1
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
2
|
Mao W, Zhang T, Chen H, Barge S, Wang Z, Olumi A, Alper S, Yu W. Expression and distribution of activin-follistatin-inhibin axis in the urinary bladder. Front Mol Biosci 2025; 12:1519977. [PMID: 40144023 PMCID: PMC11936821 DOI: 10.3389/fmolb.2025.1519977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The activin-follistatin-inhibin (AFI) axis plays a crucial role in sexual development and reproduction. Recently it was demonstrated that these proteins are also synthesized by many local tissues and regulate different biological activities, including tissue regeneration and cancer metastasis. However, little is known about the expression profile of the AFI axis in the bladder and its role in bladder function and dysfunction. We have examined the expression profile of 11 AFI family members in the mouse bladder. INHA, INHBA, and follistatin are the major ligand subunits detected among the six examined in the bladder. ACVR1, ACVR1B, and ACVR2B are the major receptor subunits detected among the five examined in the bladder. Immunolocalization studies reveal unique cellular distributions of these ligands and receptors within the bladder. The urothelial-localized ACVR2B/ACVR1B receptor complex suggests a role of activin signaling in urothelial function. The stimulatory activin A is present only in a subset of interstitial cells, separated from the urothelial activin receptor ACVR2B/ACVR1B by a basement membrane containing accumulated inhibitory ligand FST and by a layer of activin-negative myofibroblasts. This spatial information on AFI signal molecules suggests that activin A-positive interstitial cells might regulate urothelial cell function via paracrine signaling through activin A-ACVR2B/ACVR1B interaction. Further analysis of the human bladder confirmed the expression profile of the AFI axis, and revealed significantly upregulated expression of INHBA-ACVR2B in bladder cancer. These data suggest roles for these molecules in the growth and metastasis of bladder cancer, and highlight their potential as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Tracy Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sagar Barge
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Zongwei Wang
- Department of Urology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Aria Olumi
- Department of Urology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Seth Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Abasilim C, Persky V, Sargis RM, Day T, Tsintsifas K, Daviglus M, Cai J, Freels S, Grieco A, Peters BA, Isasi CR, Talavera GA, Thyagarajan B, Davis M, Jones R, Sjodin A, Turyk ME. Persistent organic pollutants and endogenous sex-related hormones in Hispanic/Latino adults: The Hispanic Community health study/study of Latinos (HCHS/SOL). ENVIRONMENTAL RESEARCH 2025; 267:120742. [PMID: 39743011 DOI: 10.1016/j.envres.2024.120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Previous studies have demonstrated associations of persistent organic pollutants (POPs) with sex-related hormones; however, findings were inconsistent. Sex-specific impacts and pathways through which adiposity influences associations are not completely understood. We sought to evaluate sex-specific associations of POPs serum concentration with sex-related hormones and to explore pathways through which adiposity may modify associations. METHODS We studied 1073 men and 716 postmenopausal women participating in the "Persistent Organic Pollutants, Endogenous Hormones, and Diabetes in Latinos" ancillary study which is a subcohort of the "Hispanic Community Health Study/Study of Latinos." We use baseline examination data collected from 2008 to 2011 to investigate associations between eight organochlorine pesticides (OCPs), five polychlorinated biphenyls (PCB) groups, sum of polybrominated diphenyl ethers and polybrominated biphenyl 153 on sex hormone binding globulin (SHBG) and various sex-related hormone levels. We examined associations cross-sectionally using linear and logistic regression models adjusted for complex survey design and confounders. RESULTS PCBs and select OCPs were associated with increased SHBG in women and decreased estradiol (E2) and/or bioavailable E2 in men. For instance, per quartile increase in serum concentrations of ∑PCBs and oxychlordane were associated with decreased levels of E2 (β = -6.36 pmol/L; 95% CI: 10.7,-2.02 and β = -5.08 pmol/L; 95% CI: 8.11,-2.05) and bioavailable E2 (β = -4.48 pmol/L; 95% CI: 7.22,-1.73 and β = -4.23 pmol/L; 95% CI: 6.17,-2.28), respectively, in men, and increased levels of SHBG (β = 7.25 nmol/L; 95% CI:2.02,12.8 and β = 9.42 nmol/L; 95% CI:4.08,15.0), respectively, in women. p,p'-DDT and β-HCCH, and o,p'-DDT were also associated with decreased testosterone (T) and bioavailable T (ng/dL) levels in men. Adiposity modified associations in men, revealing stronger inverse associations of PCBs, PBDEs, and several OCPs with LH, SHBG, E2, bioavailable E2, T, and the ratios of LH to FSH and E2 to T in those with below median body mass index and waist-to-hip ratio. CONCLUSION Distinct patterns of hormone dysregulation with increasing POPs serum concentration were identified in men and post-menopausal women. In men but less so in postmenopausal women, adiposity modified associations of POPs serum concentration with sex-related hormones.
Collapse
Affiliation(s)
- Chibuzor Abasilim
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA; Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, USA.
| | - Victoria Persky
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois Chicago and Medical Service, Jesse Brown VA Medical Center, USA
| | - Tessa Day
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| | - Konstantina Tsintsifas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Sally Freels
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| | - Arielle Grieco
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, USA
| | | | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, USA
| | - Mark Davis
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Jones
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andreas Sjodin
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary E Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, USA
| |
Collapse
|
4
|
Lienou LL, Goka MSC, Tagne Simo R, Dongho FFD, Ngono RAN, Rodrigues APR, Telefo PB. Effects of aqueous extract from Cyathula prostrata (Linn.) Blume (Amaranthaceae) on puberty onset and some reproductive parameters in immature female Wistar rats. Hormones (Athens) 2025:10.1007/s42000-025-00633-7. [PMID: 39934557 DOI: 10.1007/s42000-025-00633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Cyathula prostrata (C. prostrata) a medicinal plant from tropical Africa, is traditionally used in Western Cameroon to treat female infertility. This study investigated the hormone-like effects of the aqueous extract of C. prostrata (AECp) leaves and stems on the onset of puberty and various reproductive parameters in immature female Wistar rats. METHODS Five groups of immature female rats received daily oral doses of AECp for 20 consecutive days. Post-treatment body, ovarian, and uterine weights were recorded, along with uterine and ovarian protein levels, ovarian cholesterol levels, and blood hormone concentrations (FSH, LH, estradiol, and progesterone). RESULTS AECp increased the growth rate in all treated animals. It reduced the age at vaginal opening by 2 to 6 days compared to controls. Secondary and tertiary follicles increased by 32.7% and 37.7%, respectively, in AECp-treated rats (96 mg/kg and 64 mg/kg). AECp significantly reduced uterine and ovarian protein levels by 21.3% and 27.8% at 64 mg/kg dosage. Regardless of dose, AECp lowered ovarian cholesterol and serum FSH levels (p < 0.001). Serum progesterone, estradiol, and LH levels increased significantly at 64 mg/kg compared to controls. CONCLUSION This study demonstrates AECp's positive effects on the onset of puberty and ovarian folliculogenesis in immature female rats.
Collapse
Affiliation(s)
- Landry Lienou Lienou
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box: 24157, Douala, Cameroon.
| | - Marie Stephanie Chekem Goka
- Research Unit in Medicinal Plants, Food Substances and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | | | - Rosalie Annie Ngane Ngono
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box: 24157, Douala, Cameroon
| | | | - Phélix Bruno Telefo
- Research Unit in Medicinal Plants, Food Substances and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
5
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
|
7
|
Kurose S, Onishi K, Miyauchi T, Takahashi K, Kimura Y. Effects of weight loss rate on myostatin and follistatin dynamics in patients with obesity. Front Endocrinol (Lausanne) 2024; 15:1418177. [PMID: 39006362 PMCID: PMC11239380 DOI: 10.3389/fendo.2024.1418177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background Exercise-induced cytokines involved in controlling body composition include myostatin (MST) and follistatin (FST), both of which are influenced by physical activity. This study investigated changes in body composition and physical activity during a weight loss program, as well as the impact on serum MST and FST levels at various weight loss rates. Methods A total of 126 patients with obesity who completed a 6-month weight loss program were divided into three groups based on weight loss rate (%): low (< 3%), middle (3-10%), and high (≥10%). The International Physical Activity Questionnaire was used for assessing physical activity, whereas dual X-ray absorptiometry was used to determine body composition. Serum MST and FST levels were measured using the enzyme-linked immunosorbent assay. Results The middle and high groups showed a significant decrease in percent body fat and a significant increase in percent lean body mass and physical activity. Serum MST levels increased significantly in all three groups, although FST levels reduced significantly only in the middle group. After adjusting for sex and body composition, changes in peak oxygen intake (β = -0.359) and serum FST levels (β = -0.461) were identified as independent factors for the change in MST levels in the low group. Sex (β = -0.420) and changes in MST levels (β = -0.525) were identified as independent factors for the change in serum FST levels in the low group, whereas in the high group, sitting time (β = -0.600) during the weight loss program was identified as an independent factor for change in serum FST levels. Conclusion Serum MST levels in patients with obesity increased significantly following the weight loss program, independent of weight loss rate. In contrast, serum FST levels reduced significantly only in the 3-10% weight loss group. These findings indicate that MST and FST secretion dynamics may fluctuate in response to physical activity, while also reflecting feedback regulation of body composition and metabolism during weight reduction.
