1
|
Ilhami FB, Cahyaningrum SE, Wardana AP, Gultom NS, Subekti H, Rahmawati A, Puspitarini S. Meniran ( Phyllanthus niruri L.) embedded zeolitic imidazolate framework (ZIF-8) nanoparticle for cancer chemotherapy: supported molecular docking analysis. RSC Adv 2025; 15:223-230. [PMID: 39758894 PMCID: PMC11694506 DOI: 10.1039/d4ra06399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer is among the leading causes of mortality worldwide. Natural bioactive compounds like Meniran (Phyllanthus niruri L.) have been the focus of extensive research due to their potent anticancer properties. Nevertheless, drug delivery strategies may be necessary to encapsulate bioactive compounds, thereby reducing their toxicity and enhancing their stability. Herein, we successfully synthesized Meniran extract incorporated zeolitic imidazolate framework (ZIF-8) nanoparticles for anticancer therapy. Meniran-incorporated ZIF-8 nanoparticles possess unique advantages including well-distributed nanoparticles with rhombic dodecahedrons and excellent pH-responsiveness. In vitro analysis showed that Meniran-incorporated ZIF-8 nanoparticles have anticancer activity towards HeLa cells. Interestingly, computational simulations offer valuable insights into the molecular-level interaction mechanisms between ZIF-8 and specific proteins under cancer cells. As far as we are aware, this is the first report of natural bioactive compounds derived from Meniran encapsulated into nanoparticles as a drug delivery system, marking a significant advancement in the development of novel biomaterials for cancer treatment.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Department of Natural Science Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya Surabaya 60231 Indonesia
| | - Sari Edi Cahyaningrum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya Surabaya 60231 Indonesia
| | - Andika Pramudya Wardana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya Surabaya 60231 Indonesia
| | | | - Hasan Subekti
- Department of Natural Science Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya Surabaya 60231 Indonesia
| | - Astrid Rahmawati
- Department of Applied Chemistry, Osaka Institute of Technology Osaka 535-8585 Japan
| | - Sapti Puspitarini
- Department of Natural Science Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya Surabaya 60231 Indonesia
| |
Collapse
|
2
|
Liu L, Wang B, Ma Y, Sun K, Wang P, Li M, Dong J, Qin M, Li M, Wei C, Tan Y, He J, Guo K, Yu XA. A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front Pharmacol 2024; 15:1443667. [PMID: 39185304 PMCID: PMC11341462 DOI: 10.3389/fphar.2024.1443667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria.
Collapse
Affiliation(s)
- Linhua Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yibo Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Junlin Dong
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingshun Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Jinsong He
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keying Guo
- Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Xie-an Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| |
Collapse
|
3
|
The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method. SEPARATIONS 2021. [DOI: 10.3390/separations8100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ellagic acid is a phenolic compound that exhibits both antimutagenic and anticarcinogenic activity in a wide range of assays in vitro and in vivo. It occurs naturally in some foods such as raspberries, strawberries, grapes, and black currants. In this study, a valid and reliable method based on mechanochemical-assisted extraction (MCAE) and macroporous adsorption resin was developed to extract and prepare ellagic acid from Phyllanthus urinaria L. (PUL). The MCAE parameters, acidolysis, and macroporous adsorption resin conditions were investigated. The key MCAE parameters were optimized as follows: the milling time was 5 min, the ball mill speed was 100 rpm, and the ball mill filling rate was 20.9%. Sulfuric acid with a concentration of 0.552 mol/L was applied for the acidolysis with the optimized acidolysis time of 30 min and acidolysis temperature of 40 °C. Additionally, the XDA-8D macroporous resin was chosen for the purification work. Both the static and dynamic adsorption tests were carried out. Under the optimized conditions, the yield of ellagic acid was 10.2 mg/g, and the content was over 97%. This research provided a rapid and efficient method for the preparation of ellagic acid from the cheaply and easily obtained PUL. Meanwhile, it is relatively low-cost work that can provide a technical basis for the comprehensive utilization of PUL.
