1
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
R N, Aggarwal A, Sravani AB, Mallya P, Lewis S. Organ-On-A-Chip: An Emerging Research Platform. Organogenesis 2023; 19:2278236. [PMID: 37965897 PMCID: PMC10653779 DOI: 10.1080/15476278.2023.2278236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
In drug development, conventional preclinical and clinical testing stages rely on cell cultures and animal experiments, but these methods may fall short of fully representing human biology. To overcome this limitation, the emergence of organ-on-a-chip (OOC) technology has sparked interest as a transformative approach in drug testing research. By closely replicating human organ responses to external signals, OOC devices hold immense potential in revolutionizing drug efficacy and safety predictions. This review focuses on the advancements, applications, and prospects of OOC devices in drug testing. Based on the latest advances in the field of OOC systems and their clinical applications, this review reflects the effectiveness of OOC devices in replacing human volunteers in certain clinical studies. This review underscores the critical role of OOC technology in transforming drug testing methodologies.
Collapse
Affiliation(s)
- Nithin R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ayushi Aggarwal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Pooja Mallya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
3
|
Krishnakumar A, Kadian S, Heredia Rivera U, Chittiboyina S, Lelièvre SA, Rahimi R. Organ-on-a-Chip Platform with an Integrated Screen-Printed Electrode Array for Real-Time Monitoring Trans-Epithelial Barrier and Bubble Formation. ACS Biomater Sci Eng 2023; 9:1620-1628. [PMID: 36763005 DOI: 10.1021/acsbiomaterials.2c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cellular tight junctions play a key role in establishing a barrier between different compartments of the body by regulating the selective passage of different solutes across epithelial and endothelial tissues. Over the past decade, significant efforts have been conducted to develop more clinically relevant "organ-on-a-chip" models with integrated trans-epithelial electrical resistance (TEER) monitoring systems to help better understand the fundamental underpinnings of epithelial tissue physiology upon exposure to different substances. However, most of these platforms require the use of high-cost and time-consuming photolithography processes, which limits their scalability and practical implementation in clinical research. To address this need, we have developed a low-cost microfluidic platform with an integrated electrode array that allows continuous real-time monitoring of TEER and the risk of bubble formation in the microfluidic system by using scalable manufacturing technologies such as screen printing and laser processing. The integrated printed electrode array exhibited excellent stability (with less than ∼0.02 Ω change in resistance) even after long-term exposure to a complex culture medium. As a proof of concept, the fully integrated platform was tested with HMT3522 S1 epithelial cells to evaluate the tight barrier junction formation through TEER measurement and validated with standard immunostaining procedures for Zonula occludens-1 protein. This platform could be regarded as a stepping stone for the fabrication of disposable and low-cost organ and tissue-on-a-chip models with integrated sensors to facilitate studying the dynamic response of epithelial tissues to different substances in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Akshay Krishnakumar
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sachin Kadian
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ulisses Heredia Rivera
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shirisha Chittiboyina
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sophie A Lelièvre
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Biosensor integrated tissue chips and their applications on Earth and in space. Biosens Bioelectron 2023; 222:114820. [PMID: 36527831 PMCID: PMC10143284 DOI: 10.1016/j.bios.2022.114820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 12/27/2022]
Abstract
The development of space exploration technologies has positively impacted everyday life on Earth in terms of communication, environmental, social, and economic perspectives. The human body constantly fluctuates during spaceflight, even for a short-term mission. Unfortunately, technology is evolving faster than humans' ability to adapt, and many therapeutics entering clinical trials fail even after being subjected to vigorous in vivo testing due to toxicity and lack of efficacy. Therefore, tissue chips (also mentioned as organ-on-a-chip) with biosensors are being developed to compensate for the lack of relevant models to help improve the drug development process. There has been a push to monitor cell and tissue functions, based on their biological signals and utilize the integration of biosensors into tissue chips in space to monitor and assess cell microenvironment in real-time. With the collaboration between the Center for the Advancement of Science in Space (CASIS), the National Aeronautics and Space Administration (NASA) and other partners, they are providing the opportunities to study the effects of microgravity environment has on the human body. Institutions such as the National Institute of Health (NIH) and National Science Foundation (NSF) are partnering with CASIS and NASA to utilize tissue chips onboard the International Space Station (ISS). This article reviews the endless benefits of space technology, the development of integrated biosensors in tissue chips and their applications to better understand human biology, physiology, and diseases in space and on Earth, followed by future perspectives of tissue chip applications on Earth and in space.