Collapse
Affiliation(s)
- Satoshi Kurose
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Katsuko Onishi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takumi Miyauchi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kazuhisa Takahashi
- Department of Medicine II, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
8
|
Cao M, Cui B. Clinically relevant plasma proteome for adiposity depots: evidence from systematic mendelian randomization and colocalization analyses. Cardiovasc Diabetol 2024; 23:126. [PMID: 38614964 PMCID: PMC11016216 DOI: 10.1186/s12933-024-02222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND The accumulation of visceral and ectopic fat comprise a major cause of cardiometabolic diseases. However, novel drug targets for reducing unnecessary visceral and ectopic fat are still limited. Our study aims to provide a comprehensive investigation of the causal effects of the plasma proteome on visceral and ectopic fat using Mendelian randomization (MR) approach. METHODS We performed two-sample MR analyses based on five large genome-wide association study (GWAS) summary statistics of 2656 plasma proteins, to screen for causal associations of these proteins with traits of visceral and ectopic fat in over 30,000 participants of European ancestry, as well as to assess mediation effects by risk factors of outcomes. The colocalization analysis was conducted to examine whether the identified proteins and outcomes shared casual variants. RESULTS Genetically predicted levels of 14 circulating proteins were associated with visceral and ectopic fat (P < 4.99 × 10- 5, at a Bonferroni-corrected threshold). Colocalization analysis prioritized ten protein targets that showed effect on outcomes, including FST, SIRT2, DNAJB9, IL6R, CTSA, RGMB, PNLIPRP1, FLT4, PPY and IL6ST. MR analyses revealed seven risk factors for visceral and ectopic fat (P < 0.0024). Furthermore, the associations of CTSA, DNAJB9 and IGFBP1 with primary outcomes were mediated by HDL-C and SHBG. Sensitivity analyses showed little evidence of pleiotropy. CONCLUSIONS Our study identified candidate proteins showing putative causal effects as potential therapeutic targets for visceral and ectopic fat accumulation and outlined causal pathways for further prevention of downstream cardiometabolic diseases.
Collapse
Affiliation(s)
- Min Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Cui
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Helal M, Sameh J, Gharib S, Merghany RM, Bozhilova-Sakova M, Ragab M. Candidate genes associated with reproductive traits in rabbits. Trop Anim Health Prod 2024; 56:94. [PMID: 38441694 PMCID: PMC10914644 DOI: 10.1007/s11250-024-03938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
In the era of scientific advances and genetic progress, opportunities in the livestock sector are constantly growing. The application of molecular-based methods and approaches in farm animal breeding would accelerate and improve the expected results. The current work aims to comprehensively review the most important causative mutations in candidate genes that affect prolificacy traits in rabbits. Rabbits are a source of excellent-tasting meat that is high in protein and low in fat. Their early maturity and intensive growth are highly valued all over the world. However, improving reproductive traits and prolificacy in rabbits could be very tricky with traditional selection. Therefore, traditional breeding programs need new methods based on contemporary discoveries in molecular biology and genetics because of the complexity of the selection process. The study and implementation of genetic markers related to production in rabbits will help to create populations with specific productive traits that will produce the desired results in an extremely short time. Many studies worldwide showed an association between different genes and productive traits in rabbits. The study of these polymorphisms and their effects could be useful for molecular-oriented breeding, particularly marker-assisted selection programs in rabbit breeding.
Collapse
Affiliation(s)
- Mostafa Helal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Jana Sameh
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Sama Gharib
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Rana M Merghany
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | | | - Mohamed Ragab
- Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Animal Breeding and Genetics Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28040, Spain
| |
Collapse
|
10
|
Zheng M, Andersen CY, Rasmussen FR, Cadenas J, Christensen ST, Mamsen LS. Expression of genes and enzymes involved in ovarian steroidogenesis in relation to human follicular development. Front Endocrinol (Lausanne) 2023; 14:1268248. [PMID: 37964966 PMCID: PMC10641382 DOI: 10.3389/fendo.2023.1268248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.
Collapse
Affiliation(s)
- Mengxue Zheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Frida Roikjer Rasmussen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Khalafi M, Aria B, Symonds ME, Rosenkranz SK. The effects of resistance training on myostatin and follistatin in adults: A systematic review and meta-analysis. Physiol Behav 2023:114272. [PMID: 37328021 DOI: 10.1016/j.physbeh.2023.114272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION AND AIM Myostatin and follistatin are the main hormones for regulating muscle mass, and previous research suggests they are modulated by resistance training. We therefore performed a systematic review and meta-analysis to investigate the impact of resistance training on circulating myostatin and follistatin in adults. METHODS A search was conducted in PubMed and Web of science from inception until October 2022 to identify original studies investigating the effects of resistance training compared with controls that did not exercise. Standardized mean differences and 95% confidence intervals (CIs) were calculated using random effects models. RESULTS A total 26 randomized studies, including 36 interventions, and involving 768 participants (aged ∼18 to 82 years), were included in the meta-analysis. Resistance training effectively decreased myostatin [-1.31 (95% CI -1.74 to -0.88, p=0.001, 26 studies] and increased follistatin [2.04 (95% CI: 1.51 to 2.52), p=0.001, 14 studies]. Subgroup analyses revealed a significant decrease in myostatin and increase in follistatin regardless of age. CONCLUSION Resistance training in adults is effective for reducing myostatin and increasing follistatin which may contribute to the beneficial effects of resistance training on muscle mass and metabolic outcomes.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham NG72UH, United Kingdom
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
12
|
Lakhssassi K, Sarto MP, Lahoz B, Alabart JL, Folch J, Serrano M, Calvo JH. Blood transcriptome of Rasa Aragonesa rams with different sexual behavior phenotype reveals CRYL1 and SORCS2 as genes associated with this trait. J Anim Sci 2023; 101:skad098. [PMID: 36996265 PMCID: PMC10118393 DOI: 10.1093/jas/skad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Reproductive fitness of rams is seasonal, showing the highest libido during short days coinciding with the ovarian cyclicity resumption in the ewe. However, the remarkable variation in sexual behavior between rams impair farm efficiency and profitability. Intending to identify in vivo sexual behavior biomarkers that may aid farmers to select active rams, transcriptome profiling of blood was carried out by analyzing samples from 6 sexually active (A) and 6 nonactive (NA) Rasa Aragonesa rams using RNA-Seq technique. A total of 14,078 genes were expressed in blood but only four genes were differentially expressed (FDR < 0.10) in the A vs. NA rams comparison. The genes, acrosin inhibitor 1 (ENSOARG00020023278) and SORCS2, were upregulated (log2FC > 1) in active rams, whereas the CRYL1 and immunoglobulin lambda-1 light chain isoform X47 (ENSOARG00020025518) genes were downregulated (log2FC < -1) in this same group. Gene set Enrichment Analysis (GSEA) identified 428 signaling pathways, predominantly related to biological processes. The lysosome pathway (GO:0005764) was the most enriched, and may affect fertility and sexual behavior, given the crucial role played by lysosomes in steroidogenesis, being the SORCS2 gene related to this signaling pathway. Furthermore, the enriched positive regulation of ERK1 and ERK2 cascade (GO:0070374) pathway is associated with reproductive phenotypes such as fertility via modulation of hypothalamic regulation and GnRH-mediated production of pituitary gonadotropins. Furthermore, external side of plasma membrane (GO:0009897), fibrillar center (GO:0001650), focal adhesion (GO:0005925), and lamellipodium (GO:0030027) pathways were also enriched, suggesting that some molecules of these pathways might also be involved in rams' sexual behavior. These results provide new clues for understanding the molecular regulation of sexual behavior in rams. Further investigations will be needed to confirm the functions of SORCS2 and CRYL1 in relation to sexual behavior.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- INRA Instituts, 6356 Rabat, Morocco
| | - María Pilar Sarto
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Belén Lahoz
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Luis Alabart
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Folch
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Malena Serrano
- Department of Animal Breeding and Genetics, INIA-CSIC, 28040 Madrid, Spain
| | - Jorge Hugo Calvo
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
13
|
Ji J, Zhou Y, Li Z, Zhuang J, Ze Y, Hong F. Impairment of ovarian follicular development caused by titanium dioxide nanoparticles exposure involved in the TGF-β/BMP/Smad pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:185-192. [PMID: 36219784 DOI: 10.1002/tox.23676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been shown to induce reproductive system damages in animals. To better underline how TiO2 NPs act in reproductive system, female mice were exposed to 2.5, 5, or 10 mg/kg TiO2 NPs by gavage administration for 60 days, the ovary injuries, follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels as well as ovarian follicular development-related molecule expression were investigated. The results showed that TiO2 NPs exposure resulted in reduction of ovary weight and inhibition of ovarian follicular development. Furthermore, the suppression of follicular development was demonstrated to be closely related to higher FSH and LH levels, and higher expression of activin, follistatin, BMP2, BMP4, TGF-β1, Smad2, Smad3, and Smad4 as well as decreased inhibin-α expression in mouse ovary in a dose-dependent manner. It implies that the impairment of ovarian follicular development caused by TiO2 NPs exposure may be mediated by TGF-β signal pathway.