Collapse
|
4
|
Yang Y, Li N, Wang TM, Di L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910827. [PMID: 34639167 PMCID: PMC8509218 DOI: 10.3390/ijms221910827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide. Despite the undeniable progress in lung cancer research made over the past decade, it is still the leading cause of cancer-related deaths and continues to challenge scientists and researchers engaged in searching for therapeutics and drugs. The tumor microenvironment (TME) is recognized as one of the major hallmarks of epithelial cancers, including the majority of lung cancers, and is associated with tumorigenesis, progression, invasion, and metastasis. Targeting of the TME has received increasing attention in recent years. Natural products have historically made substantial contributions to pharmacotherapy, especially for cancer. In this review, we emphasize the role of the TME and summarize the experimental proof demonstrating the antitumor effects and underlying mechanisms of natural products that target the TME. We also review the effects of natural products used in combination with anticancer agents. Moreover, we highlight nanotechnology and other materials used to enhance the effects of natural products. Overall, our hope is that this review of these natural products will encourage more thoughts and ideas on therapeutic development to benefit lung cancer patients.
Collapse
Affiliation(s)
| | - Ning Li
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| | | | - Lei Di
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| |
Collapse
|
5
|
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P. A Review: Mechanism of Phyllanthus urinaria in Cancers-NF- κB, P13K/AKT, and MAPKs Signaling Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4514342. [PMID: 34484390 PMCID: PMC8413045 DOI: 10.1155/2021/4514342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review's focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were "Phyllanthus" or "Phyllanthus urinaria" and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Roland Osei. Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an City, Jiangxi Province, China
| | - Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM: This study aimed to investigate the synergistic effects of the combination between Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) in inhibiting optimally the MDA-MB-231 breast cancer stem cells (BCSCs) growth and metastatic by exploring the target and molecular mechanism using integrative bioinformatics approaches and in vitro.
METHODS: CL and PN extracts were prepared by maceration method using ethanol 70%. The antiproliferative effect of CL and PN single and combination treatment was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The bioinformatic approach was performed to identify molecular targets, key proteins, and molecular mechanism of curcumin and phyllanthin as CL and PN secondary metabolite, respectively, targeted at stemness and migration pathway of BCSCs.
RESULTS: The in vitro study showed that CL and PN possess cytotoxic activity in time- and dose-dependent manner. The combination of CL and PN has a synergistic effect by modulating the sensitivity of cells. Using a bioinformatics approach, the annexin A2 (ANXA2), epidermal growth factor receptor (EGFR), matrix metalloproteinases (MMPs), and pyruvate kinase M1/2 (PKM) as potential targets of curcumin and phyllanthin correlated with metastatic inhibition of BC. In addition, molecular docking showed that curcumin and phyllanthin performed similar or better interaction to stemness differentiation regulator pathway particularly histone deacetylase 1, EGFR, Heat Shock Protein 90 Alpha Family Class B Member 1, Hypoxia Inducible Factor 1 Subunit Alpha, and MMP9.
CONCLUSION: Combination of CL and PN has potential for the treatment of metastatic BCSCs by targeting ANXA2, EGFR, MMPs, and PKM to resolve stemness and inhibit of BCSCs.
Collapse
|
7
|
Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res 2021; 35:2500-2513. [PMID: 33295678 DOI: 10.1002/ptr.6977] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/β-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.