Collapse
|
5
|
Novelli G, Spitalieri P, Murdocca M, Centanini E, Sangiuolo F. Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol 2023; 10:1059579. [PMID: 36699015 PMCID: PMC9869172 DOI: 10.3389/fcell.2022.1059579] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During the last decades, hiPSC-derived organoids have been extensively studied and used as in vitro models for several applications among which research studies. They can be considered as organ and tissue prototypes, especially for those difficult to obtain. Moreover, several diseases can be accurately modeled and studied. Hence, patient-derived organoids (PDOs) can be used to predict individual drug responses, thus paving the way toward personalized medicine. Lastly, by applying tissue engineering and 3D printing techniques, organoids could be used in the future to replace or regenerate damaged tissue. In this review, we will focus on hiPSC-derived 3D cultures and their ability to model human diseases with an in-depth analysis of gene editing applications, as well as tumor models. Furthermore, we will highlight the state-of-the-art of organoid facilities that around the world offer know-how and services. This is an increasing trend that shed the light on the need of bridging the publicand the private sector. Hence, in the context of drug discovery, Organoid Factories can offer biobanks of validated 3D organoid models that can be used in collaboration with pharmaceutical companies to speed up the drug screening process. Finally, we will discuss the limitations and the future development that will lead hiPSC-derived technology from bench to bedside, toward personalized medicine, such as maturity, organoid interconnections, costs, reproducibility and standardization, and ethics. hiPSC-derived organoid technology is now passing from a proof-of-principle to real applications in the clinic, also thanks to the applicability of techniques, such as CRISPR/Cas9 genome editing system, material engineering for the scaffolds, or microfluidic systems. The benefits will have a crucial role in the advance of both basic biological and translational research, particularly in the pharmacological field and drug development. In fact, in the near future, 3D organoids will guide the clinical decision-making process, having validated patient-specific drug screening platforms. This is particularly important in the context of rare genetic diseases or when testing cancer treatments that could in principle have severe side effects. Therefore, this technology has enabled the advancement of personalized medicine in a way never seen before.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Centanini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Carberry CK, Ferguson SS, Beltran AS, Fry RC, Rager JE. Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicol In Vitro 2022; 83:105412. [PMID: 35688329 PMCID: PMC9296547 DOI: 10.1016/j.tiv.2022.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen S Ferguson
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, USA
| | - Adriana S Beltran
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Modular Representation of Physiologically Based Pharmacokinetic Models: Nanoparticle Delivery to Solid Tumors in Mice as an Example. MATHEMATICS 2022. [DOI: 10.3390/math10071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here we describe a toolkit for presenting physiologically based pharmacokinetic (PBPK) models in a modular graphical view in the BioUML platform. Firstly, we demonstrate the BioUML capabilities for PBPK modeling tested on an existing model of nanoparticles delivery to solid tumors in mice. Secondly, we provide guidance on the conversion of the PBPK model code from a text modeling language like Berkeley Madonna to a visual modular diagram in the BioUML. We give step-by-step explanations of the model transformation and demonstrate that simulation results from the original model are exactly the same as numerical results obtained for the transformed model. The main advantage of the proposed approach is its clarity and ease of perception. Additionally, the modular representation serves as a simplified and convenient base for in silico investigation of the model and reduces the risk of technical errors during its reuse and extension by concomitant biochemical processes. In summary, this article demonstrates that BioUML can be used as an alternative and robust tool for PBPK modeling.
Collapse
|
8
|
Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022; 247:598-613. [PMID: 35088603 PMCID: PMC9014523 DOI: 10.1177/15353702221074293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments utilizing biologic or cytotoxic drugs compose the frontline of therapy, and though gains in treatment efficacy have been persistent in recent decades, much work remains in understanding cancer progression and treatment. Compounding this situation is the low rate of success when translating preclinical drug candidates to the clinic, which raises costs and development timelines. This underperformance is due in part to the poor recapitulation of the tumor microenvironment, a critical component of cancer biology, in cancer model systems. New technologies capable of both accurately observing and manipulating the tumor microenvironment are needed to effectively model cancer response to treatment. In this review, conventional cancer models are summarized, and a primer on emerging techniques for monitoring and modulating the tumor microenvironment is presented and discussed.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
9
|
In Vitro–In Silico Modeling of Caffeine and Diclofenac Permeation in Static and Fluidic Systems with a 16HBE Lung Cell Barrier. Pharmaceuticals (Basel) 2022; 15:ph15020250. [PMID: 35215362 PMCID: PMC8876625 DOI: 10.3390/ph15020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Static in vitro permeation experiments are commonly used to gain insights into the permeation properties of drug substances but exhibit limitations due to missing physiologic cell stimuli. Thus, fluidic systems integrating stimuli, such as physicochemical fluxes, have been developed. However, as fluidic in vitro studies display higher complexity compared to static systems, analysis of experimental readouts is challenging. Here, the integration of in silico tools holds the potential to evaluate fluidic experiments and to investigate specific simulation scenarios. This study aimed to develop in silico models that describe and predict the permeation and disposition of two model substances in a static and fluidic in vitro system. For this, in vitro permeation studies with a 16HBE cellular barrier under both static and fluidic conditions were performed over 72 h. In silico models were implemented and employed to describe and predict concentration–time profiles of caffeine and diclofenac in various experimental setups. For both substances, in silico modeling identified reduced apparent permeabilities in the fluidic compared to the static cellular setting. The developed in vitro–in silico modeling framework can be expanded further, integrating additional cell tissues in the fluidic system, and can be employed in future studies to model pharmacokinetic and pharmacodynamic drug behavior.
Collapse
|
10
|
Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021; 9:721338. [PMID: 34568333 PMCID: PMC8459628 DOI: 10.3389/fcell.2021.721338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yang Yang
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
- Department of Chemical Engineering, University of Maryland, College Park, College Park, MD, United States
| | - Parinaz Fathi
- Department of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mandy B. Esch
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
11
|
Ahmed HMMAM, Moreira Teixeira LS. New Endeavors of (Micro)Tissue Engineering: Cells Tissues Organs on-Chip and Communication Thereof. Cells Tissues Organs 2021; 211:721-735. [PMID: 34198305 DOI: 10.1159/000516356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 01/25/2023] Open
Abstract
The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.
Collapse
Affiliation(s)
- Haysam M M A M Ahmed
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands,
| | - Liliana S Moreira Teixeira
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
13
|
Zhou Z, Zhu J, Jiang M, Sang L, Hao K, He H. The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics 2021; 13:pharmaceutics13050704. [PMID: 34065907 PMCID: PMC8151315 DOI: 10.3390/pharmaceutics13050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human-derived in vitro models can provide high-throughput efficacy and toxicity data without a species gap in drug development. Challenges are still encountered regarding the full utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle these obstacles from in vitro to in vivo translation, and the current major cell culture methods were introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and microphysiological systems (MPS). Furthermore, the role and applications of several in silico models were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacokinetic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro to in vivo translation. We believe that synergising high-quality in vitro data with existing models can better guide drug development and clinical use.
