1
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
2
|
Atale N, Wells A. Statins as Secondary Preventive Agent to Limit Breast Cancer Metastatic Outgrowth. Int J Mol Sci 2025; 26:1300. [PMID: 39941069 PMCID: PMC11818786 DOI: 10.3390/ijms26031300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is a leading cause of mortality in breast cancer, as metastatic disease is often aggressive and resistant to conventional treatments. Cancer cells that spread to distant organs can enter a dormant phase for extended periods, sometimes years or decades. During this dormant phase, cancer cells avoid immune and pharmacological response. Thus, new approaches are needed to prevent these disseminated cells from becoming lethal cancers. Statins are known inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase that have been extensively used in patients with cardiovascular diseases to lower cholesterol. However, recent research has demonstrated their potential in anticancer therapies. Epidemiological evidence suggests that statins are associated with a reduction in breast cancer-specific mortality, although they do not appear to affect the incidence of primary tumors. In this review, we discuss the role of statins in metastasis and dormancy, their cytocidal and cytostatic effects and their interactions with different cell types in the tumor microenvironment. The exact mechanisms by which statins reduce mortality without influencing primary tumor growth remain unclear, also warranting further investigation into their potential role in metastasis and tumor dormancy, which could ultimately help patients to improve survival and quality of life.
Collapse
Affiliation(s)
- Neha Atale
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Alan Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Research and Development Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Aksoy SA, Earl J, Grahovac J, Karakas D, Lencioni G, Sığırlı S, Bijlsma MF. Organoids, tissue slices and organotypic cultures: Advancing our understanding of pancreatic ductal adenocarcinoma through in vitro and ex vivo models. Semin Cancer Biol 2025; 109:10-24. [PMID: 39730107 DOI: 10.1016/j.semcancer.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types. Several key characteristics of PDAC contribute to poor treatment outcomes, and in this review, we will discuss how these characteristics are best captured in currently available ex vivo or in vitro model systems. For instance, PDAC is hallmarked by a highly desmoplastic and immune-suppressed tumor microenvironment that impacts disease progression and therapy resistance. Also, large differences in tumor biology exist between and within tumors, complicating treatment decisions. Furthermore, PDAC has a very high propensity for locally invasive and metastatic growth. The use of animal models is often not desirable or feasible and several in vitro and ex vivo model systems have been developed, such as organotypic cocultures and tissue slices, among others. However, the absence of a full host organism impacts the ability of these models to accurately capture the characteristics that contribute to poor outcomes in PDAC. We will discuss the caveats and advantages of these model systems in the context of PDAC's key characteristics and provide recommendations on model choice and the possibilities for optimization. These considerations should be of use to researchers aiming to study PDAC in the in vitro setting.
Collapse
Affiliation(s)
- Secil Ak Aksoy
- Bursa Uludag University, Faculty of Medicine, Department of Medical Microbiology, Bursa, Turkey
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Biomodels and Biomodels Platform Hospital Ramón y Cajal-IRYCIS, Carretera Colmenar Km 9,100, Madrid 28034, Spain; The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Didem Karakas
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Giulia Lencioni
- Department of Biology, University of Pisa, Pisa, Italy; Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Sıla Sığırlı
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Dietrich N, Castellanos-Martinez R, Kemmling J, Heuser A, Schnoor M, Schinner C, Spindler V. Adhesion of pancreatic tumor cell clusters by desmosomal molecules enhances early liver metastases formation. Sci Rep 2024; 14:18189. [PMID: 39107343 PMCID: PMC11303515 DOI: 10.1038/s41598-024-68493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Desmosomes are intercellular adhesion complexes providing mechanical coupling and tissue integrity. Previously, a correlation of desmosomal molecule expression with invasion and metastasis formation in several tumor entities was described together with a relevance for circulating tumor cell cluster formation. Here, we investigated the contribution of the desmosomal core adhesion molecule desmoglein-2 (DSG2) to the initial steps of liver metastasis formation by pancreatic cancer cells using a novel ex vivo liver perfusion mouse model. We applied the pancreatic ductal adenocarcinoma cell line AsPC-1 with and without a knockout (KO) of DSG2 and generated mouse lines with a hepatocyte-specific KO of the known interacting partners of DSG2 (DSG2 and desmocollin-2). Liver perfusion with DSG2 KO AsPC-1 cells led to smaller circulating cell clusters and a reduced number of cells adhering to murine livers compared to control cells. While this was independent of the expression levels of desmosomal adhesion molecules in hepatocytes, we show that increased cluster size of cancer cells, which correlates with stronger cell-cell adhesion and expression of desmosomal molecules, is a major factor contributing to the early phase of metastatic spreading. In conclusion, impaired desmosomal adhesion results in reduced circulating cell cluster size, which is relevant for seeding and attachment of metastatic cells to the liver.
Collapse
Affiliation(s)
- Niclas Dietrich
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ramon Castellanos-Martinez
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico, Mexico
| | - Julia Kemmling
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Arnd Heuser
- Animal Phenotyping Platform, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico, Mexico
| | - Camilla Schinner
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hannover Medical School, Institute of Applied and Functional Anatomy, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
McDonald JC, Clark AM. Modeling Tumor Cell Dormancy in an Ex Vivo Liver Metastatic Niche. Methods Mol Biol 2024; 2811:37-53. [PMID: 39037648 DOI: 10.1007/978-1-0716-3882-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite decades of research into metastatic disease, our knowledge of the mechanisms governing dormancy are still limited. Unraveling the process will aid in developing effective therapies to either maintain or eliminate these dormant cells and thus prevent them from emerging into overt metastatic disease. To study the behavior of dormant tumor cells-mechanisms that promote, maintain, and disrupt this state-we utilize the Legacy LiverChip®, an all-human ex vivo hepatic microphysiological system. This complex, bioengineered system is able to recreate metastatic disease that is reflective of the human situation and is among only a handful of systems able to mimic spontaneous tumor cell dormancy. The dormant subpopulation reflects the defining traits of cellular dormancy-survival in a foreign microenvironment, chemoresistance, and reversible growth arrest. This microphysiological system has and continues to provide critical insights into the biology of dormant tumor cells. It also serves as an accessible tool to identify new therapeutic strategies targeting dormancy and concurrently evaluate the efficacy of therapeutic agents as well as their metabolism and dose-limiting toxicity.
