-5p exerted suppressive effects on the biological functions of glioma cells. NEAT1 regulated CDK6 to affect glioma growth through sponging miR-139-5p. CONCLUSIONS LncRNA NEAT1 promotes cell proliferation, invasion, and migration of glioma through regulating miR-139-5p/CDK6 pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
12
|
Wei W, Wang G, Cheng Y, Yang R, Song J, Huang S, Li H, Geng H, Yu H, Liu S, Hao L. A miR-511-binding site SNP in the 3'UTR of IGF-1 gene is associated with proliferation and apoptosis of PK-15 cells. In Vitro Cell Dev Biol Anim 2019; 55:323-330. [PMID: 30945114 DOI: 10.1007/s11626-019-00329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) is a functional candidate gene for pig growth and development due to its crucial role in the growth axis of growth hormone-IGF-1. Considering that the 3' untranslated region (3'UTR) of gene may affect its expression, we analyzed the effect of a single-nucleotide polymorphism (SNP) (rs34142920, c.674C > T) on gene expression, cell proliferation, and apoptosis and the possible related molecular mechanisms in PK-15 cells. The SNP was found in the 3'UTR of IGF-1 in Bama Xiang pig in previous investigations. Results showed that the SNP was located at the target site binding to microRNA (miR-511). The 3'UTR of IGF-1 gene with C allele significantly downregulated the expression of IGF-1 gene compared with that of the gene with T allele by luciferase assay. miR-511 was transfected into porcine kidney cell line (PK-15 cells) to reveal its effects on cells and whether or not it targets IGF-1. The expression levels of IGF-1 at mRNA and protein levels were remarkably downregulated. miR-511 significantly inhibited cell proliferation and promoted cell apoptosis by downregulating the phosphorylation level of AKT and ERK1/2. This finding confirmed that miR-511 inhibits proliferation and promotes apoptosis by downregulating the IGF-1 in PK-15 cells.
Collapse
Affiliation(s)
- Wenzhen Wei
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Gang Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jie Song
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Shan Huang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Haoyang Li
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Hongwei Geng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Hao Yu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Songcai Liu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
- Five-Star Animal Health Pharmaceutical Factory of Jilin Province, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
13
|
Yang C, Sun J, Liu W, Yang Y, Chu Z, Yang T, Gui Y, Wang D. Long noncoding RNA HCP5 contributes to epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation and interacting with miR-139-5p. Am J Transl Res 2019; 11:953-963. [PMID: 30899394 PMCID: PMC6413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) play key roles in various malignancy pathogenesis. However, the mechanisms remain poorly understood in the development and progression of colorectal cancer (CRC). Here, we focused on the specific role of human leukocyte antigen (HLA) Complex P5 (HCP5) in CRC. Quantitative real-time PCR (qRT-PCR) analysis and western blot were used to assess the expression of HCP5 in CRC tissues. The association between the expressions of HCP5 and miR-139-5p was assessed by Pearson's correlation analysis. The prognosis of CRC patients was analyzed by Kaplan-Meier survival analysis. Specific siRNAs were stably transfected into CRC cells with lentivirus approaches. The proliferative, migrative and invasive capacities of CRC cells were detected by Transwell, MTT and scratch assay, respectively. Dual-luciferase assay was performed to measure miR-139-5p-targeted relationship with lncRNA HCP5. HCP5 overexpression and of miR-139-5p downregulation were dramatically correlated with low TNM stage, poor differentiation, low tumor depth invasion in CRC patients (P < 0.05). Besides, HCP5 overexpression or ZEB1 knockdown repressed Snail family transcriptional repressor (SNAI) and vimentin expressions, upregulated E-cadherin expression, and inhibited cell proliferation and metastasis (P < 0.05). Moreover, luciferase reporter assay demonstrated that miR-139-5p was a directly target of HCP5 (P < 0.05). Overall, the present study indicated that HCP5 played a key regulator in CRC development and progression by targeting HCP5/miR-139-5p/ZEB1 axis, which may serve as a novel therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Junjun Sun
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Weifeng Liu
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Yanhui Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Zhijie Chu
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Tianbao Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Yang Gui
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Du Wang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| |
Collapse
|
14
|