Collapse
Affiliation(s)
- Zhengying Zhou
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Jinwei Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Muhan Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Lan Sang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
- Correspondence: (K.H.); (H.H.)
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
- Correspondence: (K.H.); (H.H.)
| |
Collapse
|
14
|
Zhao X, Xu Z, Xiao L, Shi T, Xiao H, Wang Y, Li Y, Xue F, Zeng W. Review on the Vascularization of Organoids and Organoids-on-a- Chip. Front Bioeng Biotechnol 2021; 9:637048. [PMID: 33912545 PMCID: PMC8072266 DOI: 10.3389/fbioe.2021.637048] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The use of human cells for the construction of 3D organ models in vitro based on cell self-assembly and engineering design has recently increased in popularity in the field of biological science. Although the organoids are able to simulate the structures and functions of organs in vitro, the 3D models have difficulty in forming a complex vascular network that can recreate the interaction between tissue and vascular systems. Therefore, organoids are unable to survive, due to the lack of oxygen and nutrients, as well as the accumulation of metabolic waste. Organoids-on-a-chip provides a more controllable and favorable design platform for co-culture of different cells and tissue types in organoid systems, overcoming some of the limitations present in organoid culture. However, the majority of them has vascular networks that are not adequately elaborate to simulate signal communications between bionic microenvironment (e.g., fluid shear force) and multiple organs. Here, we will review the technological progress of the vascularization in organoids and organoids-on-a-chip and the development of intravital 3D and 4D bioprinting as a new way for vascularization, which can aid in further study on tissue or organ development, disease research and regenerative medicine.
Collapse
Affiliation(s)
- Xingli Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zilu Xu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lang Xiao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Tuo Shi
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Haoran Xiao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yeqin Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
17
|
Construction of cancer-on-a-chip for drug screening. Drug Discov Today 2021; 26:1875-1890. [PMID: 33731317 DOI: 10.1016/j.drudis.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Cancer-on-a-chip has effectively contributed to the development of drug screening, holding great promise for more convenient and reliable drug development as well as personalized drug administration.
Collapse
|
18
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Maschmeyer I, Kakava S. Organ-on-a-Chip. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:311-342. [PMID: 32948885 DOI: 10.1007/10_2020_135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.
Collapse
|
20
|
Afflerbach AK, Kiri MD, Detinis T, Maoz BM. Mesenchymal Stem Cells as a Promising Cell Source for Integration in Novel In Vitro Models. Biomolecules 2020; 10:E1306. [PMID: 32927777 PMCID: PMC7565384 DOI: 10.3390/biom10091306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The human-relevance of an in vitro model is dependent on two main factors-(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.
Collapse
Affiliation(s)
- Ann-Kristin Afflerbach
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Faculty of Biosciences, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Mark D. Kiri
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Tahir Detinis
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
22
|
Kwon S, Lee D, Gopal S, Ku A, Moon H, Dordick JS. Three‐dimensional in vitro cell culture devices using patient‐derived cells for high‐throughput screening of drug combinations. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seok‐Joon Kwon
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Dongwoo Lee
- Departments of Biomedical Engineering Konyang University Daejeon Korea
| | - Sneha Gopal
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Ashlyn Ku
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Hosang Moon
- MBD (Medical & Bio Decision) Co., Ltd. Suwon‐si Korea
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
23
|
Rajan SAP, Aleman J, Wan M, Pourhabibi Zarandi N, Nzou G, Murphy S, Bishop CE, Sadri-Ardekani H, Shupe T, Atala A, Hall AR, Skardal A. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater 2020; 106:124-135. [PMID: 32068138 PMCID: PMC11083435 DOI: 10.1016/j.actbio.2020.02.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Current drug development techniques are expensive and inefficient, partially due to the use of preclinical models that do not accurately recapitulate in vivo drug efficacy and cytotoxicity. To address this challenge, we report on an integrated, in vitro multi-organoid system that enables parallel assessment of drug efficiency and toxicity on multiple 3D tissue organoids. Built in a low-cost, adhesive film-based microfluidic device, these miniaturized structures require less than 200 µL fluid volume and are amenable to both matrix-based 3D cell culture and spheroid aggregate integration, each supported with an in situ photocrosslinkable hyaluronic acid hydrogel. Here, we demonstrate this technology first with a three-organoid device consisting of liver, cardiac, and lung constructs. We show that these multiple tissue types can be kept in common circulation with high viability for 21 days and validate the platform by investigating liver metabolism of the prodrug capecitabine into 5-fluorouracil (5-FU) and observing downstream toxicity in lung and cardiac organoids. Then we expand the integrated system to accommodate six humanized constructs, including liver, cardiac, lung, endothelium, brain, and testes organoids. Following a 14-day incubation in common media, we demonstrate multi-tissue interactions by metabolizing the alkylating prodrug ifosfamide in the liver organoid to produce chloroacetaldehyde and induce downstream neurotoxicity. Our results establish an expandable, multi-organoid body-on-a-chip system that can be fabricated easily and used for the accurate characterization of drug interactions in vitro. STATEMENT OF SIGNIFICANCE: The use of 3-dimensional (3D) in vitro models in drug development has advanced over the past decade. However, with several exceptions, the majority of research studies using 3D in vitro models, such as organoids, employ single tissue types, in isolated environments with no "communication" between different tissues. This is a significant limiting factor because in the human body there is significant signaling between different cells, tissues, and organs. Here we employ a low-cost, adhesive film-based microfluidic device approach, paired with a versatile extracellular matrix-derived hyaluronic acid hydrogel to support integrated systems of 3 and 6 3D organoid and cell constructs. Moreover, we demonstrate an integrated response to drugs, in which downstream toxicity is dependent on the presence of liver organoids.