Collapse
Affiliation(s)
- Jacob C McDonald
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Kalot R, Mhanna R, Talhouk R. Organ-on-a-chip platforms as novel advancements for studying heterogeneity, metastasis, and drug efficacy in breast cancer. Pharmacol Ther 2022; 237:108156. [PMID: 35150784 DOI: 10.1016/j.pharmthera.2022.108156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer has the highest cancer incidence rate in women worldwide. Therapies for breast cancer have shown high success rates, yet many cases of recurrence and drug resistance are still reported. Developing innovative strategies for studying breast cancer may improve therapeutic outcomes of the disease by providing better insight into the associated molecular mechanisms. A novel advancement in breast cancer research is the utilization of organ-on-a-chip (OOAC) technology to establish in vitro physiologically relevant breast cancer biomimetic models. This emerging technology combines microfluidics and tissue culturing methods to establish organ-specific micro fabricated culture models. Here, we shed light on the advantages of OOAC platforms over conventional in vivo and in vitro models in terms of mimicking tissue heterogeneity, disease progression, and facilitating pharmacological drug testing with a focus on models of the mammary gland in both normal and breast cancer states. By highlighting the various designs and applications of the breast-on-a-chip platforms, we show that the latter propose means to facilitate breast cancer-related studies and provide an efficient approach for therapeutic drug screening in vitro.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Beirut 1107 2020, Lebanon
| | - Rami Mhanna
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Beirut 1107 2020, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
7
|
Sphabmixay P, Raredon MSB, Wang AJS, Lee H, Hammond PT, Fang NX, Griffith LG. High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. Biofabrication 2021; 13. [PMID: 34479229 DOI: 10.1088/1758-5090/ac23aa] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS), comprising human cell cultured in formats that capture features of the three-dimensional (3D) microenvironments of native human organs under microperfusion, are promising tools for biomedical research. Here we report the development of a mesoscale physiological system (MePS) enabling the long-term 3D perfused culture of primary human hepatocytes at scales of over 106cells per MPS. A central feature of the MePS, which employs a commercially-available multiwell bioreactor for perfusion, is a novel scaffold comprising a dense network of nano- and micro-porous polymer channels, designed to provide appropriate convective and diffusive mass transfer of oxygen and other nutrients while maintaining physiological values of shear stress. The scaffold design is realized by a high resolution stereolithography fabrication process employing a novel resin. This new culture system sustains mesoscopic hepatic tissue-like cultures with greater hepatic functionality (assessed by albumin and urea synthesis, and CYP3A4 activity) and lower inflammation markers compared to comparable cultures on the commercial polystyrene scaffold. To illustrate applications to disease modeling, we established an insulin-resistant phenotype by exposing liver cells to hyperglycemic and hyperinsulinemic media. Future applications of the MePS include the co-culture of hepatocytes with resident immune cells and the integration with multiple organs to model complex liver-associated diseases.
Collapse
Affiliation(s)
- Pierre Sphabmixay
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America.,Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Vascular Biology and Therapeutics, Yale University, New Haven, CT, United States of America
| | - Alex J-S Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Howon Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Linda G Griffith
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
8
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
9
|
Ya S, Ding W, Li S, Du K, Zhang Y, Li C, Liu J, Li F, Li P, Luo T, He L, Xu A, Gao D, Qiu B. On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32640-32652. [PMID: 34225454 DOI: 10.1021/acsami.1c00794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although various liver chips have been developed using emerging organ-on-a-chip techniques, it remains an enormous challenge to replicate the liver lobules with self-assembled perfusable hepatic sinusoid networks. Herein we develop a lifelike bionic liver lobule chip (LLC), on which the perfusable hepatic sinusoid networks are achieved using a microflow-guided angiogenesis methodology; additionally, during and after self-assembly, oxygen concentration is regulated to mimic physiologically dissolved levels supplied by actual hepatic arterioles and venules. This liver lobule design thereby produces more bionic liver microstructures, higher metabolic abilities, and longer lasting hepatocyte function than other liver-on-a-chip techniques that are able to deliver. We found that the flow through the unique micropillar design in the cell coculture zone guides the radiating assembly of the hepatic sinusoid, the oxygen concentration affects the morphology of the sinusoid by proliferation, and the oxygen gradient plays a key role in prolonging hepatocyte function. The expected breadth of applications our LLC is suited to is demonstrated by means of preliminarily testing chronic and acute hepatotoxicity of drugs and replicating growth of tumors in situ. This work provides new insights into designing more extensive bionic vascularized liver chips, while achieving longer lasting ex-vivo hepatocyte function.
Collapse
Affiliation(s)
- Shengnan Ya
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shibo Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Du
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuanyuan Zhang
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jing Liu
- School of Biology, Food and Environment Engineering, Hefei University, Hefei, Anhui 230601, China
| | - Fenfen Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Tianzhi Luo
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Liqun He
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ao Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bensheng Qiu
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
10
|
Clark AM, Heusey HL, Griffith LG, Lauffenburger DA, Wells A. IP-10 (CXCL10) Can Trigger Emergence of Dormant Breast Cancer Cells in a Metastatic Liver Microenvironment. Front Oncol 2021; 11:676135. [PMID: 34123844 PMCID: PMC8190328 DOI: 10.3389/fonc.2021.676135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic breast cancer remains a largely incurable and fatal disease with liver involvement bearing the worst prognosis. The danger is compounded by a subset of disseminated tumor cells that may lie dormant for years to decades before re-emerging as clinically detectable metastases. Pathophysiological signals can drive these tumor cells to emerge. Prior studies indicated CXCR3 ligands as being the predominant signals synergistically and significantly unregulated during inflammation in the gut-liver axis. Of the CXCR3 ligands, IP-10 (CXCL10) was the most abundant, correlated significantly with shortened survival of human breast cancer patients with metastatic disease and was highest in those with triple negative (TNBC) disease. Using a complex ex vivo all-human liver microphysiological (MPS) model of dormant-emergent metastatic progression, CXCR3 ligands were found to be elevated in actively growing populations of metastatic TNBC breast cancer cells whereas they remained similar to the tumor-free hepatic niche in those with dormant breast cancer cells. Subsequent stimulation of dormant breast cancer cells in the ex vivo metastatic liver MPS model with IP-10 triggered their emergence in a dose-dependent manner. Emergence was indicated to occur indirectly possibly via activation of the resident liver cells in the surrounding metastatic microenvironment, as stimulation of breast cancer cells with exogenous IP-10 did not significantly change their migratory, invasive or proliferative behavior. The findings reveal that IP-10 is capable of triggering the emergence of dormant breast cancer cells within the liver metastatic niche and identifies the IP-10/CXCR3 as a candidate targetable pathway for rational approaches aimed at maintaining dormancy.