Collapse
Affiliation(s)
- Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yingjun Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Zhengpeng Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Juan Zhuang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
14
|
Activin A Reduces Porcine Granulosa Cells Apoptosis via ERβ-Dependent ROS Modulation. Vet Sci 2022; 9:vetsci9120704. [PMID: 36548865 PMCID: PMC9783085 DOI: 10.3390/vetsci9120704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Unfavorable conditions compromise animal reproduction by altering the ovarian granulosa cells' follicular dynamics and normal physiological function (GCs), eventually resulting in oxidative damage and cell apoptosis. Activin is produced in the GCs and plays a vital role in folliculogenesis. This study investigated the effects of activin A (ACT-A) treatment in vitro on the apoptosis of porcine GCs and the underlying molecular mechanism. We found that ACT-A could attenuate the apoptosis of the GCs and enhance the synthesis of estrogen (E2). ACT-A also enhanced FSH-induced estrogen receptor-β (ERβ) expression, inhibiting ERβ aggravated intracellular accumulation of the reactive oxygen species (ROS) and apoptosis. The E2 levels in the culture medium, the mRNA expression pattern of the apoptosis-related genes (CASPASE 3, BCL2, and BAX), steroidogenesis-related gene (CYP19A1), and cell viability were analyzed to confirm the results. In summary, this study indicated the protective role of ACT-A in apoptosis by attenuating the ROS accumulation through ERβ. These results aim to enhance the follicular functions and improve animal reproductive performance.
Collapse
|
15
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptome Analysis of the Ovaries of Taihe Black-Bone Silky Fowls at Different Egg-Laying Stages. Genes (Basel) 2022; 13:2066. [PMID: 36360303 PMCID: PMC9691135 DOI: 10.3390/genes13112066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 01/01/2025] Open
Abstract
The poor egg-laying performance and short peak egg-laying period restrict the economic benefits of enterprises relating to the Taihe black-bone silky fowl. Ovaries are the main organ for egg production in poultry. Unlike that of mammals, the spawning mechanism of poultry has rarely been reported. As a prominent local breed in China, the reproductive performance of Taihe black-bone silky fowls is in urgent need of development and exploitation. To further explore the egg-laying regulation mechanism in the different periods of Taihe black-bone silky fowls, the ovarian tissues from 12 chickens were randomly selected for transcriptome analysis, and 4 chickens in each of the three periods (i.e., the pre-laying period (102 days old, Pre), peak laying period (203 days old, Peak), and late laying period (394 days old, Late)). A total of 12 gene libraries were constructed, and a total of 9897 differential expression genes (DEGs) were identified from three comparisons; the late vs. peak stage had 509 DEGs, the pre vs. late stage had 5467 DEGs, and the pre vs. peak stage had 3921 DEGs (pre-stage: pre-egg-laying period (102 days old), peak-stage: peak egg-laying period (203 days old), and late-stage: late egg-laying period (394 days old)). In each of the two comparisons, 174, 84, and 2752 differentially co-expressed genes were obtained, respectively, and 43 differentially co-expressed genes were obtained in the three comparisons. Through the analysis of the differential genes, we identified some important genes and pathways that would affect reproductive performance and ovarian development. The differential genes were LPAR3, AvBD1, SMOC1, IGFBP1, ADCY8, GDF9, PTK2B, PGR, and CD44, and the important signaling pathways included proteolysis, extracellular matrices, vascular smooth muscle contraction, the NOD-like receptor signaling pathway and the phagosome. Through the analysis of the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) values of the genes, we screened three peak egg-laying period-specific expressed genes: IHH, INHA, and CYP19A1. The twelve genes and five signaling pathways mentioned above have rarely been reported in poultry ovary studies, and our study provides a scientific basis for the improvement of the reproductive performance in Taihe black-bone silky fowls.
Collapse
Affiliation(s)
- Xin Xiang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | | | - Haiyang Zhang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhou
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|
17
|
Shakeel M, Yoon M. Functions of somatic cells for spermatogenesis in
stallions. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:654-670. [PMID: 35969700 PMCID: PMC9353347 DOI: 10.5187/jast.2022.e57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Spermatogenesis and testis development are highly structured physiological
processes responsible for post-pubertal fertility in stallions. Spermatogenesis
comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell
degeneration is a continuous process, its effects are more pronounced during
spermatocytogenesis and meiosis. The productivity and efficiency of
spermatogenesis are directly linked to pubertal development, degenerated germ
cell populations, aging, nutrition, and season of the year in stallions. The
multiplex interplay of germ cells with somatic cells, endocrine and paracrine
factors, growth factors, and signaling molecules contributes to the regulation
of spermatogenesis. A cell-to-cell communication within the testes of these
factors is a fundamental requirement of normal spermatogenesis. A noteworthy
development has been made recently on discovering the effects of different
somatic cells including Leydig, Sertoli, and peritubular myoid cells on
manipulation the fate of spermatogonial stem cells. In this review, we discuss
the self-renewal, differentiation, and apoptotic roles of somatic cells and the
relationship between somatic and germ cells during normal spermatogenesis. We
also summarize the roles of different growth factors, their
paracrine/endocrine/autocrine pathways, and the different cytokines associated
with spermatogenesis. Furthermore, we highlight important matters for further
studies on the regulation of spermatogenesis. This review presents an insight
into the mechanism of spermatogenesis, and helpful in developing better
understanding of the functions of somatic cells, particularly in stallions and
would offer new research goals for developing curative techniques to address
infertility/subfertility in stallions.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Clinical Studies, Faculty of
Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture
University, Rawalpindi 44000, Pakistan
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Reseach Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
- Corresponding author: Minjung Yoon,
Department of Animal Science and Biotechnology, Kyungpook National University,
Sangju 37224, Korea. Tel: +82-54-530-1233, E-mail:
| |
Collapse
|
18
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
19
|
Tong J, Cong L, Jia Y, He BL, Guo Y, He J, Li D, Zou B, Li J. Follistatin Alleviates Hepatic Steatosis in NAFLD via the mTOR Dependent Pathway. Diabetes Metab Syndr Obes 2022; 15:3285-3301. [PMID: 36325432 PMCID: PMC9621035 DOI: 10.2147/dmso.s380053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In this study, we aimed to investigate the effect of follistatin (FST) on hepatic steatosis in NAFLD and the underlying mechanism, which has rarely been reported before. METHODS Liver samples from NAFLD patients and normal liver samples (from liver donors) were collected to investigate hepatic FST expression in humans. Additionally, human liver cells (LO2) were treated with free fatty acid (FFA) to induce lipid accumulation. Furthermore, lentivirus with FST overexpression or knockdown vectors were used to generate stable cell lines, which were subsequently treated with FFA or FFA and rapamycin. In the animal experiments, male C57BL/6J mice were fed with a high-fat diet (HFD) to induce NAFLD, after which the adeno-associated virus (AAV) gene vectors for FST overexpression were administered. In both cell culture and mice, we evaluated morphological changes and the protein expression of sterol regulatory element-binding protein1 (SREBP1), acetyl-CoA carboxylase1 (ACC1), carbohydrate-responsive element-binding protein (ChREBP), fatty acid synthase (FASN), and Akt/mTOR signaling. The body weight and serum parameters of the mice were also measured. RESULTS Hepatic FST expression level was higher in NAFLD patients compared to normal samples. In LO2 cells, FST overexpression alleviated lipid accumulation and lipogenesis, whereas FST knockdown aggravated hepatic steatosis. FST could regulate Akt/mTOR signaling, and the mTOR inhibitor rapamycin abolished the effect of FST knockdown on hepatic de novo lipogenesis (DNL). Furthermore, FST expression was increased in HFD mice compared to the corresponding controls. FST overexpression in mice reduced body weight gain, hyperlipidemia, hepatic DNL, and suppressed Akt/mTOR signaling. CONCLUSION Hepatic FST expression increases in NAFLD and plays a protective role in hepatic steatosis. FST overexpression gene therapy alleviates hepatic steatosis via the mTOR pathway.Therefore, gene therapy for FST is a promising treatment in NAFLD.
