1
|
Adesanya O, Burnett AL. Priapism-related biomarkers in sickle cell disease: a systematic review. Sex Med Rev 2025; 13:246-255. [PMID: 39916382 DOI: 10.1093/sxmrev/qeaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Priapism is a major clinical complication of sickle cell disease (SCD), with severe sexual, reproductive, and mental health impact. There are currently no consensus diagnostic biomarkers for identifying individuals with SCD at risk of priapism before its occurrence. OBJECTIVES To systematically review the biochemical, hematological, imaging, genetic, and rheological parameters associated with priapism occurrence among individuals with SCD. METHODS A systematic literature search for studies investigating the association of biochemical, hematological, rheological, imaging, rheological, and genetic parameters with the occurrence of priapism in individuals with SCD was performed in the MEDLINE, Embase, and Cochrane databases, using the following terms: "priapism," "sickle cell," "biomarker," "marker," "laboratory," "radiographic," "diagnostic," and "predictive." A systematic review of the identified studies was conducted to describe the landscape of priapism-related biomarkers in individuals with SCD. RESULTS A total of 358 studies were identified, of which 14 studies were eventually selected for evidence synthesis. The selected studies were published between 2005 and 2023, with authorship spanning five continents. We identified multiple clinical parameters investigated as potential biomarker candidates for their association with priapism occurrence in patients with SCD. We classified these into biochemical (lactate dehydrogenase, bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, nitric oxide metabolites, interleukin 6), hematological (hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, reticulocyte count, leukocyte count), genetic (Klotho, TGFBR3, QAP1, ITGAV, LNC02537, NAALADL2), rheological (red blood cell deformability, aggregation index, augmentation index), and imaging parameters. However, the results were often contradictory and do not support the clinical application of any of the investigated parameters. CONCLUSION Several clinical and laboratory parameters have been associated with priapism occurrence in SCD; however, contradictory findings across geographical locations paint an unreliable picture of their clinical utility. Additional studies are needed to generate enough level 1 evidence in support of any of the current candidates.
Collapse
Affiliation(s)
- Oluwafolajimi Adesanya
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287-2101, United States
| | - Arthur L Burnett
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287-2101, United States
| |
Collapse
|
2
|
Nandi P, Ellis R, Deshpande A. A Patient Centric Model for Vaso-Occlusive Crises in Sickle Cell Disease-Outcomes of a Consensus Exercise Conducted Across Patients and Experts. Clin Transl Sci 2025; 18:e70197. [PMID: 40135919 PMCID: PMC11938379 DOI: 10.1111/cts.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Sickle cell disease (SCD) is a group of inherited disorders caused by a mutation in the beta globin gene that leads to sickling of red blood cells and results in anemia and Vaso-occlusive crises (VOC). VOC are described as an acute worsening of symptoms impacting daily life and often requiring treatment to resolve. A majority of SCD interventional trial endpoints consider VOC that require attendance at a health facility and do not account for VOC managed at home. These studies report lower VOC incidence compared to those that consider VOC managed both in the healthcare setting and at home. This presents challenges to the consistent and accurate assessment of treatment effect in reducing overall VOC count. This paper outlines a USA consensus exercise conducted with patients and a scientific expert review committee to develop a patient-centric VOC model that may apply across incidences, individuals, and treatment settings. The model is supported by a monitoring biomarker specification for the objective identification and classification of VOC taking place in the healthcare setting and at home. We additionally propose hardware, software, diaries, and patient-reported outcomes for an initial instrument design to evaluate the potential of the model in a validation study.
Collapse
|
3
|
Kostamo Z, Ortega MA, Xu C, Feliciano PR, Budak E, Lam D, Winton V, Jenkins R, Venugopal A, Zhang M, Jamieson J, Coisman B, Goldsborough K, Hernandez B, Kanne CK, Evans EN, Zgodny J, Zhang Y, Darazim J, Patel A, Pendergast MA, Manis J, Hartigan AJ, Ciaramella G, Lee SJ, Chu SH, Sheehan VA. Base editing HbS to HbG-Makassar improves hemoglobin function supporting its use in sickle cell disease. Nat Commun 2025; 16:1441. [PMID: 39920120 PMCID: PMC11806015 DOI: 10.1038/s41467-025-56578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Adenine base editing can convert sickle hemoglobin (HbS, βΕ6V) to G-Makassar hemoglobin (HbG, βE6A), a naturally occurring variant that is clinically asymptomatic. However, the quality and functionality of purified HbG and of mature HbGG and HbGS red blood cells (RBC) has not been assessed. Here, we develop a mouse model to characterize HbG. Purified HbG appears normal and does not polymerize under hypoxia. The topology of the hemoglobin fold with the βΕ6Α mutation is similar to HbA in the oxy and deoxy states. However, RBC containing HbGS are dehydrated, showing altered function and increased sickling under hypoxia. Blood counts and mitochondrial retention measures place HbGS RBCs as intermediate in severity between HbAS and HbSS, while organ function is comparable to HbAS. HbGG resembles HbAA for most metrics. Our results highlight the importance of functionally assessing the mature red cell environment when evaluating novel gene editing strategies for hematologic disorders.