Collapse
Affiliation(s)
- Shiny Amala Priya Rajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech -Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - MeiMei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Goodwell Nzou
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Tom Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Adam R Hall
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech -Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Comprehensive Cancer Center of Wake Forest Baptist, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157.
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech -Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Comprehensive Cancer Center of Wake Forest Baptist, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157; Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd., Columbus, OH 43210; The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 460 W 10th Ave, Columbus, OH 43210.
| |
Collapse
|
24
|
Skardal A, Aleman J, Forsythe S, Rajan S, Murphy S, Devarasetty M, Pourhabibi Zarandi N, Nzou G, Wicks R, Sadri-Ardekani H, Bishop C, Soker S, Hall A, Shupe T, Atala A. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication 2020; 12:025017. [PMID: 32101533 DOI: 10.1088/1758-5090/ab6d36] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Current practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA. The platform is comprised of multiple tissue organoid types that remain viable for at least 28 days, in vitro. For many of these compounds, the 3D organoid system was able to demonstrate toxicity. Furthermore, organoids exposed to non-toxic compounds remained viable at clinically relevant doses. Additional experiments were performed on integrated multi-organoid systems containing liver, cardiac, lung, vascular, testis, colon, and brain. These integrated systems proved to maintain viability and expressed functional biomarkers, long-term. Examples are provided that demonstrate how multi-organoid 'body-on-a-chip' systems may be used to model the interdependent metabolism and downstream effects of drugs across multiple tissues in a single platform. Such 3D in vitro systems represent a more physiologically relevant model for drug screening and will likely reduce the cost and failure rate associated with the approval of new drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27101, United States of America. Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arakawa H, Sugiura S, Kawanishi T, Shin K, Toyoda H, Satoh T, Sakai Y, Kanamori T, Kato Y. Kinetic analysis of sequential metabolism of triazolam and its extrapolation to humans using an entero-hepatic two-organ microphysiological system. LAB ON A CHIP 2020; 20:537-547. [PMID: 31930237 DOI: 10.1039/c9lc00884e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The microphysiological system (MPS) is a promising tool for predicting drug disposition in humans, although limited information is available on the quantitative assessment of sequential drug metabolism in MPS and its extrapolation to humans. In the present study, we first constructed a mechanism-based pharmacokinetic model for triazolam (TRZ) and its metabolites in the entero-hepatic two-organ MPS, composed of intestinal Caco-2 and hepatic HepaRG cells, and attempted to extrapolate the kinetic information obtained with the MPS to the plasma concentration profiles in humans. In the two-organ MPS and HepaRG single culture systems, TRZ was found to be metabolized into α- and 4-hydroxytriazolam and their respective glucuronides. All these metabolites were almost completely reduced in the presence of a CYP3A inhibitor, itraconazole, confirming sequential phase I and II metabolism. Both pharmacokinetic model-dependent and -independent analyses were performed, providing consistent results regarding the metabolic activity of TRZ: clearance of glucuronidation metabolites in the two-organ MPS was higher than that in the single culture system. The plasma concentration profile of TRZ and its two hydroxy metabolites in humans was quantitatively simulated based on the pharmacokinetic model, by incorporating several scaling factors representing quantitative gaps between the MPS and humans. Thus, the present study provided the first quantitative extrapolation of sequential drug metabolism in humans by combining MPS and pharmacokinetic modeling.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kazumi Shin
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroko Toyoda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan and Stem Cell Evaluation Technology Research Association, Tsukuba, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan and Stem Cell Evaluation Technology Research Association, Tsukuba, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
26
|
Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, Maoz BM, Jeanty SSF, Somayaji MR, Burt M, Calamari E, Chalkiadaki A, Cho A, Choe Y, Chou DB, Cronce M, Dauth S, Divic T, Fernandez-Alcon J, Ferrante T, Ferrier J, FitzGerald EA, Fleming R, Jalili-Firoozinezhad S, Grevesse T, Goss JA, Hamkins-Indik T, Henry O, Hinojosa C, Huffstater T, Jang KJ, Kujala V, Leng L, Mannix R, Milton Y, Nawroth J, Nestor BA, Ng CF, O'Connor B, Park TE, Sanchez H, Sliz J, Sontheimer-Phelps A, Swenor B, Thompson G, Touloumes GJ, Tranchemontagne Z, Wen N, Yadid M, Bahinski A, Hamilton GA, Levner D, Levy O, Przekwas A, Prantil-Baun R, Parker KK, Ingber DE. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 2020; 4:407-420. [PMID: 31988458 DOI: 10.1038/s41551-019-0497-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.