Collapse
Affiliation(s)
- Junlu Tong
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Li Cong
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yingbin Jia
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Bai-Liang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yifan Guo
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Decheng Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
- Correspondence: Jian Li; Baojia Zou, Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China, Tel +86-756-252-8781, Email ;
| |
Collapse
|
20
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Liu S, Liu B, Zhao Q, Shi J, Gu Y, Guo Y, Li Y, Liu Y, Cheng Y, Qiao Y, Liu Y. Down-regulated FST expression is involved in the poor prognosis of triple-negative breast cancer. Cancer Cell Int 2021; 21:267. [PMID: 34001106 PMCID: PMC8130405 DOI: 10.1186/s12935-021-01977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is more commonly associated with young patients, featuring high histological grade, visceral metastasis, and distant recurrence. Follistatin (FST) is a secreted extracellular regulatory protein that antagonizes TGF-β superfamily such as activin and TGF-β related superfamily such as bone morphogenetic protein (BMP). The implication of FST in the proliferation, angiogenesis, and metastasis of solid tumors documents good or poor outcome of patients with BC. However, the role of FST in TNBC remains unclear. Methods Data of 935 patients with breast cancer (BC) were extracted from TCGA. Case–control study, Kaplan–Meier, uni-multivariate COX, and ROC curve were utilized to investigate the relationship between FST expression and the clinical characteristics and prognosis of BC. Functional studies were used to analyze the effect of FST expression on proliferation, apoptosis, migration, and invasion of TNBC cell lines. Bioinformatic methods such as volcanoplot, GO annd KEGG enrichment, and protein–protein interactions (PPI) analyses were conducted to further confirm the different roles of FST in the apoptotic pathways among mesenchymal and mesenchymal stem-like cells of TNBC. Results Data from TCGA showed that low FST expression correlated with poor prognosis (for univariate analysis, HR = 0.47, 95% CI: 0.27–0.82, p = 0.008; for multivariate analysis, HR = 0.40, 95% CI: 0.21–0.75, p = 0.004). Low FST expression provided high predicted value of poor prognosis in TNBC amongst BCs. FST knockdown promoted the proliferation, migration and invasion of BT549 and HS578T cell lines. FST inhibited the apoptosis of mesenchymal cells by targeting BMP7. Conclusions Low FST expression is associated with poor prognosis of patients with TNBC. FST expressions exhibit the anisotropic roles of apoptosis between mesenchymal and mesenchymal stem-like cells but promote the proliferation, migration, invasion in both of two subtypes of TNBC in vitro. FST may be a subtype-heterogeneous biomarker for monitoring the progress of TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01977-x.
Collapse
Affiliation(s)
- Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Breast Surgery, Second Affiliated Hospital of Jilin University, Changchun, 130021, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
Farzanegi P, Zamani M, Khalili A, Dehghani H, Fotohi R, Ghanbarpour M, Hosseini S, Peeri M, Rahmati-Ahmadabad S, Azarbayjani M. Effects of upper- and lower-extremity resistance training on serum vascular endothelial growth factor, myostatin, endostatin and follistatin levels in sedentary male students. Sci Sports 2021; 36:139.e1-139.e6. [DOI: 10.1016/j.scispo.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Brady K, Liu HC, Hicks JA, Long JA, Porter TE. Transcriptome Analysis During Follicle Development in Turkey Hens With Low and High Egg Production. Front Genet 2021; 12:619196. [PMID: 33815464 PMCID: PMC8012691 DOI: 10.3389/fgene.2021.619196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Low and high egg producing hens exhibit gene expression differences related to ovarian steroidogenesis. High egg producing hens display increased expression of genes involved in progesterone and estradiol production, in the granulosa layer of the largest follicle (F1G) and small white follicles (SWF), respectively, whereas low egg producing hens display increased expression of genes related to progesterone and androgen production in the granulosa (F5G) and theca interna layer (F5I) of the fifth largest follicle, respectively. Transcriptome analysis was performed on F1G, F5G, F5I, and SWF samples from low and high egg producing hens to identify novel regulators of ovarian steroidogenesis. In total, 12,221 differentially expressed genes (DEGs) were identified between low and high egg producing hens across the four cell types examined. Pathway analysis implied differential regulation of the hypothalamo-pituitary-thyroid (HPT) axis, particularly thyroid hormone transporters and thyroid hormone receptors, and of estradiol signaling in low and high egg producing hens. The HPT axis showed up-regulation in high egg producing hens in less mature follicles but up-regulation in low egg producing hens in more mature follicles. Estradiol signaling exclusively exhibited up-regulation in high egg producing hens. Treatment of SWF cells from low and high egg producing hens with thyroid hormone in vitro decreased estradiol production in cells from high egg producing hens to the levels seen in cells from low egg producing hens, whereas thyroid hormone treatment did not impact estradiol production in cells from low egg producing hens. Transcriptome analysis of the major cell types involved in steroidogenesis inferred the involvement of the HPT axis and estradiol signaling in the regulation of differential steroid hormone production seen among hens with different egg production levels.
Collapse
Affiliation(s)
- Kristen Brady
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States.,Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
24
|
Cui Z, Shen X, Zhang X, Li F, Amevor FK, Zhu Q, Wang Y, Li D, Shu G, Tian Y, Zhao X. A functional polymorphism of inhibin alpha subunit at miR-181b-1-3p-binding site regulates proliferation and apoptosis of chicken ovarian granular cells. Cell Tissue Res 2021; 384:545-560. [PMID: 33439349 DOI: 10.1007/s00441-020-03356-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
INHA, the gene encoding the inhibin alpha subunit, was involved in folliculogenesis in mammals, but no study was reported for its working pathway in birds. Here we hypothesize that gene polymorphism in INHA 3'UTR might influence miRNAs binding efficiency and further affect the function of this gene. Thus, we investigated the association between the 3'UTR single-nucleotide polymorphisms (SNPs) in INHA and the laying performance in chickens and further explore their possible molecular cascades in granulosa cells (GC). Five SNPs were detected in Tianfu green-shell layers and g. 22,178,975 G > A was significantly associated with total egg numbers at the age of 300 days (EN, n = 286). Birds carrying the AA genotype laid more EN than those with GG (P < 0.05). The allele transition from G to A in the 3'UTR of INHA gene destroyed a binding site which was targeted by miR-181b-1-3p. The expression abundances of INHA mRNA increased firstly and then decreased with follicle growing, and reached the top in the sixth largest pre-ovulation follicle, whereas miR-181b-1-3p levels in chicken pre-hierarchical follicles had the contrary tendency. Further studies indicated that high levels of miR-181b-1-3p increased apoptosis and reduced GC proliferation while miR-181b-1-3p inhibitors decreased apoptosis and promoted GC proliferation. Additionally, depression of INHA increased apoptosis and reduced GC proliferation via a caspase-3-dependent mitochondrial pathway. Generally, the mutation in INHA 3'UTR was tightly correlated with egg production in chickens, and blocked a binding site of miR-181b-1-3p. miR-181b-1-3p inhibited GC proliferation and promoted apoptosis by targeting INHA.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianxian Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fugui Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Pervin S, Reddy ST, Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:653179. [PMID: 33897620 PMCID: PMC8062757 DOI: 10.3389/fendo.2021.653179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a global health problem and a major risk factor for several metabolic conditions including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity develops from chronic imbalance between energy intake and energy expenditure. Stimulation of cellular energy burning process has the potential to dissipate excess calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and brown adipose tissues. Recent studies have shown that activation of transforming growth factor-β (TGF-β) signaling pathway significantly contributes to the development of obesity, and blockade or inhibition is reported to protect from obesity by promoting white adipose browning and increasing mitochondrial biogenesis. Identification of novel compounds that activate beige/brown adipose characteristics to burn surplus calories and reduce excess storage of fat are actively sought in the fight against obesity. In this review, we present recent developments in our understanding of key modulators of TGF-β signaling pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning and brown adipose mass and activity. While MST is a key ligand for TGF-β family, FST can bind and regulate biological activity of several TGF-β superfamily members including activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature supporting the critical roles for FST, MST and other proteins in modulating TGF-β signaling to influence beige and brown adipose characteristics. We further review the potential therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajan Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Endocrinology, Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Rajan Singh,
| |
Collapse
|
26
|
Activin Receptor-Ligand Trap for the Treatment of β-thalassemia: A Serendipitous Discovery. Mediterr J Hematol Infect Dis 2020; 12:e2020075. [PMID: 33194149 PMCID: PMC7643807 DOI: 10.4084/mjhid.2020.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia is a hereditary disorder caused by defective production of β-globin chains of hemoglobin (Hb) that leads to an increased α/β globins ratio with subsequent free α-globins. Alpha globin excess causes oxidative stress, red blood cells membrane damage, premature death of late-stage erythroid precursors, resulting in ineffective erythropoiesis. The transforming growth factor β (TGF-β) superfamily signaling acts on biological processes, such as cell quiescence, apoptosis, proliferation, differentiation, and migration, and plays an essential role in regulating the hematopoiesis. This pathway can lose its physiologic regulation in pathologic conditions, leading to anemia and ineffective erythropoiesis. Activin receptor-ligand trap molecules such as Sotatercept and Luspatercept downregulate the TGF-β pathway, thus inhibiting the Smad2/3 cascade and alleviating anemia in patients with β-thalassemia and myelodysplastic syndromes. In this review, we describe in extenso the TGF-β pathway, as well as the molecular and biological basis of activin receptors ligand traps, focusing on their role in various β-thalassemia experimental models. The most recent results from clinical trials on sotatercept and luspatercept will also be reviewed.