Collapse
Affiliation(s)
- Amir Imani
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Maleki
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Li Q, Xu D, Gu Z, Li T, Huang P, Ren L. Rutin restrains the growth and metastasis of mouse breast cancer cells by regulating the microRNA-129-1-3p-mediated calcium signaling pathway. J Biochem Mol Toxicol 2021; 35:e22794. [PMID: 33913213 DOI: 10.1002/jbt.22794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Breast cancer is a common malignancy that is highly lethal. Due to the poor prognosis, more effective and efficient treatment methods are urgently needed. Rutin (RUT) is a traditional Chinese medicine reported to have a variety of pharmacological properties, including anticancer properties. However, the effects of RUT on breast cancer and its underlying molecular mechanism of action remain unclear. In the present study, we observed a significant downregulation of microRNA (miR)-129-1-3p in mouse breast cancer cells (4T1) compared with the expression in mouse normal breast epithelial cells (HC11). We also found that RUT could increase the expression of miR-129-1-3p in 4T1 cells and suppress cell proliferation. To elucidate the molecular mechanism of action of RUT, miR-129-1-3p mimics and its inhibitor were transfected into 4T1 cells. miR-129-1-3p overexpression could inhibit the proliferation, invasion, migration, and calcium overload of mouse breast cancer cells and also enhance apoptosis, whereas miR-129-1-3p knockdown had the opposite effects. Taken together, cell-based experiments indicated that RUT restrains the growth of mouse breast cancer cells by regulating the miR-129-1-3p/Ca2+ signaling pathway. This study also revealed the inhibitory effect of RUT on breast cancer cells at the noncoding RNA level and provided a theoretical foundation for the application of RUT as a drug to inhibit tumor growth.
Collapse
Affiliation(s)
- Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China.,Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zehui Gu
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Huang TT, Lan YW, Chen CM, Ko YF, Ojcius DM, Martel J, Young JD, Chong KY. Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Sci Rep 2019; 9:5145. [PMID: 30914735 PMCID: PMC6435735 DOI: 10.1038/s41598-019-41653-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
We examined the effects of an Antrodia cinnamomea ethanol extract (ACEE) on lung cancer cells in vitro and tumor growth in vivo. ACEE produced dose-dependent cytotoxic effects and induced apoptosis in Lewis lung carcinoma (LLC) cells. ACEE treatment increased expression of p53 and Bax, as well as cleavage of caspase-3 and PARP, while reducing expression of survivin and Bcl-2. ACEE also reduced the levels of JAK2 and phosphorylated STAT3 in LLC cells. In a murine allograft tumor model, oral administration of ACEE significantly inhibited LLC tumor growth and metastasis without affecting serum biological parameters or body weight. ACEE increased cleavage of caspase-3 in murine tumors, while decreasing STAT3 phosphorylation. In addition, ACEE reduced the growth of human tumor xenografts in nude mice. Our findings therefore indicate that ACEE inhibits lung tumor growth and metastasis by inducing apoptosis and by inhibiting the STAT3 signaling pathway in cancer cells.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Ying-Wei Lan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.,Chang Gung Biotechnology Corporation, Taipei, 10508, Taiwan.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, 94103, USA
| | - Jan Martel
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - John D Young
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan. .,Chang Gung Biotechnology Corporation, Taipei, 10508, Taiwan. .,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan. .,Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY, 10021, USA.
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan. .,Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
10
|
Geethangili M, Ding ST. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front Pharmacol 2018; 9:1109. [PMID: 30327602 PMCID: PMC6174540 DOI: 10.3389/fphar.2018.01109] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Phyllanthus (L.) is one of the most important groups of plants belonging to the Phyllantaceae family. Phyllanthus urinaria (L.) is an annual perennial herbal species found in tropical Asia, America, China, and the Indian Ocean islands. P. urinaria is used in folk medicine as a cure to treat jaundice, diabetes, malaria, and liver diseases. This review provides traditional knowledge, phytochemistry, and biological activities of P. urinaria. The literature reviewed for this article was obtained from the Web of Science, SciFinder, PubMed, ScienceDirect, and Google Scholar journal papers published prior to December 2017. Phytochemical investigations reveal that the plant is a rich source of lignans, tannins, flavonoids, phenolics, terpenoids, and other secondary metabolites. Pharmacological activities include anticancer, hepatoprotective, antidiabetic, antimicrobial, and cardioprotective effects. Thus, this present review summarizes the phytochemical constituents and their biological activities including biological studies on various crude extracts and fractions both in vitro and in vivo, and on clinical trial information about P. urinaria. This review compiles 93 naturally occurring compounds from P. urinaria along with their structures and pharmacological activities. The review is expected to stimulate further research on P. urinaria, and its pharmacological potential to yield novel therapeutic agents.