Collapse
Affiliation(s)
- Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Miles Ingram
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Susan Marquez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Debarun Das
- CFD Research Corporation, Huntsville, AL, USA
| | - Aaron Delahanty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ben M Maoz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Biomedical Engineering and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sauveur S F Jeanty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | | | - Morgan Burt
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Elizabeth Calamari
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Angeliki Chalkiadaki
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - David Benson Chou
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Cronce
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Stephanie Dauth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Toni Divic
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jose Fernandez-Alcon
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - John Ferrier
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Edward A FitzGerald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Rachel Fleming
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Thomas Grevesse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Josue A Goss
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tiama Hamkins-Indik
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Olivier Henry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chris Hinojosa
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Tessa Huffstater
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kyung-Jin Jang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Ville Kujala
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Lian Leng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Robert Mannix
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Janna Nawroth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Bret A Nestor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Carlos F Ng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Blakely O'Connor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tae-Eun Park
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Henry Sanchez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Josiah Sliz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Biology, University of Freiburg, Freiburg, Germany
| | - Ben Swenor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Guy Thompson
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - George J Touloumes
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Norman Wen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Moran Yadid
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,GlaxoSmithKline, Collegeville, PA, USA
| | - Geraldine A Hamilton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Daniel Levner
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kevin K Parker
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA. .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
27
|
Abstract
Animal cell culture technology in today’s scenario has become indispensable in the field of life sciences, which provides a basis to study regulation, proliferation, and differentiation and to perform genetic manipulation. It requires specific technical skills to carry out successfully. This chapter describes the essential techniques of animal cell culture as well as its applications.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology, Institute of Plant Breeding Genetics & Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Megha Verma
- College of Arts and Sciences, St. Louis, MO, United States
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| |
Collapse
|
28
|
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. Gut-on-chip: Recreating human intestine in vitro. J Tissue Eng 2020; 11:2041731420965318. [PMID: 33282173 PMCID: PMC7682210 DOI: 10.1177/2041731420965318] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
The human gut is important for food digestion and absorption, as well as a venue for a large number of microorganisms that coexist with the host. Although numerous in vitro models have been proposed to study intestinal pathology or interactions between intestinal microbes and host, they are far from recapitulating the real intestinal microenvironment in vivo. To assist researchers in further understanding gut physiology, the intestinal microbiome, and disease processes, a novel technology primarily based on microfluidics and cell biology, called "gut-on-chip," was developed to simulate the structure, function, and microenvironment of the human gut. In this review, we first introduce various types of gut-on-chip systems, then highlight their applications in drug pharmacokinetics, host-gut microbiota crosstalk, and nutrition metabolism. Finally, we discuss challenges in this field and prospects for better understanding interactions between intestinal flora and human hosts, and then provide guidance for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yunqing Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongfei Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Coln EA, Colon A, Long CJ, Sriram NN, Esch M, Prot JM, Elbrecht DH, Wang Y, Jackson M, Shuler ML, Hickman JJ. Piezoelectric BioMEMS Cantilever for Measurement of Muscle Contraction and for Actuation of Mechanosensitive Cells. MRS COMMUNICATIONS 2019; 9:1186-1192. [PMID: 33777497 PMCID: PMC7995331 DOI: 10.1557/mrc.2019.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/06/2019] [Indexed: 06/12/2023]
Abstract
A piezoelectric biomedical microelectromechanical system (bioMEMS) cantilever device was designed and fabricated to act as either a sensing element for muscle tissue contraction or as an actuator to apply mechanical force to cells. The sensing ability of the piezoelectric cantilevers was shown by monitoring the electrical signal generated from the piezoelectric aluminum nitride in response to the contraction of iPSC-derived cardiomyocytes cultured on the piezoelectric cantilevers. Actuation was demonstrated by applying electrical pulses to the piezoelectric cantilever and observing bending via an optical detection method. This piezoelectric cantilever device was designed to be incorporated into body-on-a-chip systems.
Collapse
Affiliation(s)
- Elizabeth A. Coln
- Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826
- Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL 32816
| | - Alisha Colon
- Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826
| | | | | | - Mandy Esch
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853
| | - Jean-Matthieu Prot
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853
| | - Daniel H. Elbrecht
- Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826
| | - Ying Wang
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853
| | - Max Jackson
- Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL 32826
| | - Michael L. Shuler
- Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL 32826
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853
| | - James J. Hickman
- Hybrid Systems Laboratory, University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826
- Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL 32816
- Hesperos, Inc., 3259 Progress Drive #158, Orlando, FL 32826
| |
Collapse
|
30
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
31
|
Lee DW, Lee SH, Choi N, Sung JH. Construction of pancreas–muscle–liver microphysiological system (MPS) for reproducing glucose metabolism. Biotechnol Bioeng 2019; 116:3433-3445. [DOI: 10.1002/bit.27151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Dong Wook Lee
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano EngineeringHanyang UniversityAnsan Republic of Korea
- Nanosensor Research InstituteHanyang UniversityAnsan Republic of Korea
- Department of BionanotechnologyHanyang UniversityAnsan Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| |
Collapse
|
32
|
Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Annu Rev Pharmacol Toxicol 2019; 58:37-64. [PMID: 29309256 DOI: 10.1146/annurev-pharmtox-010716-104748] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches are beginning to be integrated into drug development and approval processes because they enable key pharmacokinetic (PK) parameters to be predicted from in vitro data. However, these approaches are hampered by many limitations, including an inability to incorporate organ-specific differentials in drug clearance, distribution, and absorption that result from differences in cell uptake, transport, and metabolism. Moreover, such approaches are generally unable to provide insight into pharmacodynamic (PD) parameters. Recent development of microfluidic Organ-on-a-Chip (Organ Chip) cell culture devices that recapitulate tissue-tissue interfaces, vascular perfusion, and organ-level functionality offer the ability to overcome these limitations when multiple Organ Chips are linked via their endothelium-lined vascular channels. Here, we discuss successes and challenges in the use of existing culture models and vascularized Organ Chips for PBPK and PD modeling of human drug responses, as well as in vitro to in vivo extrapolation (IVIVE) of these results, and how these approaches might advance drug development and regulatory review processes in the future.