Li J, Li Q, Lin L, Wang R, Chen L, Du W, Jiang C, Li R. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurol 2018; 18:133. [PMID: 30170559 PMCID: PMC6117922 DOI: 10.1186/s12883-018-1139-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glioma metastasis, invasion, epithelial-mesenchymal transition (EMT) and chemoresistance indicate poor prognosis. Accumulating evidence reveals that Notch1 is an important factor in tumour progression. However, the role of Notch1 in glioma EMT and associated microRNAs (miRNAs) with the Notch pathway remain controversial. METHODS Utilizing cBioPortal database to examine the gene signature of NOTCH1 (encoding Notch1), CDH2 (encoding N-cadherin) and SNAI1 (encoding Snail-1) in disease-free survival (DFS) and overall survival (OS). We analyzed the Notch1 expression from Oncomine. We used Western blot (WB), immunohistochemistry (IHC) and immunofluorescence to determine protein levels. Transcription was evaluated by quantitative real-time (qRT)-PCR. siRNA and lentivirus were used to knock down Notch1 and overexpress miR-139-5p, respectively. The migration and invasion of glioma cells were assessed by wound healing and transwell assays. Luciferase reporter assays were utilized to verify the relationship between Notch1 and miR-139-5p. A U87-implanted intracranial model was used to study the effect of miR-139-5p on tumour growth and Notch1 suppression efficacy or EMT reversion. RESULTS It revealed the association of NOTCH1, CDH2, SNAI1 genomic alterations with decreases in DFS and OS. Notch1 was upregulated in classical and proneural subtypes of GBM, and associated with tumour grade. Notch1 inhibition suppressed the biological behaviours of metastasis, invasion and EMT. Notch1 was identified as a novel direct target of miR-139-5p. MiR-139-5p overexpression partially phenocopied Notch1 siRNA, whereas the forced expression of Notch1 reversed the effects of miR-139-5p on the invasion of glioma. Moreover, intracranial tumourigenicity and EMT behaviours were reduced by the introduction of miR-139-5p and partially mediated by the decreased Notch1 expression. CONCLUSIONS miR-139-5p was identified as a tumour suppressor by negatively targeting Notch1, and this work suggests a possible molecular mechanism of the miR-139/Notch1/EMT axis for glioma treatment.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Lin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Rui Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| | - Ruiyan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| |
Collapse
|
15
|
Lehrer S, Rheinstein PH, Rosenzweig KE. Loss of MycBP may be associated with the improved survival in 1P co-deletion of lower grade glioma patients. Clin Neurol Neurosurg 2018; 172:112-115. [PMID: 29986195 DOI: 10.1016/j.clineuro.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The chromosome 1p/19q co-deletion is a favorable prognostic factor in patients with low grade glioma. In the current analysis, we examined MycBP expression in low grade glioma. MycBP lies on chromosome 1p. PATIENTS AND METHODS We evaluated the association between MycBP and overall survival in the TCGA Lower Grade Glioma (LGG) dataset in TCGA (The Cancer Genome Atlas). RESULTS Loss of MycBP copy number segment expression coincides with co-deletion of 1 P. The deleterious effect of MycBP on survival is significant (p = 0.00006306, hazard ratio 2.02, 95% CI 1.4-2.9). Patients with astrocytoma have the poorest survival of low grade glioma patients. MycBP mRNA is significantly overexpressed in astrocytomas when compared to normal brain (2.156 fold change, p = 0.0000488). CONCLUSION Our report that Chromosome 1 P co-deletion may confer better survival in patients with lower grade glioma in part because of loss of MycBP corroborates other studies of the importance of MycBP in glioma development. Further work with microRNAs may lead to new treatments.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, United States.
| | | | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
16
|
Ni H, Dai X, Leng X, Deng M, Qin Y, Ji Q, Xu C, Li J, Liu Y. Higher variety and quantity of microRNA-139-5p isoforms confer suppressive role in hepatocellular carcinoma. J Cell Biochem 2018; 119:6806-6813. [PMID: 29693285 DOI: 10.1002/jcb.26874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023]
Abstract
MiRNA isoforms (isomiRs) were defined as an addition or deletion of one or more nucleotides at the 5' or 3' ends or both. Different isomiRs of the same miRNA can target different genes, which have extended the regulatory scale medicated by miRNA. In this study, we systematically analyzed miRNA isoforms in hepatocellular carcinoma (HCC) based on The Cancer Genome Atlas (TCGA) data and further explore their role by in silico and in vitro studies. We found that higher variety and quantity of miR-139-5p isoforms negatively correlated with the malignancy of HCC. And patients with higher variety and quantity of iso-miR-139-5p exhibited favorable survival, independent of tumor stage. Interestingly, miR-139-5p -1|-1 showed increased complementary effect of its target IGF1R than the archetype of miR-139-5p, and could further inhibit cellular movement more vigorously than its archetype. In conclusion, not only miR-139-5p itself, but its isoforms' variety and quantity confer suppressive role in HCC.