Collapse
|
27
|
Khanshour AM, Kidane YH, Kozlitina J, Cornelia R, Rafipay A, De Mello V, Weston M, Paria N, Khalid A, Hecht JT, Dobbs MB, Richards BS, Vargesson N, Hamra FK, Wilson M, Wise C, Gurnett CA, Rios JJ. Genetic association and characterization of FSTL5 in isolated clubfoot. Hum Mol Genet 2020; 29:3717-3728. [PMID: 33105483 DOI: 10.1093/hmg/ddaa236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Talipes equinovarus (clubfoot, TEV) is a congenital rotational foot deformity occurring in 1 per 1000 births with increased prevalence in males compared with females. The genetic etiology of isolated clubfoot (iTEV) remains unclear. Using a genome-wide association study, we identified a locus within FSTL5, encoding follistatin-like 5, significantly associated with iTEV. FSTL5 is an uncharacterized gene whose potential role in embryonic and postnatal development was previously unstudied. Utilizing multiple model systems, we found that Fstl5 was expressed during later stages of embryonic hindlimb development, and, in mice, expression was restricted to the condensing cartilage anlage destined to form the limb skeleton. In the postnatal growth plate, Fstl5 was specifically expressed in prehypertrophic chondrocytes. As Fstl5 knockout rats displayed no gross malformations, we engineered a conditional transgenic mouse line (Fstl5LSL) to overexpress Fstl5 in skeletal osteochondroprogenitors. We observed that hindlimbs were slightly shorter and that bone mineral density was reduced in adult male, but not female, Prrx1-cre;Fstl5LSL mice compared with control. No overt clubfoot-like deformity was observed in Prrx1-cre;Fstl5LSL mice, suggesting FSTL5 may function in other cell types to contribute to iTEV pathogenesis. Interrogating published mouse embryonic single-cell expression data showed that Fstl5 was expressed in cell lineage subclusters whose transcriptomes were associated with neural system development. Moreover, our results suggest that lineage-specific expression of the Fstl genes correlates with their divergent roles as modulators of transforming growth factor beta and bone morphogenetic protein signaling. Results from this study associate FSTL5 with iTEV and suggest a potential sexually dimorphic role for Fstl5 in vivo.
Collapse
Affiliation(s)
- Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Alexandra Rafipay
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Mitchell Weston
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health, Houston, TX 77030, USA
| | - Matthew B Dobbs
- Paley Orthopedic and Spine Institute, West Palm Beach, FL 33407, USA
| | - B Stephens Richards
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - F Kent Hamra
- Department of Obstetrics and Gynecology, Cecil H. & Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Wilson
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Carol Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina A Gurnett
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
29
|
LEFTY2/endometrial bleeding-associated factor up-regulates Na+ Coupled Glucose Transporter SGLT1 expression and Glycogen Accumulation in Endometrial Cancer Cells. PLoS One 2020; 15:e0230044. [PMID: 32236143 PMCID: PMC7112196 DOI: 10.1371/journal.pone.0230044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/20/2020] [Indexed: 02/05/2023] Open
Abstract
LEFTY2 (endometrial bleeding associated factor; EBAF or LEFTYA), a cytokine released shortly before menstrual bleeding, is a negative regulator of cell proliferation and tumour growth. LEFTY2 down-regulates Na+/H+ exchanger activity with subsequent inhibition of glycolytic flux and lactate production in endometrial cancer cells. Glucose can be utilized not only for glycolysis but also for glycogen formation. Both glycolysis and glycogen formation require cellular glucose uptake which could be accomplished by the Na+ coupled glucose transporter-1 (SGLT1; SLC5A1). The present study therefore explored whether LEFTY2 modifies endometrial SGLT1 expression and activity as well as glycogen formation. Ishikawa and HEC1a cells were exposed to LEFTY2, SGLT1 and glycogen synthase (GYS1) transcript levels determined by qRT-PCR. SGLT1, GYS1 and phospho-GYS1 protein abundance was quantified by western blotting, cellular glucose uptake from 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) uptake, and cellular glycogen content utilizing an enzymatic assay and subsequent colorimetry. As a result, a 48-hour treatment with LEFTY2 significantly increased SGLT1 and GYS1 transcript levels as well as SGLT1 and GYS1 protein abundance in both Ishikawa and HEC1a cells. 2-NBDG uptake and cellular glycogen content were upregulated significantly in Ishikawa (type 1) but not in type 2 endometrial HEC1a cells, although there was a tendency of increased 2-NBDG uptake. Further, none of the effects were seen in human benign endometrial cells (HESCs). Interestingly, in both Ishikawa and HEC1a cells, a co-treatment with TGF-β reduced SGLT1, GYS and phospho-GYS protein levels, and thus reduced glycogen levels and again HEC1a cells had no significant change. In conclusion, LEFTY2 up-regulates expression and activity of the Na+ coupled glucose transporter SGLT1 and glycogen synthase GYS1 in a cell line specific manner. We further show the treatment with LEFTY2 fosters cellular glucose uptake and glycogen formation and TGF-β can negate this effect in endometrial cancer cells.
Collapse
|
30
|
Xu H, Khan A, Zhao S, Wang H, Zou H, Pang Y, Zhu H. Effects of Inhibin A on Apoptosis and Proliferation of Bovine Granulosa Cells. Animals (Basel) 2020; 10:ani10020367. [PMID: 32102430 PMCID: PMC7071129 DOI: 10.3390/ani10020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Inhibin A is well known for its inhibitory properties against follicle-stimulating hormone (FSH), released through a pituitary-gonadal negative feedback loop to regulate follicular development. Ovarian folliculogenesis, hormonal biosynthesis, and gametogenesis are dependent on inhibins, playing vital roles in promoting or inhibiting cell proliferation. The present study explored the physiological and molecular response of bovine granulosa cells (GCs) to different concentrations of inhibin A in vitro. We treated the primary GCs isolated from ovarian follicles (3-6 mm) with different levels of inhibin A (20, 50, and 100 ng/mL) along with the control (0 ng/mL) for 24 h. To evaluate the impact of inhibin A on GCs, several in vitro cellular parameters, including cell apoptosis, viability, cell cycle, and mitochondrial membrane potential (MMP) were detected. Besides, the transcriptional regulation of pro-apoptotic (BAX, Caspase-3) and cell proliferation (PCNA, CyclinB1) genes were also quantified. The results indicated a significant (p < 0.05) increase in the cell viability in a dose-dependent manner of inhibin A. Likewise, MMP was significantly (p < 0.05) enhanced when GCs were treated with high doses (50, 100 ng/mL) of inhibin A. Furthermore, inhibin A dose (100 ng/mL) markedly improved the progression of the G1 phase of the cell cycle and increased the cell number in the S phase, which was supported by the up-regulation of the proliferating cell nuclear antigen PCNA (20, 50, and 100ng/mL) and CyclinB (100 ng/mL) genes. In addition, higher doses of inhibin A (50 and 100 ng/mL) significantly (p < 0.05) decreased the apoptotic rate in GCs, which was manifested by down regulating BAX and Caspase-3 genes. Conclusively, our study presented a worthy strategy for the first time to characterize the cellular adaptation of bovine GCs under different concentrations of inhibin A. Our results conclude that inhibin A is a broad regulatory marker in GCs by regulating apoptosis and cellular progression.