Collapse
Affiliation(s)
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Chemopreventive effects of polyphenol-rich extracts against cancer invasiveness and metastasis by inhibition of type IV collagenases expression and activity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Guo Q, Zhang QQ, Chen JQ, Zhang W, Qiu HC, Zhang ZJ, Liu BM, Xu FG. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl 4-induced liver injury. Chin J Nat Med 2018; 15:525-533. [PMID: 28807226 DOI: 10.1016/s1875-5364(17)30078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl4-induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl4-induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl4-induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria.
Collapse
Affiliation(s)
- Qing Guo
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Qian-Qian Zhang
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qing Chen
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science & Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hong-Cong Qiu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning 530022, China
| | - Zun-Jian Zhang
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bu-Ming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning 530022, China.
| | - Feng-Guo Xu
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
New Terpenoids from Chamaecyparis formosensis (Cupressaceae) Leaves with Modulatory Activity on Matrix Metalloproteases 2 and 9. Molecules 2018. [PMID: 29518973 PMCID: PMC6017238 DOI: 10.3390/molecules23030604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chamaecyparis formosensis is Taiwan’s most representative tree, and has high economic value. To date, only a few active chemical constituents have been reported for C. formosensis. In this study, 37 secondary metabolites, including three new compounds (1–3), were extracted from the leaves of C. formosensis. The compounds isolated from the ethyl acetate layer were used at different concentrations to treat HT-1080 human fibrosarcoma cells and to evaluate their effects on matrix metalloprotease 2 (MMP-2) and 9 (MMP-9) expression. Based on extensive analysis of data from high-resolution mass spectrometry (HR-MS) as well as nuclear magnetic resonance (NMR), infrared (IR), and ultraviolet (UV) spectroscopy, the new compounds were identified as 11,12-dihydroxyisodaucenoic acid (1), 12-hydroxyisodaucenoic acid (2), and 1-oxo-2α,3β-dihydroxytotarol (3). Known compounds 4–37 were identified by comparing their spectroscopic data with data reported in the literature. Biological activity tests by gelatin zymographic analysis revealed that seven compounds, including new compound 2, have no cytotoxic effect on HT-1080 cells and were found to increase MMP-2 or MMP-9 expression by 1.25- to 1.59-fold at lower concentrations of 10–50 µM. These naturally derived regulatory compounds could potentially serve as a novel pharmaceutical basis for medical purposes.
Collapse
|
14
|
Tang YQ, Jaganath IB, Manikam R, Sekaran SD. Phyllanthus spp. Exerts Anti-Angiogenic and Anti-Metastatic Effects Through Inhibition on Matrix Metalloproteinase Enzymes. Nutr Cancer 2015; 67:783-95. [PMID: 25996262 DOI: 10.1080/01635581.2015.1040518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tumor angiogenesis and metastasis are the major causes for high morbidity and mortality rates in cancer patient. Modulation on tumor angiogenesis and metastasis provides opportunities to halt progression of cancer. From our previous findings, Phyllanthus plant possesses antiproliferative effects on melanoma and prostate cancer cell lines and induction of apoptosis. The main aims of the present work were further investigated on the antimetastatic and antiangiogenic effects on cancer cells (MeWo and PC-3) and human umbilical vein endothelial cells (HUVECs) of 4 Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii). Phyllanthus extracts significantly inhibited cell adhesion, migration, invasion, and transendothelial migration activities of cancer (MeWo and PC-3) cells in a dose-dependent manner (P < 0.05) by cell-matrix adhesion, Transwell migration, invasion, and transendothelial migration assays. Phyllanthus extracts were exhibited low cytotoxicity on HUVECs up to a concentration of 500.0 μg/ml by MTS reduction assay. Phyllanthus extracts also exhibited antiangiogenic effects through inhibition of migration, invasion, and microcapillary like-tube structure formation in HUVECs. These observations were due to alteration in activities of matrix metalloproteinase (MMP) -2, -7, -9, and -26 in treated-endothelial and cancer cells by zymographies. These findings suggest that Phyllanthus plant has the potential to inhibit tumour metastasis and angiogenesis through the suppression of MMP enzymes.