Collapse
Affiliation(s)
- Hengli Ni
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Xiaoxiao Dai
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Leng
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Min Deng
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Yan Qin
- Department of Pathology, Medical College of Soochow University, Suzhou, China.,Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qinghua Ji
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianming Li
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Yao Liu
- Department of Pathology, Medical College of Soochow University, Suzhou, China.,Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Gong L, Xia Y, Qian Z, Shi J, Luo J, Song G, Xu J, Ye Z. Overexpression of MYC binding protein promotes invasion and migration in gastric cancer. Oncol Lett 2018; 15:5243-5249. [PMID: 29552163 PMCID: PMC5840499 DOI: 10.3892/ol.2018.7944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-associated mortality worldwide. Although the mortality rate of patients with GC has improved, it remains a significant health issue. The MYC proto-oncogene protein serves key roles in cellular proliferation, differentiation, transformation and apoptosis. Previous studies have identified the abnormal expression of MYC-binding protein (MYCBP) during tumorigenesis in multiple types of cancer. Furthermore, evidence demonstrates that the abnormal expression of MYCBP contributes to the invasion and migration of human cancer types, including colon cancer and glioma; however, its influence on GC remains unclear. In the present study, the expression of MYCBP in GC cells and tissues was analyzed by reverse transcription-quantitative polymerase chain reaction. Additionally, GC cell lines were transfected with small interfering RNAs against MYCBP or lymphoid enhancer-binding factor 1 (LEF-1) and assessed by in vitro transwell migration and invasion assays. The results indicated that the expression of MYCBP in GC cells and tissues was markedly increased compared with a normal gastric epithelial cell line and adjacent normal gastric mucosal tissues, respectively. Furthermore, MYCBP downregulation notably inhibited the metastatic capacity of GC cells, and LEF-1 knockdown was found to downregulate the expression of MYCBP. On the basis of the findings of the present study, MYCBP may be a direct target of the β-catenin/LEF-1 pathway via binding LEF-1, and could potentially be used as a biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Lijie Gong
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhenyuan Qian
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Shi
- Department of Breast and Thyroid Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Jungang Luo
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Guangyuan Song
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Xu
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zaiyuan Ye
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
18
|
Yu X, Ma C, Fu L, Dong J, Ying J. MicroRNA-139 inhibits the proliferation, migration and invasion of gastric cancer cells by directly targeting ρ-associated protein kinase 1. Oncol Lett 2018; 15:5977-5982. [PMID: 29552227 DOI: 10.3892/ol.2018.8038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
The expression, function and underlying mechanisms of microRNA-139 (miR-139) in gastric cancer were investigated in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect miR-139 expression in gastric cancer tissues and cell lines. The effects of miR-139 overexpression on gastric cancer cell proliferation, migration and invasion were evaluated. ρ-associated protein kinase 1 (ROCK1) was predicted as a downstream target of miR-139 and its role in gastric cancer was assessed by bioinformatics analysis, luciferase reporter assay, RT-qPCR and western blot analysis. ROCK1 overexpression was established to investigate if the effects of miR-139 on gastric cancer cells may be attenuated. The results indicated that miR-139 was aberrantly downregulated in gastric cancer tissues and cell lines. Increased miR-139 expression reduced gastric cancer cell proliferation, migration and invasion. ROCK1 was demonstrated to be a direct target of miR-139 in gastric cancer and ROCK1 overexpression reversed the suppressive effects on gastric cancer cell proliferation, migration and invasion induced by miR-139 overexpression. The present study provides clear evidence demonstrating the anti-oncogenic activity of miR-139 in human gastric cancer, as mediated by the targeted downregulation of ROCK1.
