1
|
Jiao JZ, Zhang Y, Zhang WJ, He MD, Meng M, Liu T, Ma QL, Xu Y, Gao P, Chen CH, Zhang L, Pi HF, Deng P, Wu YZ, Zhou Z, Yu ZP, Deng YC, Lu YH. Radiofrequency radiation reshapes tumor immune microenvironment into antitumor phenotype in pulmonary metastatic melanoma by inducing active transformation of tumor-infiltrating CD8 + T and NK cells. Acta Pharmacol Sin 2024; 45:1492-1505. [PMID: 38538718 PMCID: PMC11192955 DOI: 10.1038/s41401-024-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 06/23/2024]
Abstract
Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Zheng Jiao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wen-Juan Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Min-di He
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Tao Liu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Qin-Long Ma
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ya Xu
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Peng Gao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Chun-Hai Chen
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Lei Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hui-Feng Pi
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ping Deng
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zheng-Ping Yu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yong-Hui Lu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Ibrahim NNAEH, Estfanous RS, Abo-Alala AM, Elkattan AK, Amer RM. Effect of Electromagnetic Radiation of Wi-Fi Router on Thyroid Gland and the Possible Protective Role of Combined Vitamin C and Zinc Administration in Adult Male Albino Rats. J Microsc Ultrastruct 2024; 12:51-61. [PMID: 39006042 PMCID: PMC11245130 DOI: 10.4103/jmau.jmau_121_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 07/16/2024] Open
Abstract
Introduction Electromagnetic radiation (EMR) is widely used nowadays in various fields due to rapid expansion of technology and affects different organs such as endocrine glands. Antioxidants protect the cells and act as a free radical scavenger. Aim of Work The aim of the study was to clarify the effect of EMR emitted from Wi-Fi router on the thyroid gland of adult male albino rats and the possible protective role of combined Vitamin C and zinc. Materials and Methods Thirty adult male albino rats were divided into three groups: Group I (control group), Group II (received combined Vitamin C and Zinc in one tablet called IMMUNO-MASH), and Group III (experimental groups). Group III was divided into two subgroups (A and B) according to the duration of exposure: 6 h and 24 h/day. Each of these groups was divided into two equal subgroups. One was exposed only to EMR while the other was exposed to EMR and received combined Vitamin C and zinc. All rats were weighed at the beginning and at the end of the experiment. The thyroid gland was prepared for general histological, anti-calcitonin immunostaining, and ultrastructural study. Furthermore, measurement of total serum T3, T4, and thyroid-stimulating hormone (TSH) hormone levels and quantitative analysis of immunoreactive C-cells were done. Then, statistical analysis was done on the number of immunoreactive C-cells, data of the body weight, and the hormonal levels. Results A highly significant increase in the body weight in subgroups exposed to EMR for 24 h/day was observed. Furthermore, they showed a highly significant decline in T3 and T4 levels together with a highly significant increase in TSH level. With increasing period of exposure, there was a variable degree of deterioration in the form of congestion and dilatation of blood vessels, cellular infiltration, follicular disintegration, vacuolar degeneration, and desquamated follicular cells in the colloid. The C-cells showed a significant increase in the mean number compared with the control group. Ultrastructural analysis of follicular cells revealed colloid droplets, deteriorations in rough endoplasmic reticulum, degenerating nuclei, and swollen mitochondria according to the dose of exposure. There was apparent improvement with the use of combined Vitamin C and zinc. Conclusion Wi-Fi radiation has a very serious effect on thyroid gland morphology and activity. Moreover, experimentally induced hypothyroidism by radiation resulted in increased C-cell number. Combined Vitamin C and zinc could have a protective role against this tissue damage.
Collapse
Affiliation(s)
| | - Remon S Estfanous
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Aml M Abo-Alala
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal K Elkattan
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rabab Mohamed Amer
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Abo-Zaid OA, Moawed FS, Taha EF, Ahmed ESA, Kawara RS. Melissa officinalis extract suppresses endoplasmic reticulum stress-induced apoptosis in the brain of hypothyroidism-induced rats exposed to γ-radiation. Cell Stress Chaperones 2023; 28:709-720. [PMID: 37368180 PMCID: PMC10746611 DOI: 10.1007/s12192-023-01363-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Moshtohor, Banha, Egypt
| | - Fatma Sm Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
- Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| | - Eman Fs Taha
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ragaa Sm Kawara
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Moshtohor, Banha, Egypt
| |
Collapse
|
4
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
5
|
Wi-Fi technology and human health impact: a brief review of current knowledge. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:94-106. [PMID: 35792772 PMCID: PMC9287836 DOI: 10.2478/aiht-2022-73-3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2022] [Indexed: 01/05/2023]
Abstract
An enormous increase in the application of wireless communication in recent decades has intensified research into consequent increase in human exposure to electromagnetic (EM) radiofrequency (RF) radiation fields and potential health effects, especially in school children and teenagers, and this paper gives a snap overview of current findings and recommendations of international expert bodies, with the emphasis on exposure from Wi-Fi technology indoor devices. Our analysis includes over 100 in vitro, animal, epidemiological, and exposure assessment studies (of which 37 in vivo and 30 covering Wi-Fi technologies). Only a small portion of published research papers refers to the “real” health impact of Wi-Fi technologies on children, because they are simply not available. Results from animal studies are rarely fully transferable to humans. As highly controlled laboratory exposure experiments do not reflect real physical interaction between RF radiation fields with biological tissue, dosimetry methods, protocols, and instrumentation need constant improvement. Several studies repeatedly confirmed thermal effect of RF field interaction with human tissue, but non-thermal effects remain dubious and unconfirmed.
