1
|
Młynarczyk MA, Domian N, Kasacka I. Evaluation of the Canonical Wnt Signaling Pathway in the Hearts of Hypertensive Rats of Various Etiologies. Int J Mol Sci 2024; 25:6428. [PMID: 38928134 PMCID: PMC11204257 DOI: 10.3390/ijms25126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Wnt/β-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3β, and β-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3β, and β-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/β-catenin pathway in the functioning of the heart.
Collapse
Affiliation(s)
| | | | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.A.M.); (N.D.)
| |
Collapse
|
2
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
3
|
Smereczańska M, Domian N, Lewandowska A, Kasacka I. Comparative assessment of CacyBP/SIP, β-catenin and cannabinoid receptors in the adrenals of hypertensive rats. J Cell Mol Med 2024; 28:e18376. [PMID: 38780511 PMCID: PMC11114211 DOI: 10.1111/jcmm.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, β-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, β-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, β-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the β-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing β-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, β-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).
Collapse
MESH Headings
- Animals
- Male
- Rats
- Adrenal Glands/metabolism
- Adrenal Glands/pathology
- beta Catenin/metabolism
- beta Catenin/genetics
- Hypertension/metabolism
- Hypertension/genetics
- Hypertension, Renovascular/metabolism
- Hypertension, Renovascular/genetics
- Hypertension, Renovascular/pathology
- Immunohistochemistry
- Rats, Inbred SHR
- Rats, Wistar
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
Collapse
Affiliation(s)
- Magdalena Smereczańska
- Department of Histology and CytophysiologyMedical University of BialystokBialystokPoland
| | - Natalia Domian
- Department of Histology and CytophysiologyMedical University of BialystokBialystokPoland
| | - Alicja Lewandowska
- Department of Histology and CytophysiologyMedical University of BialystokBialystokPoland
| | - Irena Kasacka
- Department of Histology and CytophysiologyMedical University of BialystokBialystokPoland
| |
Collapse
|
4
|
Smereczańska M, Domian N, Młynarczyk M, Pędzińska-Betiuk A, Kasacka I. Evaluation of the Expression and Localization of the Multifunctional Protein CacyBP/SIP and Elements of the MAPK Signaling Pathway in the Adrenal Glands of Rats with Primary and Secondary Hypertension. Int J Mol Sci 2023; 25:84. [PMID: 38203261 PMCID: PMC10779320 DOI: 10.3390/ijms25010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Hypertension is a global civilization disease and one of the most common causes of death in the world. Organ dysfunction is a serious health consequence of hypertension, which involves damage to the heart, kidneys and adrenals. The interaction of recently discovered multifunctional protein-CacyBP/SIP with ERK1/2 and p38 kinases by regulating the activity and intracellular localization of these kinases may play an important role in the signaling pathways involved in the pathogenesis of hypertension. Due to the lack of data on this subject, we decided to investigate the localization, expression and possible relationship between the studied parameters in the adrenals under arterial hypertension. The study was conducted on the adrenals of rats with spontaneous and DOCA-salt hypertension. The expression of CacyBP/SIP, p-ERK1/2 and p-p38 was detected by immunohistochemistry and qRT-PCR. The results show a statistically significant decrease in CacyBP/SIP expression in the adrenal glands of hypertensive rats. With ERK1/2, there was a decrease in cortical immunoreactivity and an increase in the adrenal medulla of primary hypertensive rats. In contrast, in the adrenals of DOCA-salt rats, ERK1/2 immunoreactivity increased in the cortex and decreased in the medulla. In turn, p38 expression was higher in the adrenal glands of rats with primary and secondary hypertension. The obtained results may suggest the involvement of CacyBP/SIP in the regulation of signaling pathways in which MAP kinases play an important role and provide new insight into molecular events in hypertension. Moreover, they show the participation of CacyBP/SIP in response to oxidative stress.