Collapse
Affiliation(s)
- Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Debarun Das
- CFD Research Corporation, Huntsville, Alabama 35806, USA
| | | | | | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA; .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Isoherranen N, Madabushi R, Huang S. Emerging Role of Organ-on-a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation. Clin Transl Sci 2019; 12:113-121. [PMID: 30740886 PMCID: PMC6440571 DOI: 10.1111/cts.12627] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/26/2019] [Indexed: 12/28/2022] Open
Abstract
The recently enacted Prescription Drug User Fee Act (PDUFA) VI includes in its performance goals "enhancing regulatory science and expediting drug development." The key elements in "enhancing regulatory decision tools to support drug development and review" include "advancing model-informed drug development (MIDD)." This paper describes (i) the US Food and Drug Administration (FDA) Office of Clinical Pharmacology's continuing efforts in developing quantitative clinical pharmacology models (disease, drug, and clinical trial models) to advance MIDD, (ii) how emerging novel tools, such as organ-on-a-chip technologies or microphysiological systems, can provide new insights into physiology and disease mechanisms, biomarker identification and evaluation, and elucidation of mechanisms of adverse drug reactions, and (iii) how the single organ or linked organ microphysiological systems can provide critical system parameters for improved physiologically-based pharmacokinetic and pharmacodynamic evaluations. Continuous public-private partnerships are critical to advance this field and in the application of these new technologies in drug development and regulatory review.
Collapse
Affiliation(s)
- Nina Isoherranen
- Office of Clinical Pharmacology (OCP)Office of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Rajanikanth Madabushi
- Office of Clinical Pharmacology (OCP)Office of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical Pharmacology (OCP)Office of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
35
|
Lee SH, Jun BH. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Zhao Y, Kankala RK, Wang SB, Chen AZ. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules 2019; 24:E675. [PMID: 30769788 PMCID: PMC6412790 DOI: 10.3390/molecules24040675] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
With advantageous features such as minimizing the cost, time, and sample size requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers for their ability for real-time monitoring of physical parameters by mimicking the in vivo microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models. Recent advancements of OOC systems have evidenced the fabrication of 'multi-organ-on-chip' (MOC) models, which connect separated organ chambers together to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds. Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of these multi-organ models, while there are only few studies on how to realize continual, automated, and stable testing, which still remains a significant challenge in the development process of MOCs. Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to promote their capability for real-time monitoring of multi-organ interactions and chronic cellular reactions more accurately and steadily over the available chip models. Efforts in this field are still ongoing for better performance in the assessment of preclinical attributes for a new chemical entity. Further, we give a brief overview on the various biomedical applications of long-term testing in MOCs, including several proposed applications and their potential utilization in the future. Finally, we summarize with perspectives.
Collapse
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
37
|
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 2019; 140:3-11. [PMID: 29885330 DOI: 10.1016/j.addr.2018.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
In recent years, drug development costs have soared, primarily due to the failure of preclinical animal and cell culture models, which do not directly translate to human physiology. Organ-on-a-chip (OOC) is a burgeoning technology with the potential to revolutionize disease modeling, drug discovery, and toxicology research by strengthening the relevance of culture-based models while reducing costly animal studies. Although OOC models can incorporate a variety of tissue sources, the most robust and relevant OOC models going forward will include stem cells. In this review, we will highlight the benefits of stem cells as a tissue source while considering current limitations to their complete and effective implementation into OOC models.
Collapse
Affiliation(s)
- Alexa Wnorowski
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA 943055, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford, CA 94305, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
38
|
Paini A, Leonard J, Joossens E, Bessems J, Desalegn A, Dorne J, Gosling J, Heringa M, Klaric M, Kliment T, Kramer N, Loizou G, Louisse J, Lumen A, Madden J, Patterson E, Proença S, Punt A, Setzer R, Suciu N, Troutman J, Yoon M, Worth A, Tan Y. Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 9:61-72. [PMID: 31008414 PMCID: PMC6472623 DOI: 10.1016/j.comtox.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
The fields of toxicology and chemical risk assessment seek to reduce, and eventually replace, the use of animals for the prediction of toxicity in humans. In this context, physiologically based kinetic (PBK) modelling based on in vitro and in silico kinetic data has the potential to a play significant role in reducing animal testing, by providing a methodology capable of incorporating in vitro human data to facilitate the development of in vitro to in vivo extrapolation of hazard information. In the present article, we discuss the challenges in: 1) applying PBK modelling to support regulatory decision making under the toxicology and risk-assessment paradigm shift towards animal replacement; 2) constructing PBK models without in vivo animal kinetic data, while relying solely on in vitro or in silico methods for model parameterization; and 3) assessing the validity and credibility of PBK models built largely using non-animal data. The strengths, uncertainties, and limitations of PBK models developed using in vitro or in silico data are discussed in an effort to establish a higher degree of confidence in the application of such models in a regulatory context. The article summarises the outcome of an expert workshop hosted by the European Commission Joint Research Centre (EC-JRC) - European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), on "Physiologically-Based Kinetic modelling in risk assessment - reaching a whole new level in regulatory decision-making" held in Ispra, Italy, in November 2016, along with results from an international survey conducted in 2017 and recently reported activities occurring within the PBK modelling field. The discussions presented herein highlight the potential applications of next generation (NG)-PBK modelling, based on new data streams.