Collapse
Affiliation(s)
- Huitao Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
- Correspondence: ; Tel.: +86-010-62895971
| |
Collapse
|
31
|
Mdlalose S, Moodley J, Naicker T. The role of follistatin and granulocyte-colony stimulating factor in HIV-associated pre-eclampsia. Pregnancy Hypertens 2019; 19:81-86. [PMID: 31926380 DOI: 10.1016/j.preghy.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
KwaZulu-Natal has a high burden of HIV infection and high blood pressure, specifically pre-eclampsia (PE) in pregnancy. Follistatin (FS) and granulocyte-colony stimulating factor (G-CSF) are two glycoproteins involved in PE pathogenesis. In light of the high maternal mortality and morbidity in South Africa (SA), we investigated the expression of FS and G-CSF in the duality of HIV-associated PE. Serum samples of normotensive and pre-eclamptic women were analysed using the Bio-Plex Multiplex Immunoassay. FS expression was significantly reduced in pre-eclamptic (median = 372.0, IQR = 719.2) compared to normotensive (median = 1569.0, IQR = 2043.0) (p < 0.0001). Furthermore, we detected significant FS expression across all study groups. There was a significant difference between HIV -ve normotensive (median = 9.0, IQR = 7.0) vs HIV +ve normotensive (median = 12.0, IQR = 5.0) groups. Additionally, G-CSF expression was notably higher in HIV +ve normotensive when compared to all study groups. This study demonstrated a downregulation of FS and G-CSF expression in PE, compared to normotensive pregnancies. This finding may be attributed to oxidative stress and its immunoregulatory role in the hyperinflammatory milieu of PE. HIV status had no effect on both analytes, albeit upregulated due to immune reconstitution emanating from highly active antiretroviral therapy. Our novel findings suggest that FS and G-CSF may have a potential predictor test value in early pregnancy, hence work on this is ongoing.
Collapse
Affiliation(s)
- Siphesihle Mdlalose
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| |
Collapse
|
32
|
Analysis of Expression and Single Nucleotide Polymorphisms of INHA Gene Associated with Reproductive Traits in Chickens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8572837. [PMID: 31485447 PMCID: PMC6702802 DOI: 10.1155/2019/8572837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Inhibin α (INHA) is a candidate gene controlling ovulation in poultry. As the functional center of inhibin, INHA is a molecular marker associated with egg-laying performance. The objective of the current study was to analyze the expression differences of INHA in reproductive system and single nucleotide polymorphisms (SNPs) associations with reproductive traits in chickens. A total of 260 LuHua chickens (barred-feather chicken) were adopted. Twelve SNPs were detected in INHA gene. Among the exonic SNPs, three (g. 22177991A>G, g. 22178249G>C, and g. 22178414G>A) were missense mutations, resulting in the amino acid substitutions Val→Ala, Ala→Gly, and Ala→Gly, respectively. Four SNPs in the 3' untranslated region of INHA were predicted to either disturb or create microRNA-target interactions. Five SNPs (g. 22176870T>C, g. 22177100T>C, g. 22177149T>C, g. 22177991A>G, and g. 22178975G>A) were significantly associated with the number of eggs at 300 d of age (EN) (P < 0.05). Birds carrying GA genotype exhibited more EN than those with AA genotype (P < 0.01). In addition, quantitative real-time PCR revealed that INHA is mainly expressed in follicles on d 300 in chickens. Firstly, INHA expression increased and then decreased. The highest INHA mRNA abundance was found in the fifth largest preovulatory follicle (F5) (P < 0.01). In the prehierarchical follicles, INHA mRNA expression increased dramatically in small yellow follicles (SYF) (P < 0.01). Western blotting analysis showed that the INHA protein expression profile in the follicle was similar to its mRNA counterpart with greater expression in F5 and SYF follicles and lowest expression in F1 follicles (P < 0.05). These results suggest that INHA is a potential candidate gene improving reproductive traits in chickens.
Collapse
|
33
|
Seachrist DD, Keri RA. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019; 160:1097-1110. [PMID: 30874767 PMCID: PMC6475112 DOI: 10.1210/en.2019-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Activins and inhibins are closely related protein heterodimers with a similar tissue distribution; however, these two complexes have opposing functions in development and disease. Both are secreted cytokine hormones, with activin the primary inducer of downstream signaling cascades and inhibin acting as a rheostat that exquisitely governs activin function. Adding to the complexity of activin signaling, follistatin, a highly glycosylated monomeric protein, binds activin with high affinity and restrains downstream pathway activation but through a mechanism distinct from that of inhibin. These three proteins were first identified as key ovarian hormones in the pituitary-gonadal axis that direct the synthesis and secretion of FSH from the pituitary, hence controlling folliculogenesis. Research during the past 30 years has expanded the roles of these proteins, first by discovering the ubiquitous expression of the trio and then by implicating them in a wide array of biological functions. In concert, these three hormones govern tissue development, homeostasis, and disease in multiple organ systems through diverse autocrine and paracrine mechanisms. In the present study, we have reviewed the actions of activin and its biological inhibitors, inhibin, and follistatin, in mammary gland morphogenesis and cancer.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Division of General Medical Sciences–Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
34
|
Cordycepin, an Active Constituent of Nutrient Powerhouse and Potential Medicinal Mushroom Cordyceps militaris Linn., Ameliorates Age-Related Testicular Dysfunction in Rats. Nutrients 2019; 11:nu11040906. [PMID: 31018574 PMCID: PMC6520895 DOI: 10.3390/nu11040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
Abstract
Age-related male sexual dysfunction covers a wide variety of issues, together with spermatogenic and testicular impairment. In the present work, the effects of cordycepin (COR), an active constituent of a nutrient powerhouse Cordyceps militaris Linn, on senile testicular dysfunction in rats was investigated. The sperm kinematics, antioxidant enzymes, spermatogenic factors, sex hormone receptors, histone deacetylating sirtuin 1 (SIRT1), and autophagy-related mammalian target of rapamycin complex 1 (mTORC1) expression in aged rat testes were evaluated. Sprague Dawley rats were divided into young control (2-month-old; YC), aged control (12-month-old; AC), and aged plus COR-treated groups (5 (COR-5), 10 (COR-10), and 20 (COR-20) mg/kg). The AC group showed reduced sperm kinematics and altered testicular histomorphology compared with the YC group (p < 0.05). However, compared with the AC group, the COR-treated group exhibited improved sperm motility, progressiveness, and average path/straight line velocity (p < 0.05–0.01). Alterations in spermatogenesis-related protein and mRNA expression were significantly ameliorated (p < 0.05) in the COR-20 group compared with the AC group. The altered histone deacetylating SIRT1 and autophagy-related mTORC1 molecular expression in aged rats were restored in the COR-20 group (p < 0.05). In conclusion, the results suggest that COR holds immense nutritional potential and therapeutic value in ameliorating age-related male sexual dysfunctions.