Collapse
Affiliation(s)
- Magdalena Smereczańska
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
5
|
Młynarczyk M, Kasacka I. The role of the Wnt / β-catenin pathway and the functioning of the heart in arterial hypertension - A review. Adv Med Sci 2022; 67:87-94. [PMID: 35101653 DOI: 10.1016/j.advms.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Many factors and molecular pathways are involved in the pathogenesis of arterial hypertension. The increase in blood pressure may be determined by the properties of specific gene products and their associated action with environmental factors. In recent years, much attention has been paid to the Wnt/β-catenin signaling pathway which is essential for organ damage repair and homeostasis. Deregulation of the activity of the Wnt/β-catenin pathway may be directly or indirectly related to myocardial hypertrophy, as well as to cardiomyocyte remodeling and remodeling processes in pathological states of this organ. There are reports pointing to the role of the Wnt/β-catenin pathway in the course and development of organ complications in conditions of arterial hypertension. This paper presents the current state of knowledge of the role of the Wnt/β-catenin pathway in the regulation of arterial pressure and its impact on the physiology and the development of the complications of arterial hypertension in the heart.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
6
|
Kasacka I, Piotrowska Ż, Niezgoda M, Lewandowska A, Łebkowski W. Ageing-related changes in the levels of β-catenin, CacyBP/SIP, galectin-3 and immunoproteasome subunit LMP7 in the heart of men. PLoS One 2020; 15:e0229462. [PMID: 32119722 PMCID: PMC7051089 DOI: 10.1371/journal.pone.0229462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/06/2020] [Indexed: 01/12/2023] Open
Abstract
Aging is a major risk factor for morbidity and mortality from cardiovascular causes in men. To better understand the cellular processes related to age-related cardiac complications, we undertook research aimed at comparative evaluation of genes expression and distribution of β-catenin, CacyBP/SIP, galectin-3 and LMP7 in the heart of healthy men in different age groups. The study was conducted on the hearts of 12 men (organ donors) without a history of cardiovascular disease, who were divided into two age groups: men under and men over 45 years of age. On paraffin sections, immunohistochemical reactions were performed to detect β-catenin, CacyBP/SIP, galectin-3 and immunoproteasome subunit LMP7. The expression of genes coding β-catenin, CacyBP/SIP, galectin-3 and LMP7 was also evaluated by real-time PCR method. In the heart of men over 45 years old, both gene expression and immunoreactivity of β-catenin, CacyBP/SIP, galectin-3 and LMP7 were stronger compared to younger individuals. The results of the presented studies suggest that β-catenin, CacyBP/SIP, galectin-3 and immunoproteasomes might be involved in the internal regulation of heart homeostasis during ageing.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
- * E-mail: ,
| | - Żaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Michał Niezgoda
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Alicja Lewandowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Wojciech Łebkowski
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
7
|
Szekalska M, Sosnowska K, Tomczykowa M, Winnicka K, Kasacka I, Tomczyk M. In vivo anti-inflammatory and anti-allergic activities of cynaroside evaluated by using hydrogel formulations. Biomed Pharmacother 2019; 121:109681. [PMID: 31810125 DOI: 10.1016/j.biopha.2019.109681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Cynaroside (CYN) is the predominant derivative of luteolin in aerial parts of Bidens tripartita which has been used in folk medicine as a diaphoretic, diuretic, antiseptic and anti-inflammatory agent. In our study, alginate (ALG), which is an anionic polymer with bioadhesive properties, was used as a CYN carrier, and multiple hydrogel formulations were created. Additionally, the present study evaluated the in vivo anti-inflammatory and anti-allergic activities of all preparations. METHODS Novel gel formulations as topical carriers for CYN obtained from B. tripartita were developed and characterized. The bioadhesive properties of the designed preparations were also evaluated in an ex vivo model using the skin of hairless mice. In vitro CYN release from all formulations was examined and analysed by HPLC. Histopathological evaluation of mouse skin sections stained with H&E after carrageenan and oxazolone administration was also carried out. In addition, the influence of CYN on cell proliferation was examined by the PCNA staining method. RESULTS The results showed that 10 % CYN inhibited the release of anti-inflammatory mediators, and both tested concentrations, which included 5 % and 10 % (2 mg and 20 mg CYN per site, respectively), reduced oxazolone-induced ear swelling. Histopathological examination of the samples revealed a marked reduction in paw skin and ear tissue inflammation and in inflammatory infiltrates. The influence of CYN on cell proliferation was examined by the PCNA staining method, and the staining and distribution of PCNA-immunoreactive (PCNA-IR) cells were observed. After the application of the 5 % and 10 % hydrogels, the investigated samples showed decreased nuclear immunoreactivity to PCNA, which was similar to that of the control. Moreover, after application of the placebo formulation, fewer PCNA-IR cells were also observed. CONCLUSION The obtained data suggest that the topical application of CYN significantly reduces the number of T cells, mast cells and histiocytes in mouse skin with inflammation or atopic dermatitis.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Sosnowska
- Department of Pharmaceutical Technology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2c, 15-222 Białystok, Poland
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2c, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2c, 15-222 Białystok, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|