Collapse
Affiliation(s)
- A. Paini
- European Commission Joint Research Centre, Ispra, Italy
| | - J.A. Leonard
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830, USA
| | - E. Joossens
- European Commission Joint Research Centre, Ispra, Italy
| | - J.G.M. Bessems
- European Commission Joint Research Centre, Ispra, Italy
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A. Desalegn
- European Commission Joint Research Centre, Ispra, Italy
| | - J.L. Dorne
- European Food Safety Authority, 1a, Via Carlo Magno, 1A, 43126 Parma PR, Italy
| | - J.P. Gosling
- School of Mathematics, University of Leeds, Leeds, UK
| | - M.B. Heringa
- RIVM - The National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - T. Kliment
- European Commission Joint Research Centre, Ispra, Italy
| | - N.I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - G. Loizou
- Health and Safety Executive, Buxton, UK
| | - J. Louisse
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - A. Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - J.C. Madden
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - E.A. Patterson
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - S. Proença
- European Commission Joint Research Centre, Ispra, Italy
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - A. Punt
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - R.W. Setzer
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - N. Suciu
- DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - J. Troutman
- Central Product Safety, The Procter & Gamble Company, Cincinnati, OH, USA
| | - M. Yoon
- ScitoVation, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC 27709, USA
- ToxStrategies, Research Triangle Park Office, 1249 Kildaire Farm Road 134, Cary, NC 27511, USA
| | - A. Worth
- European Commission Joint Research Centre, Ispra, Italy
| | - Y.M. Tan
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| |
Collapse
|
39
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
40
|
Sung JH, Wang YI, Kim JH, Lee JM, Shuler ML. Application of chemical reaction engineering principles to 'body-on-a-chip' systems. AIChE J 2018; 64:4351-4360. [PMID: 31402795 DOI: 10.1002/aic.16448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combination of cell culture models with microscale technology has fostered emergence of in vitro cell-based microphysiological models, also known as organ-on-a-chip systems. Body-on-a-chip systems, which are multi-organ systems on a chip to mimic physiological relations, enable recapitulation of organ-organ interactions and potentially whole-body response to drugs, as well as serve as models of diseases. Chemical reaction engineering principles can be applied to understanding complex reactions inside the cell or human body, which can be treated as a multi-reactor system. These systems use physiologically-based pharmacokinetic (PBPK) models to guide the development of microscale systems of the body where organs or tissues are represented by living cells or tissues, and integrated into body-on-a-chip systems. Here, we provide a brief overview on the concept of chemical reaction engineering and how its principles can be applied to understanding and predicting the behavior of body-on-a-chip systems.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Dept. of Chemical Engineering; Hongik University; Seoul Republic of Korea
| | - Ying I. Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853
| | - Jung Hun Kim
- School of Chemical and Biological Engineering, Seoul National University; Seoul Republic of Korea
| | - Jong Min Lee
- School of Chemical and Biological Engineering, Seoul National University; Seoul Republic of Korea
| | - Michael L. Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Ithaca NY 14853
| |
Collapse
|
41
|
Ribas J, Pawlikowska J, Rouwkema J. Microphysiological systems: analysis of the current status, challenges and commercial future. ACTA ACUST UNITED AC 2018; 2. [PMID: 33898981 DOI: 10.21037/mps.2018.10.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The field of microphysiological systems (or organs-on-a-chip) experienced, in the past decade, a surge in publications and efforts towards commercialization. Such systems hold the promise to advance drug discovery, diagnostics, and many other areas. In this review we summarize and analyze the current status of the field, describe the commercial advances and discuss standing challenges and the commercial outlook of the field.
Collapse
Affiliation(s)
- João Ribas
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | | | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
42
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [PMID: 30135246 DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/13/2025] Open
Abstract
Transmembrane flux of a drug within a tissue or organ frequently involves a complex system of transporters from multiple families that have redundant and overlapping specificities. Current in vitro systems poorly represent physiology, with reduced expression and activity of drug transporter proteins; therefore, novel models that recapitulate the complexity and interplay among various transporters are needed. The development of microphysiological systems that bring simulated physiologic conditions to in vitro cell culture models has enormous potential to better reproduce the morphology and transport activity across several organ models, especially in tissues such as the liver, kidney, intestine, or the blood-brain barrier, in which drug transporters play a key role. The prospect of improving the in vitro function of organ models highly prolific in drug transporters holds the promise of implementing novel tools to study these mechanisms with far more representative biology than before. In this short review, we exemplify recent developments in the characterization of perfused microphysiological systems involving the activity of drug transporters. Furthermore, we analyze the challenges and opportunities for the implementation of such systems in the study of transporter-mediated drug disposition and the generation of clinically relevant physiology-based in silico models incorporating relevant drug transport activity.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simone H Stahl
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
43
|
Novak R, Didier M, Calamari E, Ng CF, Choe Y, Clauson SL, Nestor BA, Puerta J, Fleming R, Firoozinezhad SJ, Ingber DE. Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp 2018. [PMID: 30394380 DOI: 10.3791/58151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A significant number of lead compounds fail in the pharmaceutical pipeline because animal studies often fail to predict clinical responses in human patients. Human Organ-on-a-Chip (Organ Chip) microfluidic cell culture devices, which provide an experimental in vitro platform to assess efficacy, toxicity, and pharmacokinetic (PK) profiles in humans, may be better predictors of therapeutic efficacy and safety in the clinic compared to animal studies. These devices may be used to model the function of virtually any organ type and can be fluidically linked through common endothelium-lined microchannels to perform in vitro studies on human organ-level and whole body-level physiology without having to conduct experiments on people. These Organ Chips consist of two perfused microfluidic channels separated by a permeable elastomeric membrane with organ-specific parenchymal cells on one side and microvascular endothelium on the other, which can be cyclically stretched to provide organ-specific mechanical cues (e.g., breathing motions in lung). This protocol details the fabrication of flexible, dual channel, Organ Chips through casting of parts using 3D printed molds, enabling combination of multiple casting and post-processing steps. Porous poly (dimethyl siloxane) (PDMS) membranes are cast with micrometer sized through-holes using silicon pillar arrays under compression. Fabrication and assembly of Organ Chips involves equipment and steps that can be implemented outside of a traditional cleanroom. This protocol provides researchers with access to Organ Chip technology for in vitro organ- and body-level studies in drug discovery, safety and efficacy testing, as well as mechanistic studies of fundamental biological processes.