Collapse
|
6
|
López-Martín E, Jorge-Barreiro FJ, Relova-Quintero JL, Salas-Sánchez AA, Ares-Pena FJ. Exposure to 2.45 GHz radiofrequency modulates calcitonin-dependent activity and HSP-90 protein in parafollicular cells of rat thyroid gland. Tissue Cell 2021; 68:101478. [PMID: 33373917 DOI: 10.1016/j.tice.2020.101478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
In this study we analyzed the response of parafollicular cells in rat thyroid gland after exposure to radiofrequency at 2.45 GHz using a subthermal experimental diathermy model. Forty-two Sprague Dawley rats, divided into two groups of 21 rats each, were individually exposed at 0 (control), 3 or 12 W in a Gigahertz Transverse Electro-Magnetic (GTEM) chamber for 30 min. After radiation, we used simple or fluorescence immunohistochemistry to measure calcitonin cells or cellular stress levels, indicated by the presence hyperplasia of parafollicular cells, heat shock protein (HSP) 90. Immunomarking of calcitonin-positive cells was statistically significant higher in the thyroid tissue of rats exposed to 2.45 GHz radiofrequency and cell hyperplasia appeared 90 min after radiation at the SAR levels studied. At the same time, co-localized expression of HSP-90 and calcitonin in parafollicular cells was statistically significant attenuated 90 min after radiation and remained statistically significantly low 24 h after radiation, even though parafollicular cell levels normalized. These facts indicate that subthermal radiofrequency (RF) at 2.45 GHz constitutes a negative external stress stimulus that alters the activity and homeostasis of parafollicular cells in the rat thyroid gland. However, further research is needed to determine if there is toxic action in human C cells.
Collapse
Affiliation(s)
- E López-Martín
- CRETUS Institute, Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - F J Jorge-Barreiro
- Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J L Relova-Quintero
- Physiology Department, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A A Salas-Sánchez
- CRETUS Institute, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; ELEDIA@UniTN - DISI - University of Trento, 38123, Trentino-Alto Adige, Italy
| | - F J Ares-Pena
- CRETUS Institute, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Tsarna E, Reedijk M, Birks LE, Guxens M, Ballester F, Ha M, Jiménez-Zabala A, Kheifets L, Lertxundi A, Lim HR, Olsen J, González Safont L, Sudan M, Cardis E, Vrijheid M, Vrijkotte T, Huss A, Vermeulen R. Associations of Maternal Cell-Phone Use During Pregnancy With Pregnancy Duration and Fetal Growth in 4 Birth Cohorts. Am J Epidemiol 2019; 188:1270-1280. [PMID: 30995291 PMCID: PMC6601518 DOI: 10.1093/aje/kwz092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023] Open
Abstract
Results from studies evaluating potential effects of prenatal exposure to radio-frequency electromagnetic fields from cell phones on birth outcomes have been inconsistent. Using data on 55,507 pregnant women and their children from Denmark (1996-2002), the Netherlands (2003-2004), Spain (2003-2008), and South Korea (2006-2011), we explored whether maternal cell-phone use was associated with pregnancy duration and fetal growth. On the basis of self-reported number of cell-phone calls per day, exposure was grouped as none, low (referent), intermediate, or high. We examined pregnancy duration (gestational age at birth, preterm/postterm birth), fetal growth (birth weight ratio, small/large size for gestational age), and birth weight variables (birth weight, low/high birth weight) and meta-analyzed cohort-specific estimates. The intermediate exposure group had a higher risk of giving birth at a lower gestational age (hazard ratio = 1.04, 95% confidence interval: 1.01, 1.07), and exposure-response relationships were found for shorter pregnancy duration (P < 0.001) and preterm birth (P = 0.003). We observed no association with fetal growth or birth weight. Maternal cell-phone use during pregnancy may be associated with shorter pregnancy duration and increased risk of preterm birth, but these results should be interpreted with caution, since they may reflect stress during pregnancy or other residual confounding rather than a direct effect of cell-phone exposure.