Collapse
Affiliation(s)
- Xuechun Yu
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Chaojian Ma
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Ling Fu
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Jingwu Dong
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Jie Ying
- Department of Infectious Diseases, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| |
Collapse
|
19
|
Chen W, Yu Q, Chen B, Lu X, Li Q. The prognostic value of a seven-microRNA classifier as a novel biomarker for the prediction and detection of recurrence in glioma patients. Oncotarget 2018; 7:53392-53413. [PMID: 27438144 PMCID: PMC5288195 DOI: 10.18632/oncotarget.10534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022] Open
Abstract
Glioma is often diagnosed at a later stage, and the high risk of recurrence remains a major challenge. We hypothesized that the microRNA expression profile may serve as a biomarker for the prognosis and prediction of glioblastoma recurrence. We defined microRNAs that were associated with good and poor prognosis in 300 specimens of glioblastoma from the Cancer Genome Atlas. By analyzing microarray gene expression data and clinical information from three random groups, we identified 7 microRNAs that have prognostic and prognostic accuracy: microRNA-124a, microRNA-129, microRNA-139, microRNA-15b, microRNA-21, microRNA-218 and microRNA-7. The differential expression of these miRNAs was verified using an independent set of glioma samples from the Affiliated People's Hospital of Jiangsu University. We used the log-rank test and the Kaplan-Meier method to estimate correlations between the miRNA signature and disease-free survival/overall survival. Using the LASSO model, we observed a uniform significant difference in disease-free survival and overall survival between patients with high-risk and low-risk miRNA signature scores. Furthermore, the prognostic capability of the seven-miRNA signature was demonstrated by receiver operator characteristic curve analysis. A Circos plot was generated to examine the network of genes and pathways predicted to be targeted by the seven-miRNA signature. The seven-miRNA-based classifier should be useful in the stratification and individualized management of patients with glioma.
Collapse
Affiliation(s)
- Wanghao Chen
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiang Yu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Bo Chen
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xingyu Lu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiaoyu Li
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
20
|
Ye Y, Zhuang J, Wang G, He S, Ni J, Xia W. MicroRNA-139 targets fibronectin 1 to inhibit papillary thyroid carcinoma progression. Oncol Lett 2017; 14:7799-7806. [PMID: 29250177 PMCID: PMC5727643 DOI: 10.3892/ol.2017.7201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
Thyroid cancer is the most common tumour of the endocrine system, and its incidence rate has markedly increased over the past several decades. Aberrantly expressed microRNAs (miRNAs) are reportedly involved in the formation and progression of papillary thyroid carcinoma (PTC) by regulating their target genes. Thus, miRNAs may be potential molecular biomarkers for the prediction and prognosis of PTC, and also as novel therapeutic targets for patients with PTC. miR-139 has recently been reported to be aberrantly expressed in several types of cancer. However, the expression levels, biological functions and the associated molecular mechanism of miR-139 in PTC have not been clearly elucidated. The results of the present study revealed that miR-139 expression was downregulated in PTC tissues and cell lines when compared with adjacent normal tissues and normal human thyroid cells, respectively. The restoration of miR-139 expression suppressed cellular proliferation and invasion in PTC in vitro. In addition, fibronectin 1 (FN1) was identified as a direct target of miR-139 in PTC. Furthermore, FN1 was highly expressed in PTC tissues and negatively associated with miR-139 expression. Moreover, the tumour-suppressive effects of miR-139 overexpression on PTC cells were ameliorated by ectopic FN1 expression. To the best of our knowledge, the present study is the first to demonstrate that miR-139 may serve as a tumour suppressor and serve important roles in inhibiting tumourigenesis by targeting FN1 in PTC cells.