Collapse
Affiliation(s)
- Amanda M. Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley L. Heusey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Douglas. A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Song Y, Kim S, Heo J, Shum D, Lee SY, Lee M, Kim AR, Seo HR. Identification of hepatic fibrosis inhibitors through morphometry analysis of a hepatic multicellular spheroids model. Sci Rep 2021; 11:10931. [PMID: 34035369 PMCID: PMC8149639 DOI: 10.1038/s41598-021-90263-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
A chronic, local inflammatory milieu can cause tissue fibrosis that results in epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndMT), increased abundance of fibroblasts, and further acceleration of fibrosis. In this study, we aimed to identify potential mechanisms and inhibitors of fibrosis using 3D model-based phenotypic screening. We established liver fibrosis models using multicellular tumor spheroids (MCTSs) composed of hepatocellular carcinoma (HCC) and stromal cells such as fibroblasts (WI38), hepatic stellate cells (LX2), and endothelial cells (HUVEC) seeded at constant ratios. Through high-throughput screening of FDA-approved drugs, we identified retinoic acid and forskolin as candidates to attenuate the compactness of MCTSs as well as inhibit the expression of ECM-related proteins. Additionally, retinoic acid and forskolin induced reprogramming of fibroblast and cancer stem cells in the HCC microenvironment. Of interest, retinoic acid and forskolin had anti-fibrosis effects by decreasing expression of α-SMA and F-actin in LX2 cells and HUVEC cells. Moreover, when sorafenib was added along with retinoic acid and forskolin, apoptosis was increased, suggesting that anti-fibrosis drugs may improve tissue penetration to support the efficacy of anti-cancer drugs. Collectively, these findings support the potential utility of morphometric analyses of hepatic multicellular spheroid models in the development of new drugs with novel mechanisms for the treatment of hepatic fibrosis and HCCs.
Collapse
Affiliation(s)
- Yeonhwa Song
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Sanghwa Kim
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jinyeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Su-Yeon Lee
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Minji Lee
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Deajeon, 34113, Republic of Korea
| | - A-Ram Kim
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Haeng Ran Seo
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, Moulin CM, Dame K, Hartman N, Volpe DA, Matta MK, Hughes DJ, Strauss DG, Kostrzewski T, Ribeiro AJS. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci 2021; 14:1049-1061. [PMID: 33382907 PMCID: PMC8212739 DOI: 10.1111/cts.12969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.
Collapse
Affiliation(s)
- Andrés Rubiano
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amruta Indapurkar
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ryosuke Yokosawa
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Barry Rosenzweig
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ayesha Arefin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chloe M Moulin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Keri Dame
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Neil Hartman
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Donna A Volpe
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Murali K Matta
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - David G Strauss
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA.,Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Alexandre J S Ribeiro
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
13
|
Drew J, Machesky LM. The liver metastatic niche: modelling the extracellular matrix in metastasis. Dis Model Mech 2021; 14:dmm048801. [PMID: 33973625 PMCID: PMC8077555 DOI: 10.1242/dmm.048801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dissemination of malignant cells from primary tumours to metastatic sites is a key step in cancer progression. Disseminated tumour cells preferentially settle in specific target organs, and the success of such metastases depends on dynamic interactions between cancer cells and the microenvironments they encounter at secondary sites. Two emerging concepts concerning the biology of metastasis are that organ-specific microenvironments influence the fate of disseminated cancer cells, and that cancer cell-extracellular matrix interactions have important roles at all stages of the metastatic cascade. The extracellular matrix is the complex and dynamic non-cellular component of tissues that provides a physical scaffold and conveys essential adhesive and paracrine signals for a tissue's function. Here, we focus on how extracellular matrix dynamics contribute to liver metastases - a common and deadly event. We discuss how matrix components of the healthy and premetastatic liver support early seeding of disseminated cancer cells, and how the matrix derived from both cancer and liver contributes to the changes in niche composition as metastasis progresses. We also highlight the technical developments that are providing new insights into the stochastic, dynamic and multifaceted roles of the liver extracellular matrix in permitting and sustaining metastasis. An understanding of the contribution of the extracellular matrix to different stages of metastasis may well pave the way to targeted and effective therapies against metastatic disease.
Collapse
Affiliation(s)
- James Drew
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M. Machesky
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
14
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
16
|
Abstract
Cancer mortality predominantly results from distant metastases that are undetectable at diagnosis and escape initial therapies to lie as dormant micrometastases for years. To study the behavior of micrometastases-how they resist initial treatments and then awaken from a dormant state-we utilize the Legacy LiverChip®, an all-human ex vivo hepatic microphysiological system. The functional liver bioreactor, comprising hepatocytes and non-parenchymal cells in a 3D microperfused culture format, mimics the dormant-emergent metastatic progression observed in human patients: (a) a subpopulation of cancer cells spontaneously enter dormancy, (b) cycling cells are eliminated by standard chemotherapies, while quiescent dormant cells remain, and (c) chemoresistant dormant cells can be stimulated to emerge. The system effluent and tissue can be queried for proteomic and genomic data, immunofluorescent imaging as well as drug efficacy and metabolism. This microphysiological system continues to provide critical insights into the biology of dormant and re-emergent micrometastases and serves as an accessible tool to identify new therapeutic strategies targeting the various stages of metastasis, while concurrently evaluating antineoplastic agent efficacy for metastasis, metabolism, and dose-limiting toxicity.
Collapse
|
17
|
LaValley DJ, Miller PG, Shuler ML. Pumpless, unidirectional microphysiological system for testing metabolism-dependent chemotherapeutic toxicity. Biotechnol Prog 2020; 37:e3105. [PMID: 33274840 DOI: 10.1002/btpr.3105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
Drug development is often hindered by the failure of preclinical models to accurately assess and predict the efficacy and safety of drug candidates. Body-on-a-chip (BOC) microfluidic devices, a subset of microphysiological systems (MPS), are being created to better predict human responses to drugs. Each BOC is designed with separate organ chambers interconnected with microfluidic channels mimicking blood recirculation. Here, we describe the design of the first pumpless, unidirectional, multiorgan system and apply this design concept for testing anticancer drug treatments. HCT-116 colon cancer spheroids, HepG2/C3A hepatocytes, and HL-60 promyeloblasts were embedded in collagen hydrogels and cultured within compartments representing "colon tumor", "liver," and "bone marrow" tissue, respectively. Operating on a pumpless platform, the microfluidic channel design provides unidirectional perfusion at physiologically realistic ratios to multiple channels simultaneously. The metabolism-dependent toxic effect of Tegafur, an oral prodrug of 5-fluorouracil, combined with uracil was examined in each cell type. Tegafur-uracil treatment induced substantial cell death in HCT-116 cells and this cytotoxic response was reduced for multicellular spheroids compared to single cells, likely due to diffusion-limited drug penetration. Additionally, off-target toxicity was detected by HL-60 cells, which demonstrate that such systems can provide useful information on dose-limiting side effects. Collectively, this microscale cell culture analog is a valuable physiologically-based pharmacokinetic drug screening platform that may be used to support cancer drug development.