Collapse
|
35
|
Wang JJ, Zhai QY, Zhang RQ, Ge W, Liu JC, Li L, Sun ZY, De Felici M, Shen W. Effects of activin A on the transcriptome of mouse oogenesis in vitro. J Cell Physiol 2019; 234:14339-14350. [PMID: 30633354 DOI: 10.1002/jcp.28135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
From the previous research, it has been supported that activin A (ActA) is conducive to ovarian development in vitro. In the present paper, with the aim to identify the molecular pathways through which ActA can influence processes of the fetal and early postnatal oogenesis, we analyzed the transcriptome of embryonic ovaries (12.5 days postcoitum) in vitro cultured with or without ActA for 6 days, as well as the produced oocytes for 28 days, and further compared the gene expression profile with their in vivo counterparts. With the confirmation of designed test, we found that the addition of ActA to the ovary culture tended, generally, to align oocyte gene expression to the in vivo condition, in particular of a number of genes involved in meiosis and epigenetic modifications of histones. In particular, we identified DNA recombination during the oocyte meiotic prophase I and lysine trimethylation of the histone H3K27 during the oocyte growth phase as molecular pathways modulated by ActA.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rui-Qian Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhong-Yi Sun
- Center for Reproductive Medicine, Urology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
36
|
Hameed B, Ahmeid M. Serum follistatin and its role in intracytoplasmic sperm injection outcomes. MEDICAL JOURNAL OF BABYLON 2019. [DOI: 10.4103/mjbl.mjbl_55_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Koebele SV, Palmer JM, Hadder B, Melikian R, Fox C, Strouse IM, DeNardo DF, George C, Daunis E, Nimer A, Mayer LP, Dyer CA, Bimonte-Nelson HA. Hysterectomy Uniquely Impacts Spatial Memory in a Rat Model: A Role for the Nonpregnant Uterus in Cognitive Processes. Endocrinology 2019; 160:1-19. [PMID: 30535329 PMCID: PMC6293088 DOI: 10.1210/en.2018-00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
Approximately one-third of women experience hysterectomy, or the surgical removal of the uterus, by 60 years of age, with most surgeries occurring prior to the onset of natural menopause. The ovaries are retained in about half of these surgeries, whereas for the other half hysterectomy occurs concurrently with oophorectomy. The dogma is that the nonpregnant uterus is dormant. There have been no preclinical assessments of surgical variations in menopause, including hysterectomy, with and without ovarian conservation, on potential endocrine and cognitive changes. We present a novel rat model of hysterectomy alongside sham, ovariectomy (Ovx), and Ovx-hysterectomy groups to assess effects of surgical menopause variations. Rats without ovaries learned the working memory domain of a complex cognitive task faster than did those with ovaries. Moreover, uterus removal alone had a unique detrimental impact on the ability to handle a high-demand working memory load. The addition of Ovx, that is, Ovx-hysterectomy, prevented this hysterectomy-induced memory deficit. Performance did not differ amongst groups in reference memory-only tasks, suggesting that the working memory domain is particularly sensitive to variations in surgical menopause. Following uterus removal, ovarian histology and estrous cycle monitoring demonstrated that ovaries continued to function, and serum assays indicated altered ovarian hormone and gonadotropin profiles by 2 months after surgery. These results underscore the critical need to further study the contribution of the uterus to the female phenotype, including effects of hysterectomy with and without ovarian conservation, on the trajectory of brain and endocrine aging to decipher the impact of common variations in gynecological surgery in women. Moreover, findings demonstrate that the nonpregnant uterus is not dormant, and indicate that there is an ovarian-uterus-brain system that becomes interrupted when the reproductive tract has been disrupted, leading to alterations in brain functioning.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Justin M Palmer
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Bryanna Hadder
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | | | | | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
- Correspondence: Heather A. Bimonte-Nelson, PhD, Arizona State University, Department of Psychology, Behavioral Neuroscience Division, Arizona Alzheimer’s Consortium, P.O. Box 871104, Tempe, Arizona 85287. E-mail:
| |
Collapse
|
38
|
Liu X, Cao M, Palomares M, Wu X, Li A, Yan W, Fong MY, Chan WC, Wang SE. Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 2018; 20:127. [PMID: 30348200 PMCID: PMC6198446 DOI: 10.1186/s13058-018-1059-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bone is one of the most frequent metastatic sites of advanced breast cancer. Current therapeutic agents aim to inhibit osteoclast-mediated bone resorption but only have palliative effects. During normal bone remodeling, the balance between bone resorption and osteoblast-mediated bone formation is essential for bone homeostasis. One major function of osteoblast during bone formation is to secrete type I procollagen, which will then be processed before being crosslinked and deposited into the bone matrix. METHODS Small RNA sequencing and quantitative real-time PCR were used to detect miRNA levels in patient blood samples and in the cell lysates as well as extracellular vesicles of parental and bone-tropic MDA-MB-231 breast cancer cells. The effects of cancer cell-derived extracellular vesicles isolated by ultracentrifugation and carrying varying levels of miR-218 were examined in osteoblasts by quantitative real-time PCR, Western blot analysis, and P1NP bone formation marker analysis. Cancer cells overexpressing miR-218 were examined by transcriptome profiling through RNA sequencing to identify intrinsic genes and pathways influenced by miR-218. RESULTS We show that circulating miR-218 is associated with breast cancer bone metastasis. Cancer-secreted miR-218 directly downregulates type I collagen in osteoblasts, whereas intracellular miR-218 in breast cancer cells regulates the expression of inhibin β subunits. Increased cancer secretion of inhibin βA results in elevated Timp3 expression in osteoblasts and the subsequent repression of procollagen processing during osteoblast differentiation. CONCLUSIONS Here we identify a twofold function of cancer-derived miR-218, whose levels in the blood are associated with breast cancer metastasis to the bone, in the regulation of type I collagen deposition by osteoblasts. The adaptation of the bone niche mediated by miR-218 might further tilt the balance towards osteolysis, thereby facilitating other mechanisms to promote bone metastasis.
Collapse
Affiliation(s)
- Xuxiang Liu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA, 91010, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | | | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Arthur Li
- Division of Biostatistics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Miranda Y Fong
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Wing-Chung Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
39
|
Follistatin Expression in Human Invasive Breast Tumors: Pathologic and Clinical Associations. Appl Immunohistochem Mol Morphol 2018; 26:108-112. [PMID: 27389553 DOI: 10.1097/pai.0000000000000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Follistatin is a potent native activin antagonist that is expressed in the normal mammary gland and in different breast proliferative diseases. Despite experimental evidence that follistatin can modulate the breast cancer cell cycle, the clinical significance of follistatin expression in these tumors is unknown. The aim of this study was to correlate the intensity of follistatin expression in invasive breast cancer with some of its clinical and pathologic features, such as the disease stage and the hormonal receptor status. Paraffin blocks of tumor samples that had been fixed in buffered formalin were obtained from 154 women subjected to surgery for breast cancer between 2008 and 2012. Sections from all paraffin blocks were cut and processed together by immunohistochemistry using a commercial monoclonal antibody to human follistatin. The intensity of follistatin staining was unrelated to the menopausal status, the disease stage, the grade, progesterone receptor expression, and local or systemic recurrence. However, follistatin immunoreactivity was significantly stronger in estrogen receptor (ER)-negative tumors than in ER-positive tumors. These findings suggest that follistatin expression in invasive breast cancer is unrelated to the disease severity and the risk of recurrence, but is more intense in ER-negative tumors.
Collapse
|
40
|
Shen C, Iskenderian A, Lundberg D, He T, Palmieri K, Crooker R, Deng Q, Traylor M, Gu S, Rong H, Ehmann D, Pescatore B, Strack-Logue B, Romashko A, Baviello G, Gill J, Zhang B, Meiyappan M, Pan C, Norton AW. Protein Engineering on Human Recombinant Follistatin: Enhancing Pharmacokinetic Characteristics for Therapeutic Application. J Pharmacol Exp Ther 2018; 366:291-302. [PMID: 29752426 DOI: 10.1124/jpet.118.248195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 03/08/2025] Open
Abstract
Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-β family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.
Collapse
Affiliation(s)
- Chuan Shen
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Andrea Iskenderian
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Dianna Lundberg
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Tao He
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Kathleen Palmieri
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Robert Crooker
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Qingwei Deng
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Matthew Traylor
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Sheng Gu
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Haojing Rong
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - David Ehmann
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Brian Pescatore
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Bettina Strack-Logue
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Alla Romashko
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - George Baviello
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - John Gill
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Bohong Zhang
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Muthuraman Meiyappan
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Clark Pan
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Angela W Norton
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| |
Collapse
|
41
|
Affiliation(s)
- Buel D Rodgers
- From the Washington Center for Muscle Biology, Washington State University, Pullman.
| |
Collapse
|
42
|
Karatug Kacar A, Gezginci-Oktayoglu S, Bolkent S. 4-Methylcatechol stimulates apoptosis and reduces insulin secretion by decreasing betacellulin and inhibin beta-A in INS-1 beta-cells. Hum Exp Toxicol 2018; 37:1123-1130. [PMID: 29473434 DOI: 10.1177/0960327118758365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulinoma INS-1 cell line is a pancreatic beta cell tumor which is characterized with high insulin content and secretion in response to increasing glucose levels. 4-Methylcatechol (4-MC) is a metabolite of quercetin, which is known as a potential drug for inhibition of tumorigenesis. The aim of this study was to determine the applying doses of 4-methylcatechol (4-MC) for triggening cell death and decreasing the cell function of rat insulinoma INS-1 beta cells. The rate of apoptosis and the amount of insulin in the cell and the secretions were determined by the ELISA method. Betacellulin (BTC) and inhibin beta-A amounts in both the cell and the glucose induced secretion were investigated by Western blotting. Furthermore, BTC, Inhibin beta-A, Ins1, Ins2, and GLUT2 gene expression levels were determined by the by the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. We noted a significant decrease in cell viability, while an increase in apoptotic cell death by 4-MC treatment. It caused a decrease in the secretion of BTC, expressions of both BTC and inhibin beta-A. We showed a decrease in the expressions of Ins1 and GLUT2, while there is no alteration in the level of insulin protein. Insulin secretion levels increased in INS-1 cells given 4-MC by basal glucose concentration while they did not response to high concentration of glucose, which indicates that 4-MC disrupts the functionality of INS-1 cells. These results revealed that 4-MC induces apoptosis and decreases insulin secretion by reducing BTC and inhibin beta-A in insulinoma INS-1 cells. Thus, 4-MC may be offered as a potential molecule for treatment of insulinoma.