Collapse
Affiliation(s)
- Yin-Quan Tang
- a Department of Medical Microbiology , Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | | | | | | |
Collapse
|
15
|
Civenni G, Iodice MG, Nabavi SF, Habtemariam S, Nabavi SM, Catapano CV, Daglia M. Gallic acid and methyl-3-O-methyl gallate: a comparative study on their effects on prostate cancer stem cells. RSC Adv 2015. [DOI: 10.1039/c5ra07988h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study shows the different ability of gallic acid and methyl-3-O-methyl gallate to inhibit NF-κB activity and the growth of PCa cells with stem-like properties.
Collapse
Affiliation(s)
- G. Civenni
- Institute of Oncology Research (IOR)
- Oncology Institute of Southern Switzerland (IOSI)
- 6500 Bellinzona
- Switzerland
| | - M. G. Iodice
- Department of Drug Sciences
- Medicinal Chemistry and Pharmaceutical Technology Section
- Pavia University
- 27100 Pavia
- Italy
| | - S. F. Nabavi
- Applied Biotechnology Research Center
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | - S. Habtemariam
- Pharmacognosy Research Laboratories
- Medway School of Science
- University of Greenwich
- Chatham-Maritime
- UK
| | - S. M. Nabavi
- Applied Biotechnology Research Center
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | - C. V. Catapano
- Institute of Oncology Research (IOR)
- Oncology Institute of Southern Switzerland (IOSI)
- 6500 Bellinzona
- Switzerland
| | - M. Daglia
- Department of Drug Sciences
- Medicinal Chemistry and Pharmaceutical Technology Section
- Pavia University
- 27100 Pavia
- Italy
| |
Collapse
|
16
|
Perk AA, Shatynska-Mytsyk I, Gerçek YC, Boztaş K, Yazgan M, Fayyaz S, Farooqi AA. Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int 2014; 14:124. [PMID: 25493075 PMCID: PMC4260193 DOI: 10.1186/s12935-014-0124-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022] Open
Abstract
Progress in our understanding of molecular oncology has started to shed light on dysregulation of spatio-temporally controlled signaling pathways, inactivation of tumor suppressor genes, tumour and normal stem cell quiescence, overexpression of oncogenes, extracellular and stromal microenvironments, epigenetics and autophagy. Sequentially and characteristically it has been shown that cancer cells acquire the ability to escape from apoptotic cell death, proliferate uncontrollably, sustain angiogenesis and tactfully reconstitute intracellular pathways to avoid immune surveillance. We have attempted to provide a recent snapshot of most recent progress with emphasis on how rutin modulates wide ranging intracellular signaling cascades as evidenced by in-vitro and in-vivo research. It is worth describing that 'single-cell proteomics' analysis has further improved our understanding regarding intracellular signaling pathways frequently activated in cancer cells resistant to therapeutics and can provide biomarkers for cancer diagnosis and prognosis. Data obtained from preclinical studies will prove to be helpful for scientists to bridge basic and translational studies.