Collapse
Affiliation(s)
- Danielle J LaValley
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Paula G Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michael L Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Fuller HC, Wei TY, Behrens MR, Ruder WC. The Future Application of Organ-on-a-Chip Technologies as Proving Grounds for MicroBioRobots. MICROMACHINES 2020; 11:E947. [PMID: 33092054 PMCID: PMC7589118 DOI: 10.3390/mi11100947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
An evolving understanding of disease pathogenesis has compelled the development of new drug delivery approaches. Recently, bioinspired microrobots have gained traction as drug delivery systems. By leveraging the microscale phenomena found in physiological systems, these microrobots can be designed with greater maneuverability, which enables more precise, controlled drug release. Their function could be further improved by testing their efficacy in physiologically relevant model systems as part of their development. In parallel with the emergence of microscale robots, organ-on-a-chip technologies have become important in drug discovery and physiological modeling. These systems reproduce organ-level functions in microfluidic devices, and can also incorporate specific biological, chemical, and physical aspects of a disease. This review highlights recent developments in both microrobotics and organ-on-a-chip technologies and envisions their combined use for developing future drug delivery systems.
Collapse
Affiliation(s)
- Haley C. Fuller
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Ting-Yen Wei
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Michael R. Behrens
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Warren C. Ruder
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Wang H, Li X, Peng R, Wang Y, Wang J. Stereotactic ablative radiotherapy for colorectal cancer liver metastasis. Semin Cancer Biol 2020; 71:21-32. [PMID: 32629077 DOI: 10.1016/j.semcancer.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Survival improvement of colorectal liver metastasis (CRLM) benefits from systemic therapy and metastasis-directed local therapy. Stereotactic ablative body radiotherapy (SABR), as a new efficient metastasis-directed local therapy with a systematic impact, plays a vital role in CRLM multidisciplinary treatment. SABR leads to a dramatic immunological change in the tumor microenvironment (TME) via differential activation of cytoprotective and cytotoxic pathways in malignant and non-malignant cells, in addition to direct tumor cell death. The synergy of SABR and immunotherapy might increase the abscopal response rate of out-field lesions by targeting different steps of the immune-mediated response, in addition to direct intratumoral cell death. The clinical treatment and efficacy of SABR, its influence on TME, and potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xuemin Li
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Ran Peng
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
20
|
Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. MICROMACHINES 2020; 11:E487. [PMID: 32397454 PMCID: PMC7281532 DOI: 10.3390/mi11050487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury. Recent literature has highlighted the critical, but less studied, role of the liver vasculature in the progression of chronic liver diseases. Recent advancements in liver-on-a-chip systems has allowed in depth investigation of the role that the hepatic vasculature plays both in response to, and progression of, chronic liver disease. In this review, we first introduce the structure, gradients, mechanical properties, and cellular composition of the liver and describe how these factors influence the vasculature. We summarize state-of-the-art vascularized liver-on-a-chip platforms for investigating biological models of chronic liver disease and their influence on the liver sinusoidal endothelial cells of the hepatic vasculature. We conclude with a discussion of how future developments in the field may affect the study of chronic liver diseases, and drug development and testing.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Danielle Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Department of Oncology, The University of Texas, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
21
|
Statins attenuate outgrowth of breast cancer metastases. Br J Cancer 2018; 119:1094-1105. [PMID: 30401978 PMCID: PMC6220112 DOI: 10.1038/s41416-018-0267-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Metastasis in breast cancer foreshadows mortality, as clinically evident disease is aggressive and generally chemoresistant. Disseminated breast cancer cells often enter a period of dormancy for years to decades before they emerge as detectable cancers. Harboring of these dormant cells is not individually predictable, and available information suggests that these micrometastatic foci cannot be effectively targeted by existing therapies. As such, long-term, relatively non-toxic interventions that prevent metastatic outgrowth would be an advance in treatment. Epidemiological studies have found that statins reduce breast cancer specific mortality but not the incidence of primary cancer. However, the means by which statins reduce mortality without affecting primary tumor development remains unclear. Methods We examine statin efficacy against two breast cancer cell lines in models of breast cancer metastasis: a 2D in vitro co-culture model of breast cancer cell interaction with the liver, a 3D ex vivo microphysiological system model of breast cancer metastasis, and two independent mouse models of spontaneous breast cancer metastasis to the lung and liver, respectively. Results We demonstrate that statins can directly affect the proliferation of breast cancer cells, specifically at the metastatic site. In a 2D co-culture model of breast cancer cell interaction with the liver, we demonstrate that atorvastatin can directly suppress proliferation of mesenchymal but not epithelial breast cancer cells. Further, in an ex vivo 3D liver microphysiological system of breast cancer metastasis, we found that atorvastatin can block stimulated emergence of dormant breast cancer cells. In two independent models of spontaneous breast cancer metastasis to the liver and to the lung, we find that statins significantly reduce proliferation of the metastatic but not primary tumor cells. Conclusions As statins can block metastatic tumor outgrowth, they should be considered for use as long-term adjuvant drugs to delay clinical emergence and decrease mortality in breast cancer patients.
Collapse
|
22
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
23
|
Li X, George SM, Vernetti L, Gough AH, Taylor DL. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. LAB ON A CHIP 2018; 18:2614-2631. [PMID: 30063238 PMCID: PMC6113686 DOI: 10.1039/c8lc00418h] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The vLAMPS is a human, biomimetic liver MPS, in which the ECM and cell seeding of the intermediate layer prior to assembly, simplifies construction of the model and makes the platform user-friendly. This primarily glass microfluidic device is optimal for real-time imaging, while minimizing the binding of hydrophobic drugs/biologics to the materials that constitute the device. The assembly of the three layered device with primary human hepatocytes and liver sinusoidal endothelial cells (LSECs), and human cell lines for stellate and Kupffer cells, creates a vascular channel separated from the hepatic channel (chamber) by a porous membrane that allows communication between channels, recapitulating the 3D structure of the liver acinus. The vascular channel can be used to deliver drugs, immune cells, as well as various circulating cells and other factors to a stand-alone liver MPS and/or to couple the liver MPS to other organ MPS. We have successfully created continuous oxygen zonation by controlling the flow rates of media in the distinct vascular and hepatic channels and validated the computational modeling of zonation with oxygen sensitive and insensitive beads. This allows the direct investigation of the role of zonation in physiology, toxicology and disease progression. The vascular channel is lined with human LSECs, recapitulating partial immunologic functions within the liver sinusoid, including the activation of LSECs, promoting the binding of polymorphonuclear leukocytes (PMNs) followed by transmigration into the hepatic chamber. The vLAMPS is a valuable platform to investigate the functions of the healthy and diseased human liver using all primary human cell types and/or iPSC-derived cells.