Collapse
Affiliation(s)
- Ermioni Tsarna
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marije Reedijk
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Laura Ellen Birks
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre–Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Mina Ha
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Ana Jiménez-Zabala
- Environment Epidemiology and Child Development Area, BIODONOSTIA Health Research Institute, San Sebastian, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Leeka Kheifets
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
- Environment Epidemiology and Child Development Area, BIODONOSTIA Health Research Institute, San Sebastian, Spain
- Department of Preventive Medicine and Public Health, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Hyung-Ryul Lim
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jorn Olsen
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Llúcia González Safont
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I–Universitat de València, Valencia, Spain
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - Madhuri Sudan
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Elisabeth Cardis
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Tanja Vrijkotte
- Department of Public Health, Amsterdam Public Research Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
8
|
Hardell L, Carlberg M. Comments on the US National Toxicology Program technical reports on toxicology and carcinogenesis study in rats exposed to whole-body radiofrequency radiation at 900 MHz and in mice exposed to whole-body radiofrequency radiation at 1,900 MHz. Int J Oncol 2019; 54:111-127. [PMID: 30365129 PMCID: PMC6254861 DOI: 10.3892/ijo.2018.4606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
During the use of handheld mobile and cordless phones, the brain is the main target of radiofrequency (RF) radiation. An increased risk of developing glioma and acoustic neuroma has been found in human epidemiological studies. Primarily based on these findings, the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) classified in May, 2011 RF radiation at the frequency range of 30 kHz‑300 GHz as a 'possible' human carcinogen, Group 2B. A carcinogenic potential for RF radiation in animal studies was already published in 1982. This has been confirmed over the years, more recently in the Ramazzini Institute rat study. An increased incidence of glioma in the brain and malignant schwannoma in the heart was found in the US National Toxicology Program (NTP) study on rats and mice. The NTP final report is to be published; however, the extended reports are published on the internet for evaluation and are reviewed herein in more detail in relation to human epidemiological studies. Thus, the main aim of this study was to compare earlier human epidemiological studies with NTP findings, including a short review of animal studies. We conclude that there is clear evidence that RF radiation is a human carcinogen, causing glioma and vestibular schwannoma (acoustic neuroma). There is some evidence of an increased risk of developing thyroid cancer, and clear evidence that RF radiation is a multi‑site carcinogen. Based on the Preamble to the IARC Monographs, RF radiation should be classified as carcinogenic to humans, Group 1.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, University Hospital, SE-701 85 Örebro
- The Environment and Cancer Research Foundation, SE 702 17 Örebro, Sweden
| | - Michael Carlberg
- Department of Oncology, University Hospital, SE-701 85 Örebro
- The Environment and Cancer Research Foundation, SE 702 17 Örebro, Sweden
| |
Collapse
|
9
|
Carlberg M, Hedendahl L, Ahonen M, Koppel T, Hardell L. Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer 2016; 16:426. [PMID: 27388603 PMCID: PMC4937579 DOI: 10.1186/s12885-016-2429-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Radiofrequency radiation in the frequency range 30 kHz-300 GHz was evaluated to be Group 2B, i.e. 'possibly' carcinogenic to humans, by the International Agency for Research on Cancer (IARC) at WHO in May 2011. Among the evaluated devices were mobile and cordless phones, since they emit radiofrequency electromagnetic fields (RF-EMF). In addition to the brain, another organ, the thyroid gland, also receives high exposure. The incidence of thyroid cancer is increasing in many countries, especially the papillary type that is the most radiosensitive type. METHODS We used the Swedish Cancer Register to study the incidence of thyroid cancer during 1970-2013 using joinpoint regression analysis. RESULTS In women, the incidence increased statistically significantly during the whole study period; average annual percentage change (AAPC) +1.19 % (95 % confidence interval (CI) +0.56, +1.83 %). Two joinpoints were detected, 1979 and 2001, with a high increase of the incidence during the last period 2001-2013 with an annual percentage change (APC) of +5.34 % (95 % CI +3.93, +6.77 %). AAPC for all men during 1970-2013 was +0.77 % (95 % CI -0.03, +1.58 %). One joinpoint was detected in 2005 with a statistically significant increase in incidence during 2005-2013; APC +7.56 % (95 % CI +3.34, +11.96 %). Based on NORDCAN data, there was a statistically significant increase in the incidence of thyroid cancer in the Nordic countries during the same time period. In both women and men a joinpoint was detected in 2006. The incidence increased during 2006-2013 in women; APC +6.16 % (95 % CI +3.94, +8.42 %) and in men; APC +6.84 % (95 % CI +3.69, +10.08 %), thus showing similar results as the Swedish Cancer Register. Analyses based on data from the Cancer Register showed that the increasing trend in Sweden was mainly caused by thyroid cancer of the papillary type. CONCLUSIONS We postulate that the whole increase cannot be attributed to better diagnostic procedures. Increasing exposure to ionizing radiation, e.g. medical computed tomography (CT) scans, and to RF-EMF (non-ionizing radiation) should be further studied. The design of our study does not permit conclusions regarding causality.
Collapse
Affiliation(s)
- Michael Carlberg
- />Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Lena Hedendahl
- />Independent Environment and Health Research Luleå, Östra Skolgatan 12, SE-972 53 Luleå, Sweden
| | - Mikko Ahonen
- />Institute of Environmental Health and Safety, Jaama 14-3, 11615 Tallinn, Estonia
| | - Tarmo Koppel
- />Department of Labour Environment and Safety, Tallinn University of Technology, SCO351 Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Lennart Hardell
- />Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|