Collapse
Affiliation(s)
- A Karatug Kacar
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - S Gezginci-Oktayoglu
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - S Bolkent
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| |
Collapse
|
43
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
44
|
Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW. Proteomic analysis of follicular fluid in carriers and non-carriers of the Trio allele for high ovulation rate in cattle. Reprod Fertil Dev 2018; 30:1643-1650. [DOI: 10.1071/rd17252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/05/2018] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to characterise differences in follicular fluid proteins between carriers and non-carriers of a bovine allele for high ovulation rate. A total of four non-carrier and five carrier females were used in an initial study with four and six additional non-carriers and carriers respectively used in a validation study. Emergence of the follicular wave was synchronised and the ovaries containing the dominant follicle(s) were extracted by ovariectomy for follicular fluid collection. A hexapeptide ligand library was used to overcome the masking effect of high-abundance proteins and to increase detection of low-abundance proteins in tandem mass spectrometry. After correcting for multiple comparisons, only two proteins, glia-derived nexin precursor (SERPINE2) and inhibin β B chain precursor (INHBB), were significantly differentially expressed (false-discovery rate <0.05). In a replicate study of analogous design differential expression was confirmed (P < 0.05). Joint analysis of results from the two studies indicated that three additional proteins were consistently differentially expressed between genotypes. For three of these five, previous studies have indicated that expression is increased by transforming growth factor-β–bone morphogenetic protein signalling; their reduction in follicular fluid from carrier animals is consistent with the ~9-fold overexpression of SMAD family member 6 (SMAD6) in carriers that is inhibitory to this pathway.
Collapse
|
45
|
Hoda MA, Rozsas A, Lang E, Klikovits T, Lohinai Z, Torok S, Berta J, Bendek M, Berger W, Hegedus B, Klepetko W, Renyi-Vamos F, Grusch M, Dome B, Laszlo V. High circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma. Oncotarget 2017; 7:13388-99. [PMID: 26950277 PMCID: PMC4924649 DOI: 10.18632/oncotarget.7796] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Activin A (ActA)/follistatin (FST) signaling has been shown to be deregulated in different tumor types including lung adenocarcinoma (LADC). Here, we report that serum ActA protein levels are significantly elevated in LADC patients (n=64) as compared to controls (n=46, p=0.015). ActA levels also correlated with more advanced disease stage (p<0.0001) and T (p=0.0035) and N (p=0.0002) factors. M1 patients had significantly higher ActA levels than M0 patients (p<0.001). High serum ActA level was associated with poor overall survival (p<0.0001) and was confirmed as an independent prognostic factor (p=0.004). Serum FST levels were increased only in female LADC patients (vs. female controls, p=0.031). Two out of five LADC cell lines secreted biologically active ActA, while FST was produced in all of them. Transcripts of both type I and II ActA receptors were detected in all five LADC cell lines. In conclusion, our study does not only suggest that measuring blood ActA levels in LADC patients might improve the prediction of prognosis, but also indicates that this parameter might be a novel non-invasive biomarker for identifying LADC patients with organ metastases.
Collapse
Affiliation(s)
- Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Anita Rozsas
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Elisabeth Lang
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Szilvia Torok
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Matyas Bendek
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Gardella R, Sacchetti E, Legati A, Magri C, Traversa M, Gennarelli M. Compound heterozygosity for a hemizygous rare missense variant (rs141999351) and a large CNV deletion affecting the FSTL5 gene in a patient with schizophrenia. Psychiatry Res 2017; 258:598-599. [PMID: 28043646 DOI: 10.1016/j.psychres.2016.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Rita Gardella
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Emilio Sacchetti
- Department of Clinical and Experimental Sciences, Neuroscience Section, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Department of Mental Health, Spedali Civili Hospital, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Andrea Legati
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Michele Traversa
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Genetics Unit, IRCCS San Giovanni di Dio, Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| |
Collapse
|
47
|
Effect of eccentric action velocity on expression of genes related to myostatin signaling pathway in human skeletal muscle. Biol Sport 2017; 35:111-119. [PMID: 30455539 PMCID: PMC6234307 DOI: 10.5114/biolsport.2018.71600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/12/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the effects of an acute bout of eccentric actions, performed at fast velocity (210º.s-1) and at slow velocity (20º.s-1), on the gene expression of regulatory components of the myostatin (MSTN) signalling pathway. Participants performed an acute bout of eccentric actions at either a slow or a fast velocity. Muscle biopsy samples were taken before, immediately after, and 2 h after the exercise bout. The gene expression of the components of the MSTN pathway was assessed by real-time PCR. No change was observed in MSTN, ACTRIIB, GASP-1 or FOXO-3a gene expression after either slow or fast eccentric actions (p > 0.05). However, the MSTN inhibitors follistatin (FST), FST-like-3 (FSTL3) and SMAD-7 were significantly increased 2 h after both eccentric actions (p < 0.05). No significant difference between bouts was found before, immediately after, or 2 h after the eccentric actions (slow and fast velocities, p > 0.05). The current findings indicate that a bout of eccentric actions activates the expression of MSTN inhibitors. However, no difference was observed in MSTN inhibitors’ gene expression when comparing slow and fast eccentric actions. It is possible that the greater time under tension induced by slow eccentric (SE) actions might compensate the effect of the greater velocity of fast eccentric (FE) actions. Additional studies are required to address the effect of eccentric action (EA) velocities on the pathways related to muscle hypertrophy.
Collapse
|
48
|
Morais RDVS, Crespo D, Nóbrega RH, Lemos MS, van de Kant HJG, de França LR, Male R, Bogerd J, Schulz RW. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol 2017. [PMID: 28645700 DOI: 10.1016/j.mce.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh up-regulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3.
Collapse
Affiliation(s)
- R D V S Morais
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - D Crespo
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R H Nóbrega
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil
| | - M S Lemos
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - H J G van de Kant
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - L R de França
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; National Institute of Amazonian Research (L.R.F.), Manaus, Brazil
| | - R Male
- Department of Molecular Biology (R.M.), University of Bergen, 5020 Bergen, Norway
| | - J Bogerd
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - R W Schulz
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology (R.W.S.), Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
49
|
Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast Cancer Res 2017; 19:66. [PMID: 28583174 PMCID: PMC5460489 DOI: 10.1186/s13058-017-0857-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Background Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-β superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. Methods Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. Results Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. Conclusions These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0857-y) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Zhou Q, Wan M, Wei Q, Song Q, Xiong L, Huo J, Huang J. Expression, Regulation, and Functional Characterization of FST Gene in Porcine Granulosa Cells. Anim Biotechnol 2017; 27:295-302. [PMID: 27565874 DOI: 10.1080/10495398.2016.1184675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proliferation, differentiation, and estrogen secretion of granulosa cells are the key factors affecting the estrous after weaning in sows. The objective of this study was to evaluate the expression of Follistatin (FST) in the ovary of Xiushui Hang and Duroc sows at weaning and estrus, the effect of FSH on transcript abundance of FST gene in granulosa cells and the role of FST gene in the weaning to estrus using siRNAs targeted to FST gene. In the present study, expression of the FST mRNA was evaluated by real time PCR. The FST mRNA levels showed a reduction from weaning to the estrus in both Xiushui Hang and Duroc sows, and the mRNA levels in Duroc ovary was higher than in Xiushui Hang sows at the beginning of estrus. Granulosa cells were obtained from the two largest follicles around follicular deviation, FST expression was decreased sharply after treatment with FSH (250 ng/ml). Knockdown of FST by siRNA in porcine granulosa cells significantly increased cell proliferation and estrogen secretion. These results indicate that FST gene is a negative regulator of follicle growth and function during the weaning-estrus interval.
Collapse
Affiliation(s)
- QuanYong Zhou
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - MingChun Wan
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - QiPeng Wei
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - QiongLi Song
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - LiGen Xiong
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - JunHong Huo
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - JiangNan Huang
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| |
Collapse
|