Collapse
Affiliation(s)
- Xiang Li
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | |
Collapse
|
24
|
Beckwitt CH, Shiraha K, Wells A. Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS One 2018; 13:e0197422. [PMID: 29763460 PMCID: PMC5953490 DOI: 10.1371/journal.pone.0197422] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The HMG-CoA reductase inhibitors, statins, have been used as lipid lowering drugs for decades and several epidemiological studies suggest statin usage correlates with a decreased incidence of cancer specific mortality in patients. However, the mechanism of this mortality benefit remains unclear. Here, we demonstrate that statin drug lipophilicity and affinity for its target enzyme, HMGCR, determine their growth suppressive potency against various tumor cell lines. The lipophilic atorvastatin decreases cancer cell proliferation and survival in vitro. Statin sensitivity coincided with Ras localization to the cytosol instead of the membrane, consistent with a decrement in prenylation. To investigate signaling pathways that may be involved with sensitivity to statin therapy, we employed inhibitors of the PI3K-Akt and Mek-Erk signaling cascades. We found that inhibition of PI3K signaling through Akt potentiated statin sensitivity of breast cancer cells in vitro and in co-culture with primary human hepatocytes. The same effect was not observed with inhibition of Mek signaling through Erk. Moreover, the sensitivity of breast cancer cells to atorvastatin-mediated growth suppression correlated with a decrease in EGF-mediated phosphorylation of Akt. As an increase in Akt activity has been shown to be involved in the metastasis and metastatic outgrowth of many cancer types (including breast), these data suggest a mechanism by which statins may reduce cancer specific mortality in patients.
Collapse
Affiliation(s)
- Colin H. Beckwitt
- Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- The University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh VA Health System, Pittsburgh, PA, United States of America
| | - Keisuke Shiraha
- Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alan Wells
- Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- The University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh VA Health System, Pittsburgh, PA, United States of America
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
25
|
Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening. SCIENCE ADVANCES 2018; 4:eaas8998. [PMID: 29719868 PMCID: PMC5922799 DOI: 10.1126/sciadv.aas8998] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Multicellular cancer spheroids (MCSs) have emerged as a promising in vitro model that replicates many features of solid tumors in vivo. Biomimetic hydrogel scaffolds for MCS growth offer a broad spectrum of biophysical and biochemical cues that help to recapitulate the behavior of natural extracellular matrix, essential for regulating cancer cell behavior. This perspective highlights recent advances in the development of hydrogel environments for MCS growth, release, and drug screening. We review the use of different types of hydrogels for MCS growth, the effect of biophysical and biochemical cues on MCS fate, the isolation of MCSs from hydrogel scaffolds, the utilization of microtechnologies, and the applications of MCSs grown in hydrogels. We conclude with the discussion of new research directions in the development of hydrogels for MCS growth.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Corresponding author.
| |
Collapse
|
26
|
Clark AM, Kumar MP, Wheeler SE, Young CL, Venkataramanan R, Stolz DB, Griffith LG, Lauffenburger DA, Wells A. A Model of Dormant-Emergent Metastatic Breast Cancer Progression Enabling Exploration of Biomarker Signatures. Mol Cell Proteomics 2018; 17:619-630. [PMID: 29353230 PMCID: PMC5880110 DOI: 10.1074/mcp.ra117.000370] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer mortality predominantly results from dormant micrometastases that emerge as fatal outgrowths years after initial diagnosis. In order to gain insights concerning factors associated with emergence of liver metastases, we recreated spontaneous dormancy in an all-human ex vivo hepatic microphysiological system (MPS). Seeding this MPS with small numbers (<0.05% by cell count) of the aggressive MDA-MB-231 breast cancer cell line, two populations formed: actively proliferating ("growing"; EdU+), and spontaneously quiescent ("dormant"; EdU-). Following treatment with a clinically standard chemotherapeutic, the proliferating cells were eliminated and only quiescent cells remained; this residual dormant population could then be induced to a proliferative state ("emergent"; EdU+) by physiologically-relevant inflammatory stimuli, lipopolysaccharide (LPS) and epidermal growth factor (EGF). Multiplexed proteomic analysis of the MPS effluent enabled elucidation of key factors and processes that correlated with the various tumor cell states, and candidate biomarkers for actively proliferating (either primary or secondary emergence) versus dormant metastatic cells in liver tissue. Dormancy was found to be associated with signaling reflective of cellular quiescence even more strongly than the original tumor-free liver tissue, whereas proliferative nodules presented inflammatory signatures. Given the minimal tumor burden, these markers likely represent changes in the tumor microenvironment rather than in the tumor cells. A computational decision tree algorithm applied to these signatures indicated the potential of this MPS for clinical discernment of each metastatic stage from blood protein analysis.
Collapse
Affiliation(s)
- Amanda M Clark
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu P Kumar
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah E Wheeler
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carissa L Young
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Raman Venkataramanan
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- ¶Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- ‖Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- **University of Pittsburgh Cancer Center, Pittsburgh, Pennsylvania
| | - Linda G Griffith
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alan Wells
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania;
- ‡‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- §§Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver 'organ on a chip'. Exp Cell Res 2018; 363:15-25. [PMID: 29291400 PMCID: PMC5944300 DOI: 10.1016/j.yexcr.2017.12.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems.
Collapse
Affiliation(s)
- Colin H Beckwitt
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
28
|
Jia S, Miedel MT, Ngo M, Hessenius R, Chen N, Wang P, Bahreini A, Li Z, Ding Z, Shun TY, Zuckerman DM, Taylor DL, Puhalla SL, Lee AV, Oesterreich S, Stern AM. Clinically Observed Estrogen Receptor Alpha Mutations within the Ligand-Binding Domain Confer Distinguishable Phenotypes. Oncology 2018; 94:176-189. [PMID: 29306943 DOI: 10.1159/000485510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Twenty to fifty percent of estrogen receptor-positive (ER+) metastatic breast cancers express mutations within the ER ligand-binding domain. While most studies focused on the constitutive ER signaling activity commonly engendered by these mutations selected during estrogen deprivation therapy, our study was aimed at investigating distinctive phenotypes conferred by different mutations within this class. METHODS We examined the two most prevalent mutations, D538G and Y537S, employing corroborative genome-edited and lentiviral-transduced ER+ T47D cell models. We used a luciferase-based reporter and endogenous phospho-ER immunoblot analysis to characterize the estrogen response of ER mutants and determined their resistance to known ER antagonists. RESULTS Consistent with their selection during estrogen deprivation therapy, these mutants conferred constitutive ER activity. While Y537S mutants showed no estrogen dependence, D538G mutants demonstrated an enhanced estrogen-dependent response. Both mutations conferred resistance to ER antagonists that was overcome at higher doses acting specifically through their ER target. CONCLUSIONS These observations provide a tenable hypothesis for how D538G ESR1-expressing clones can contribute to shorter progression-free survival observed in the exemestane arm of the BOLERO-2 study. Thus, in those patients with dominant D538G-expressing clones, longitudinal analysis for this mutation in circulating free DNA may prove beneficial for informing more optimal therapeutic regimens.