Collapse
Affiliation(s)
- Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University;
| | - Meredyth Didier
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Apple, Inc
| | - Elizabeth Calamari
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Carlos F Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Susan L Clauson
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Bret A Nestor
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Jefferson Puerta
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Rachel Fleming
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | | | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School
| |
Collapse
|
44
|
Lee SY, Sung JH. Gut-liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol Bioeng 2018; 115:2817-2827. [PMID: 29981260 DOI: 10.1002/bit.26793] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/31/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022]
Abstract
Hepatic steatosis is a process of abnormal lipid deposition within the liver cells, often caused by excessive alcohol uptake or obesity. A conventional in vitro model for hepatic steatosis uses a liver cell culture, treated with fatty acids and measures accumulation of lipids within the cells. This model does not recapitulate the complex process of absorption and metabolism of digestive lipids. Here, we introduce a gut-liver chip, which mimics the gut absorption and hepatic metabolism in a microfluidic chip. Absorption of fatty acids through gut layer and subsequent deposition within liver cells was demonstrated. Tumor necrosis factor-α, butyrate, and α-lipoic acid were chosen as model molecules that can affect hepatic steatosis via different mechanisms, and their effects were evaluated. Our results suggest that the gut-liver chip can mimic the absorption and accumulation of fatty acids in the gut and the liver.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| |
Collapse
|
45
|
Smoak MM, Pearce HA, Mikos AG. Microfluidic devices for disease modeling in muscle tissue. Biomaterials 2018; 198:250-258. [PMID: 30193908 DOI: 10.1016/j.biomaterials.2018.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Microfluidic devices have advanced significantly in recent years and are a promising technology for the field of tissue engineering. Highly sophisticated microfabrication techniques have paved the way for the development of complex ex vivo models capable of incorporating and measuring the real-time response of multiple cell types interacting together in a single system. Muscle-on-a-chip technology has drastically improved and serves as a drug screening platform for many muscular diseases such as muscular dystrophy, tendinosis, fibromyalgia, mitochondrial myopathy, and myasthenia gravis. This review seeks to communicate the gaps in knowledge of current muscular disease models and highlight the power of microfluidic devices in enabling researchers to better understand disease pathology and provide high throughput screening of therapeutics for muscular myopathies.
Collapse
Affiliation(s)
- Mollie M Smoak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Abstract
Organ-on-a-chip technology provides a novel in vitro platform with a possibility of reproducing physiological functions of in vivo tissue, more accurately than conventional cell-based model systems. Many newly arising diseases result from complex interaction between multiple organs. By realizing different organ functions on a chip, organ-on-a-chip technology is a potentially useful for building models of such complex diseases. Pharmacokinetic (PK) models provide a mathematical framework for understanding the interaction between organs involving transport and reaction of molecules. Here, we discuss various forms of organ-on-a-chip devices reported so far, with a particular emphasis on multi-organ devices for recapitulating multi-organ interactions. Also, we introduce the concept of PK models, and explain how it can be used to design and analyze multi-organ chip devices.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, South Korea.
| |
Collapse
|
47
|
Chen HJ, Miller P, Shuler ML. A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. LAB ON A CHIP 2018; 18:2036-2046. [PMID: 29881844 PMCID: PMC6039263 DOI: 10.1039/c8lc00111a] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We describe an expanded modular gastrointestinal (GI) tract-liver system by co-culture of primary human intestinal epithelial cells (hIECs) and 3D liver mimic. The two organ body-on-chip design consisted of GI and liver tissue compartments that were connected by fluidic medium flow driven via gravity. The hIECs and HepG2 C3A liver cells in the co-culture system maintained high viability for at least 14 days in which hIECs differentiated into major cell types found in native human intestinal epithelium and the HepG2 C3A cells cultured on 3D polymer scaffold formed a liver micro-lobe like structure. Moreover, the hIECs formed a monolayer on polycarbonate membranes with a tight junction and authentic TEER values of approximately 250 Ω cm2 for the native gut. The hIEC permeability was compared to a conventional permeability model using Caco-2 cell response for drug absorption by measuring the uptake of propranolol, mannitol and caffeine. Metabolic rates (urea or albumin production) of the cells in the co-culture GI-liver system were comparable to those of HepG2 C3A cells in a single-organ fluidic culture system, while induced CYP activities were significantly increased in the co-culture GI tract-liver system compared to the single-organ fluidic culture system. These results demonstrated potential of the low-cost microphysiological GI-liver model for preclinical studies to predict human response.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- Department of Biomedical Engineering, 115 Weill Hall, Cornell University, USA.
| | | | | |
Collapse
|
48
|
Cirit M, Stokes CL. Maximizing the impact of microphysiological systems with in vitro-in vivo translation. LAB ON A CHIP 2018; 18:1831-1837. [PMID: 29863727 PMCID: PMC6019627 DOI: 10.1039/c8lc00039e] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microphysiological systems (MPS) hold promise for improving therapeutic drug approval rates by providing more physiological, human-based, in vitro assays for preclinical drug development activities compared to traditional in vitro and animal models. Here, we first summarize why MPSs are needed in pharmaceutical development, and examine how MPS technologies can be utilized to improve preclinical efforts. We then provide the perspective that the full impact of MPS technologies will be realized only when robust approaches for in vitro-in vivo (MPS-to-human) translation are developed and utilized, and explain how the burgeoning field of quantitative systems pharmacology (QSP) can fill that need.
Collapse
Affiliation(s)
- Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
49
|
Low LA, Tagle DA. ‘You-on-a-chip’ for precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1456333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lucie A. Low
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Annecchino LA, Schultz SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv 2018; 2:2398212818776561. [PMID: 32166142 PMCID: PMC7058203 DOI: 10.1177/2398212818776561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.
Collapse
Affiliation(s)
- Luca A. Annecchino
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|