Collapse
Affiliation(s)
- Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Saifei He
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
21
|
Identification of IGF-1-enhanced cytokine expressions targeted by miR-181d in glioblastomas via an integrative miRNA/mRNA regulatory network analysis. Sci Rep 2017; 7:732. [PMID: 28389653 PMCID: PMC5429683 DOI: 10.1038/s41598-017-00826-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/14/2017] [Indexed: 02/03/2023] Open
Abstract
The insulin-like growth factor (IGF)-1 signaling is relevant in regulating cell growth and cytokine secretions by glioblastomas. MicroRNAs determine the cell fate in glioblastomas. However, relationships between IGF-1 signaling and miRNAs in glioblastoma pathogenesis are still unclear. Our aim was to validate the IGF-1-mediated mRNA/miRNA regulatory network in glioblastomas. Using in silico analyses of mRNA array and RNA sequencing data from The Cancer Genome Atlas (TCGA), we identified 32 core enrichment genes that were highly associated with IGF-1-promoted cytokine-cytokine receptor interactions. To investigate the IGF-1-downregulated miRNA signature, microarray-based approaches with IGF-1-treated U87-MG cells and array data in TCGA were used. Four miRNAs, including microRNA (miR)-9-5p, miR-9-3p, miR-181d, and miR-130b, exhibited an inverse correlation with IGF-1 levels. The miR-181d, that targeted the most IGF-1-related cytokine genes, was significantly reduced in IGF-1-treated glioma cells. Statistical models incorporating both high-IGF-1 and low-miR-181d statuses better predicted poor patient survival, and can be used as an independent prognostic factor in glioblastomas. The C-C chemokine receptor type 1 (CCR1) and interleukin (IL)-1b demonstrated inverse correlations with miR-181d levels and associations with patient survival. miR-181d significantly attenuated IGF-1-upregulated CCR1 and IL-1b gene expressions. These findings demonstrate a distinct role for IGF-1 signaling in glioma progression via miR-181d/cytokine networks.
Collapse
|
22
|
Chen S, Wen X, Zhang W, Wang C, Liu J, Liu C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice. FASEB J 2017; 31:1085-1096. [PMID: 27903618 DOI: 10.1096/fj.201601022r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is an active component of the traditional Chinese herb Olea europaea L. and has been found to exhibit a significant lipid-lowering effect; however, its direct molecular target is still unknown, which limits its clinical application and the possible structure modification to improve its beneficial functions. In this regard, we carried out the present study to identify potential hepatic targets of OA to mediate its lipid-lowering effect. We found that both acute and chronic OA treatments reduced serum levels of triglycerides, total cholesterol, and LDL cholesterol, and decreased hepatic expression levels of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β), which is an important regulator in maintaining hepatic lipid homeostasis, and its downstream target genes. Of note, liver-specific knockdown of PGC-1β recapitulated the hypolipidemic effects of OA. At the molecular level, OA accelerated mRNA degradation of PGC-1β. Microarray analysis revealed a host of microRNAs that potentially mediate OA-induced PGC-1β mRNA degradation, among which, miR-98-5p significantly inhibited activity of Pgc-1β 3' UTR as well as PGC-1β expression and promoted its mRNA degradation. Conversely, miR-98-5p inhibitors blunted the inhibitory effects of OA on PGC-1β expression. Collectively, our data demonstrated that OA ameliorated hyperlipidemia, likely via regulation of the miR-98-5p/PGC-1β axis.-Chen, S., Wen, X., Zhang, W., Wang, C., Liu, J., Liu, C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice.
Collapse
Affiliation(s)
- Siyu Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Wenxiang Zhang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Chen Wang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Chang Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Li HC, Chen YF, Feng W, Cai H, Mei Y, Jiang YM, Chen T, Xu K, Feng DX. Loss of the Opa interacting protein 5 inhibits breast cancer proliferation through miR-139-5p/NOTCH1 pathway. Gene 2016; 603:1-8. [PMID: 27916718 DOI: 10.1016/j.gene.2016.11.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
Opa interacting protein 5 (OIP5) has been reported to be over-expressed in several kinds of human cancer. However, the biological function and clinical significance of OIP5 in human breast cancer remains unknown. In this study, we found that OIP5 was notably over-expressed in breast cancer tissues compared with their corresponding nontumorous tissues. Statistical analysis showed a significant correlation of OIP5 expression with advanced clinical stage. Ablation OIP5 inhibited the proliferation of breast cancer cells. OIP5 over-expression inhibited hsa-miR-139-5p expression, antagonized its functions and led to the de-repression of its endogenous target NOTCH1, which was a core oncogene in promoting breast cancer progression. Our results suggested that OIP5 is a potential diagnosis biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hong-Chang Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Ya-Feng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Wen Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Han Cai
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Yi Mei
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Yi-Ming Jiang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Ke Xu
- Central Laboratory of Putuo Hospital, Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai 200062, PR China.
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China.
| |
Collapse
|