Collapse
|
29
|
Cyr KJ, Avaldi OM, Wikswo JP. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component? Exp Biol Med (Maywood) 2017; 242:1714-1731. [PMID: 29065796 PMCID: PMC5832251 DOI: 10.1177/1535370217732766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organs-on-Chips (OoCs) are poised to reshape dramatically the study of biology by replicating in vivo the function of individual and coupled human organs. Such microphysiological systems (MPS) have already recreated complex physiological responses necessary to simulate human organ function not evident in two-dimensional in vitro biological experiments. OoC researchers hope to streamline pharmaceutical development, accelerate toxicology studies, limit animal testing, and provide new insights beyond the capability of current biological models. However, to develop a physiologically accurate Human-on-a-Chip, i.e., an MPS homunculus that functions as an interconnected, whole-body, model organ system, one must couple individual OoCs with proper fluidic and metabolic scaling. This will enable the study of the effects of organ-organ interactions on the metabolism of drugs and toxins. Critical to these efforts will be the recapitulation of the complex physiological signals that regulate the endocrine, metabolic, and digestive systems. To date, with the exception of research focused on reproductive organs on chips, most OoC research ignores homuncular endocrine regulation, in particular the circadian rhythms that modulate the function of all organ systems. We outline the importance of cyclic endocrine regulation and the role that it may play in the development of MPS homunculi for the pharmacology, toxicology, and systems biology communities. Moreover, we discuss the critical end-organ hormone interactions that are most relevant for a typical coupled-OoC system, and the possible research applications of a missing endocrine system MicroFormulator (MES-µF) that could impose biological rhythms on in vitro models. By linking OoCs together through chemical messenger systems, advanced physiological phenomena relevant to pharmacokinetics and pharmacodynamics studies can be replicated. The concept of a MES-µF could be applied to other standard cell-culture systems such as well plates, thereby extending the concept of circadian hormonal regulation to much of in vitro biology. Impact statement Historically, cyclic endocrine modulation has been largely ignored within in vitro cell culture, in part because cultured cells typically have their media changed every day or two, precluding hourly adjustment of hormone concentrations to simulate circadian rhythms. As the Organ-on-Chip (OoC) community strives for greater physiological realism, the contribution of hormonal oscillations toward regulation of organ systems has been examined only in the context of reproductive organs, and circadian variation of the breadth of other hormones on most organs remains unaddressed. We illustrate the importance of cyclic endocrine modulation and the role that it plays within individual organ systems. The study of cyclic endocrine modulation within OoC systems will help advance OoC research to the point where it can reliably replicate in vitro key regulatory components of human physiology. This will help translate OoC work into pharmaceutical applications and connect the OoC community with the greater pharmacology and physiology communities.
Collapse
Affiliation(s)
- Kevin J. Cyr
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Systems Biology and Bioengineering Undergraduate Research Experience
| | - Omero M. Avaldi
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Systems Biology and Bioengineering Undergraduate Research Experience
| | - John P. Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Department of Biomedical Engineering
- Department of Molecular Physiology and Biophysics
- Department of Physics and Astronomy, Vanderbilt University, Nashville TN, 37235, USA
| |
Collapse
|
30
|
Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017; 242:1559-1572. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.
Collapse
Affiliation(s)
| | - Rosemarie Hunziker
- 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Wikswo
- 3 Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1807, USA
| |
Collapse
|
31
|
Rowe C, Shaeri M, Large E, Cornforth T, Robinson A, Kostrzewski T, Sison-Young R, Goldring C, Park K, Hughes D. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol In Vitro 2017; 46:29-38. [PMID: 28919358 DOI: 10.1016/j.tiv.2017.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.
Collapse
Affiliation(s)
- Cliff Rowe
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Mohsen Shaeri
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Emma Large
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Terri Cornforth
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Angela Robinson
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Tomasz Kostrzewski
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Kevin Park
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David Hughes
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.
| |
Collapse
|
32
|
Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. LAB ON A CHIP 2017; 17:3026-3036. [PMID: 28795174 PMCID: PMC5621042 DOI: 10.1039/c7lc00462a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
Collapse
Affiliation(s)
- L A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
Assembly of Hepatocyte Spheroids Using Magnetic 3D Cell Culture for CYP450 Inhibition/Induction. Int J Mol Sci 2017; 18:ijms18051085. [PMID: 28524079 PMCID: PMC5454994 DOI: 10.3390/ijms18051085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/27/2022] Open
Abstract
There is a significant need for in vitro methods to study drug-induced liver injury that are rapid, reproducible, and scalable for existing high-throughput systems. However, traditional monolayer and suspension cultures of hepatocytes are difficult to handle and risk the loss of phenotype. Generally, three-dimensional (3D) cell culture platforms help recapitulate native liver tissue phenotype, but suffer from technical limitations for high-throughput screening, including scalability, speed, and handling. Here, we developed a novel assay for cytochrome P450 (CYP450) induction/inhibition using magnetic 3D cell culture that overcomes the limitations of other platforms by aggregating magnetized cells with magnetic forces. With this platform, spheroids can be rapidly assembled and easily handled, while replicating native liver function. We assembled spheroids of primary human hepatocytes in a 384-well format and maintained this culture over five days, including a 72 h induction period with known CYP450 inducers/inhibitors. CYP450 activity and viability in the spheroids were assessed and compared in parallel with monolayers. CYP450 activity was induced/inhibited in spheroids as expected, separate from any toxic response. Spheroids showed a significantly higher baseline level of CYP450 activity and induction over monolayers. Positive staining in spheroids for albumin and multidrug resistance-associated protein (MRP2) indicates the preservation of hepatocyte function within spheroids. The study presents a proof-of-concept for the use of magnetic 3D cell culture for the assembly and handling of novel hepatic tissue models.