Collapse
Affiliation(s)
- Aliye Aras Perk
- Faculty of Science, Department of Biology, Division of Botany, Istanbul University, Istanbul, 34460 Turkey
| | - Iryna Shatynska-Mytsyk
- Diagnostic Imaging and Radiation Therapy Department, Lviv National Medical University, Lviv, Ukraine
| | - Yusuf Can Gerçek
- Faculty of Science, Department of Biology, Division of Botany, Istanbul University, Istanbul, 34460 Turkey
| | - Kadir Boztaş
- Faculty of Science, Department of Biology, Division of Botany, Istanbul University, Istanbul, 34460 Turkey
| | - Mevzule Yazgan
- Faculty of Science, Department of Biology, Division of Botany, Istanbul University, Istanbul, 34460 Turkey
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
17
|
Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One 2014; 9:e101579. [PMID: 25000169 PMCID: PMC4085014 DOI: 10.1371/journal.pone.0101579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. METHODOLOGY/PRINCIPAL FINDINGS In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. CONCLUSIONS These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.
Collapse
|
18
|
Tan TW, Chou YE, Yang WH, Hsu CJ, Fong YC, Tang CH. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharmacol 2014; 22:107-14. [PMID: 24975661 DOI: 10.1016/j.intimp.2014.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023]
Abstract
Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma.
Collapse
Affiliation(s)
- Tzu-Wei Tan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Hung Yang
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
19
|
Huang ST, Bi KW, Kuo HM, Lin TK, Liao PL, Wang PW, Chuang JH, Liou CW. Phyllanthus urinaria induces mitochondrial dysfunction in human osteosarcoma 143B cells associated with modulation of mitochondrial fission/fusion proteins. Mitochondrion 2014; 17:22-33. [PMID: 24836433 DOI: 10.1016/j.mito.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/14/2014] [Accepted: 05/09/2014] [Indexed: 01/26/2023]
Abstract
Phyllanthus urinaria (P. urinaria), a widely used herbal medicine, has been reported to possess various biological characteristics including anti-inflammation, anti-virus, anti-bacteria, anti-hepatotoxicity and anti-cancer. This study provides molecular evidence associated with the dynamics and organization of mitochondria in osteosarcoma 143B cells resulted from P urinaria. Herein, P. urinaria-induced cytotoxicity and ROS associated with the inhibition of mitochondrial membrane potential were reversed by N-acetylcysteine (NAC). The endogenous antioxidant enzymes such as manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPX1) were activated by P. urinaria, but not correlated to catalase. P. urinaria decreased mitochondrial respiration activity as well as respiratory chain enzymes and HIF-1α in osteosarcoma 143B cells. Additionally, both adenosine triphosphate (ATP) synthase activation and ATP production were suppressed by P. urinaria. We further investigated changes of mitochondrial dynamic in osteosarcoma 143B cells. P. urinaria indeed fragmented the mitochondrial network of osteosarcoma 143B cells. We found a significant decrease in optic atrophy type 1 (Opa1) and mitofusin 1 (Mfn1) related to fusion proteins as well as increase mitochondrial fission 1 protein (Fis1) related to fission protein. It indicated that P. urinaria modulated the mitochondrial dynamics via fusion and fission machinery. Altogether, this study offers the evidence that mitochondrial dysfunction with dynamic change is essential components for the anti-cancer mechanism elicited by P. urinaria.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Kuo-Wei Bi
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Liao
- Department of Internal Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Chu SC, Hsieh YS, Hsu LS, Chen KS, Chiang CC, Chen PN. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo. Integr Cancer Ther 2013; 13:259-73. [PMID: 24335666 DOI: 10.1177/1534735413510559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Chung Shan Medical University Hospital, Taichung, Taiwan Chung Shan Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Chung Shan Medical University Hospital, Taichung, Taiwan Chung Shan Medical University, Taichung, Taiwan
| | - Kuo-Shuen Chen
- Chung Shan Medical University Hospital, Taichung, Taiwan Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Cheng Chiang
- Chung Shan Medical University Hospital, Taichung, Taiwan Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Chung Shan Medical University Hospital, Taichung, Taiwan Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|