Collapse
|
34
|
Hughes DJ, Kostrzewski T, Sceats EL. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems. Exp Biol Med (Maywood) 2017; 242:1593-1604. [PMID: 28504617 DOI: 10.1177/1535370217708976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Liver disease represents a growing global health burden. The development of in vitro liver models which allow the study of disease and the prediction of metabolism and drug-induced liver injury in humans remains a challenge. The maintenance of functional primary hepatocytes cultures, the parenchymal cell of the liver, has historically been difficult with dedifferentiation and the consequent loss of hepatic function limiting utility. The desire for longer term functional liver cultures sparked the development of numerous systems, including collagen sandwiches, spheroids, micropatterned co-cultures and liver microphysiological systems. This review will focus on liver microphysiological systems, often referred to as liver-on-a-chip, and broaden to include platforms with interconnected microphysiological systems or multi-organ-chips. The interconnection of microphysiological systems presents the opportunity to explore system level effects, investigate organ cross talk, and address questions which were previously the preserve of animal experimentation. As a field, microphysiological systems have reached a level of maturity suitable for commercialization and consequent evaluation by a wider community of users, in academia and the pharmaceutical industry. Here scientific, operational, and organizational considerations relevant to the wider adoption of microphysiological systems will be discussed. Applications in which microphysiological systems might offer unique scientific insights or enable studies currently feasible only with animal models are described, and challenges which might be addressed to enable wider adoption of the technologies are highlighted. A path forward which envisions the development of microphysiological systems in partnerships between academia, vendors and industry, is proposed. Impact statement Microphysiological systems are in vitro models of human tissues and organs. These systems have advanced rapidly in recent years and are now being commercialized. To achieve wide adoption in the biological and pharmaceutical research communities, microphysiological systems must provide unique insights which translate to humans. This will be achieved by identifying key applications and making microphysiological systems intuitive to use.
Collapse
Affiliation(s)
- David J Hughes
- CN Bio Innovations Limited, Welwyn Garden City AL73AX, UK
| | | | - Emma L Sceats
- CN Bio Innovations Limited, Welwyn Garden City AL73AX, UK
| |
Collapse
|
35
|
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141:1091-1109. [PMID: 28439901 DOI: 10.1002/ijc.30748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
36
|
Abstract
The National Institutes of Health Microphysiological Systems (MPS) program, led by the National Center for Advancing Translational Sciences, is part of a joint effort on MPS development with the Defense Advanced Research Projects Agency and with regulatory guidance from FDA, is now in its final year of funding. The program has produced many tangible outcomes in tissue chip development in terms of stem cell differentiation, microfluidic engineering, platform development, and single and multi-organ systems-and continues to help facilitate the acceptance and use of tissue chips by the wider community. As the first iteration of the program draws to a close, this Commentary will highlight some of the goals met, and lay out some of the challenges uncovered that will remain to be addressed as the field progresses. The future of the program will also be outlined. Impact statement This work is important to the field as it outlines the progress and challenges faced by the NIH Microphysiological Systems program to date, and the future of the program. This is useful information for the field to be aware of, both for current program stakeholders and future awardees and partners.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: Microenvironments and ex-vivo models. Exp Biol Med (Maywood) 2016; 241:1639-52. [PMID: 27390264 DOI: 10.1177/1535370216658144] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a highly metastasis-permissive organ, tumor seeding of which usually portends mortality. Its unique and diverse architectural and cellular composition enable the liver to undertake numerous specialized functions, however, this distinctive biology, notably its hemodynamic features and unique microenvironment, renders the liver intrinsically hospitable to disseminated tumor cells. The particular focus for this perspective is the bidirectional interactions between the disseminated tumor cells and the unique resident cell populations of the liver; notably, parenchymal hepatocytes and non-parenchymal liver sinusoidal endothelial, Kupffer, and hepatic stellate cells. Understanding the early steps in the metastatic seeding, including the decision to undergo dormancy versus outgrowth, has been difficult to study in 2D culture systems and animals due to numerous limitations. In response, tissue-engineered biomimetic systems have emerged. At the cutting-edge of these developments are ex vivo 'microphysiological systems' (MPS) which are cellular constructs designed to faithfully recapitulate the structure and function of a human organ or organ regions on a milli- to micro-scale level and can be made all human to maintain species-specific interactions. Hepatic MPSs are particularly attractive for studying metastases as in addition to the liver being a main site of metastatic seeding, it is also the principal site of drug metabolism and therapy-limiting toxicities. Thus, using these hepatic MPSs will enable not only an enhanced understanding of the fundamental aspects of metastasis but also allow for therapeutic agents to be fully studied for efficacy while also monitoring pharmacologic aspects and predicting toxicities. The review discusses some of the hepatic MPS models currently available and although only one MPS has been validated to relevantly modeling metastasis, it is anticipated that the adaptation of the other hepatic models to include tumors will not be long in coming.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA University of Pittsburgh Cancer Institute, University of Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
38
|
Hepatic metastatic niche: from normal to pre-metastatic and metastatic niche. Tumour Biol 2015; 37:1493-503. [DOI: 10.1007/s13277-015-4557-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
|
39
|
Tourlomousis F, Chang RC. Numerical investigation of dynamic microorgan devices as drug screening platforms. Part I: Macroscale modeling approach & validation. Biotechnol Bioeng 2015; 113:612-22. [DOI: 10.1002/bit.25822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Filippos Tourlomousis
- Department of Mechanical Engineering; Stevens Institute of Technology; Hoboken New Jersey
| | - Robert C. Chang
- Department of Mechanical Engineering; Stevens Institute of Technology; Hoboken New Jersey
| |
Collapse
|
40
|
Yu J, Cilfone NA, Large EM, Sarkar U, Wishnok JS, Tannenbaum SR, Hughes DJ, Lauffenburger DA, Griffith LG, Stokes CL, Cirit M. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:585-94. [PMID: 26535159 PMCID: PMC4625863 DOI: 10.1002/psp4.12010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 01/31/2023]
Abstract
Our goal in developing Microphysiological Systems (MPS) technology is to provide an improved approach for more predictive preclinical drug discovery via a highly integrated experimental/computational paradigm. Success will require quantitative characterization of MPSs and mechanistic analysis of experimental findings sufficient to translate resulting insights from in vitro to in vivo. We describe herein a systems pharmacology approach to MPS development and utilization that incorporates more mechanistic detail than traditional pharmacokinetic/pharmacodynamic (PK/PD) models. A series of studies illustrates diverse facets of our approach. First, we demonstrate two case studies: a PK data analysis and an inflammation response--focused on a single MPS, the liver/immune MPS. Building on the single MPS modeling, a theoretical investigation of a four-MPS interactome then provides a quantitative way to consider several pharmacological concepts such as absorption, distribution, metabolism, and excretion in the design of multi-MPS interactome operation and experiments.
Collapse
Affiliation(s)
- J Yu
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - N A Cilfone
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - E M Large
- CN Bio Innovations Welwyn Garden City, UK
| | - U Sarkar
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - J S Wishnok
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - S R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA ; Department of Chemistry, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - D J Hughes
- CN Bio Innovations Welwyn Garden City, UK
| | - D A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - L G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA ; Center of Gynepathology, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| | - C L Stokes
- Stokes Consulting Redwood City, California, USA
| | - M Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2015. [PMID: 26202373 DOI: 10.1177/1535370215592121] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models.
Collapse
Affiliation(s)
- Lawrence A Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Villasante A, Vunjak-Novakovic G. Tissue-engineered models of human tumors for cancer research. Expert Opin Drug Discov 2015; 10:257-68. [PMID: 25662589 DOI: 10.1517/17460441.2015.1009442] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. AREAS COVERED In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. EXPERT OPINION While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Columbia University, Department of Biomedical Engineering , New York, NY 10032 , USA
| | | |
Collapse
|
43
|
Modelling the metastatic cascade by in vitro microfluidic platforms. ACTA ACUST UNITED AC 2015; 49:21-9. [PMID: 25759320 DOI: 10.1016/j.proghi.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
The metastatic cascade comprises the following steps in sequential manner: the future metastatic cell has to leave the primary tumor mass, degrade the surrounding extracellular matrix, extravasate and circulate within in the bloodstream. Thereafter it has to attach to the endothelium of a target organ, intravasate into the connective tissue and has to proliferate to form a clinically detectable metastasis. We overview the in vitro microfluidic platforms modelling the metastatic cascade and the evolution towards systems capable of recapitulating all the steps by a single comprehensive model.
Collapse
|
44
|
Furukawa M, Wheeler S, Clark AM, Wells A. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells. PLoS One 2015; 10:e0118060. [PMID: 25635394 PMCID: PMC4311980 DOI: 10.1371/journal.pone.0118060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 01/05/2015] [Indexed: 01/21/2023] Open
Abstract
Purpose The lung is one of the most common sites of breast cancer metastasis. While metastatic seeding is often accompanied by a dormancy-promoting mesenchymal to epithelial reverting transitions (MErT), we aimed to determine whether lung epithelial cells can impart this phenotype on aggressive breast cancer cells. Methods Co-culture experiments of normal lung epithelial cell lines (SAEC, NHBE or BEAS-2B) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Flow cytometry analysis, immunofluorescence staining for E-cadherin or Ki-67 and senescence associated beta-galactosidase assays assessed breast cancer cell outgrowth and phenotype. Results Co-culture of the breast cancer cells with the normal lung cells had different effects on the epithelial and mesenchymal carcinoma cells. The epithelial MCF-7 cells were increased in number but still clustered even if in a slightly more mesenchymal-spindle morphology. On the other hand, the mesenchymal MDA-MB-231 cells survived but did not progressively grow out in co-culture. These aggressive carcinoma cells underwent an epithelial shift as indicated by cuboidal morphology and increased E-cadherin. Disruption of E-cadherin expressed in MDA-MB-231 using shRNA prevented this phenotypic reversion in co-culture. Lung cells limited cancer cell growth kinetics as noted by both (1) some of the cells becoming larger and positive for senescence markers/negative for proliferation marker Ki-67, and (2) Ki-67 positive cells significantly decreasing in MDA-MB-231 and MCF-7 cells after co-culture. Conclusions Our data indicate that normal lung epithelial cells can drive an epithelial phenotype and suppress the growth kinetics of breast cancer cells coincident with changing their phenotypes.
Collapse
Affiliation(s)
- Masashi Furukawa
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Amanda M. Clark
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The new cover of Experimental Biology and Medicine features the hermeneutic circle of biology, a concept we have adapted from the hermeneutic principle that one understands the whole only in terms of each part and the parts only in terms of the whole. Our hermeneutic circle summarizes the course of experimental biology through 2500 years of the achievements of reductionist research (understanding the parts), which culminates in our ability to rapidly sequence the genome. Rather than returning along the same path in a constructionist approach that simply builds upon this knowledge, but in reverse, an alternative is to close the circle with synthetic constructions that seek to integrate the full complexity of biological and physiological systems (understanding the whole), of which organs-on-chips are one example. This closing of the circle cannot be a comprehensively accurate representation of biology, but it can be a synthetic one that effectively defines particular biological subsystems. The illustration of the hermeneutic circle of biology is also intended to suggest both the multiple cycles that may be required to reach such a synthesis and the expansion of the circle in an outward spiral as knowledge increases. Our commentary explains the symbolism of the new cover in a philosophical and scientific discussion.
Collapse
Affiliation(s)
- John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew P Porter
- Center for Theology and the Natural Sciences, Graduate Theological Union, Berkeley, CA 94709-1212, USA
| |
Collapse
|
46
|
Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 2014; 239:1061-72. [PMID: 25187571 PMCID: PMC4330974 DOI: 10.1177/1535370214542068] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.
Collapse
Affiliation(s)
- John P Wikswo
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA
| |
Collapse
|
47
|
Schuessler TK, Chan XY, Chen HJ, Ji K, Park KM, Roshan-Ghias A, Sethi P, Thakur A, Tian X, Villasante A, Zervantonakis IK, Moore NM, Nagahara LA, Kuhn NZ. Biomimetic tissue-engineered systems for advancing cancer research: NCI Strategic Workshop report. Cancer Res 2014; 74:5359-63. [PMID: 25095784 DOI: 10.1158/0008-5472.can-14-1706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced technologies and biomaterials developed for tissue engineering and regenerative medicine present tractable biomimetic systems with potential applications for cancer research. Recently, the National Cancer Institute convened a Strategic Workshop to explore the use of tissue biomanufacturing for development of dynamic, physiologically relevant in vitro and ex vivo biomimetic systems to study cancer biology and drug efficacy. The workshop provided a forum to identify current progress, research gaps, and necessary steps to advance the field. Opportunities discussed included development of tumor biomimetic systems with an emphasis on reproducibility and validation of new biomimetic tumor models, as described in this report.
Collapse
Affiliation(s)
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | | | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | - Alireza Roshan-Ghias
- Department of Biomedical Engineering, Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, New York
| | - Pallavi Sethi
- Department of Pharmaceutical Sciences, Cancer Nanotechnology Training Center, University of Kentucky College of Pharmacy, Lexington, Kentucky
| | - Archana Thakur
- Department of Oncology, Karmanos Cancer Institute at Wayne State University, Detroit, Michigan
| | - Xi Tian
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aranzazu Villasante
- Department of Biomedical Engineering, Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, New York
| | | | - Nicole M Moore
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland
| | - Larry A Nagahara
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland
| | - Nastaran Z Kuhn
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland.
| |
Collapse
|