Collapse
Affiliation(s)
- Zachary Kostamo
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | | | | | | | | | - Daisy Lam
- Beam Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Britney Hernandez
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Celeste K Kanne
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Erica N Evans
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Jordan Zgodny
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Yankai Zhang
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Jawa Darazim
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Ashwin Patel
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | | | - John Manis
- Joint Program in Transfusion Medicine, Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Vivien A Sheehan
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA.
| |
Collapse
|
4
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
5
|
Bhat V, Sheehan VA. Can we use biomarkers to identify those at risk of acute pain from sickle cell disease? Expert Rev Hematol 2024; 17:411-418. [PMID: 38949576 DOI: 10.1080/17474086.2024.2372322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Acute pain episodes, also known as vaso-occlusive crises (VOC), are a major symptom of sickle cell disease (SCD) and lead to frequent hospitalizations. The diagnosis of VOC can be challenging, particularly in adults with SCD, 50% of whom have chronic pain. Several potential biomarkers have been proposed for identifying individuals with VOC, including elevation above the baseline of various vascular growth factors, cytokines, and other markers of inflammation. However, none have been validated to date. AREAS COVERED We summarize prospective biomarkers for the diagnosis of acute pain in SCD, and how they may be involved in the pathophysiology of a VOC. Previous and current strategies for biomarker discovery, including the use of omics techniques, are discussed. EXPERT OPINION Implementing a multi-omics-based approach will facilitate the discovery of objective and validated biomarkers for acute pain.
Collapse
Affiliation(s)
- Varsha Bhat
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Petiwathayakorn T, Paradee N, Hantrakool S, Jarujareet U, Intharah T, Srichairatanakool S, Koonyosying P. A Compact Differential Dynamic Microscopy-based Device (cDDM): An Approach Tool for Early Detection of Hypercoagulable State in Transfusion-Dependent-β-Thalassemia Patients. ACS APPLIED BIO MATERIALS 2024; 7:4710-4724. [PMID: 38920024 PMCID: PMC11253095 DOI: 10.1021/acsabm.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
β-Thalassemia especially transfusion-dependent thalassemia (TDT) associates with a hypercoagulable state, which is the main cause of thromboembolic events (TEE). Plasma viscosity and rheological parameters could be essential markers for determining hypercoagulable state in β-thalassemia patients. The traditional methods for measuring viscosity are often limited by large sample volumes and are impractical for routine clinical monitoring. The compact differential dynamic microscopy-based device (cDDM), an optical microscopy for quantitative rheological assessment, was developed and applied for prognosis of the hypercoagulable state in β-TDT with and without splenectomy. The device was performed plasma viscosity measurement using low plasma volume (8 μL) and revealed a value as modulus of complex viscosity |η(ω)| in 7 min. We also parallelly demonstrated the correlation of the viscosity and related-coagulable parameters: complete blood count, prothrombin time (PT), activated partial thromboplastin time (APTT), protein C (PC), protein S (PS), CD62P and CD63 expression, and platelet aggregation test. The thalassemia plasma exhibited a higher value of |η(ω)| than healthy plasma, which can represent a different viscoelastic property among the groups. Even all related-coagulable parameters indicated hypercoagulable state in both nonsplenectomies and splenectomies β-TDT patients when compared to control, only high platelet numbers significantly correlated to high plasma viscosity in the splenectomy group. However, the other coagulable parameters have shown a trend of positive relationship with high plasma viscosity in all β-1thalassemia TDT patients. The relative results suggested that our device would be an approach tool for early detection of hypercoagulable state in transfusion-dependent-β-thalassemia patients, which can help to prevent TEE and the critical consequent-complications.
Collapse
Affiliation(s)
- Touchwin Petiwathayakorn
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Sasinee Hantrakool
- Division
of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ungkarn Jarujareet
- NECTEC, National
Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanapong Intharah
- Visual
Intelligence Laboratory, Department of Statistics, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somdet Srichairatanakool
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Larkin SK, Hernández C, van Beers EJ, van Wijk R, Kuypers FA. The RoxyScan is a novel measurement of red blood cell deformability under oxidative and shear stress. Sci Rep 2024; 14:6344. [PMID: 38491086 PMCID: PMC10943210 DOI: 10.1038/s41598-024-56814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Exposure to both oxidative and shear stress, a condition that the red blood cell (RBC) continuously experiences in the circulation in vivo can be mimicked in a Couette type viscometer and monitored by ektacytometry. RBCs maintain their deformation and orientation under shear stress and oxidative stress until a threshold is reached at which these conditions appear to overwhelm the elaborate and complex pathways that maintain a proper redox environment in the cell. Oxidative stress under shear alters the ability of the cell to deform, changes cell morphology, its orientation in the shear stress field, and appears to alter intracellular and membrane characteristics. The application of the RoxyScan technology allows the comparison of oxidant effects and the role of antioxidant systems. This provides the opportunity to study the ability of RBC to deal with oxidative stress in various conditions, including RBC disorders such as sickle cell disease (SCD).
Collapse
Affiliation(s)
- Sandra K Larkin
- Department of Pediatrics, University of California San Francisco, UCSF RBClab, 5700 MLK Jr. Way, Oakland, CA, 94609, USA.
| | - Carolina Hernández
- Department Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Eduard J van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Richard van Wijk
- Department Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Frans A Kuypers
- Department of Pediatrics, University of California San Francisco, UCSF RBClab, 5700 MLK Jr. Way, Oakland, CA, 94609, USA
| |
Collapse
|
8
|
Ansong-Ansongton YON, Adamson TD. Computing Sickle Erythrocyte Health Index on quantitative phase imaging and machine learning. Exp Hematol 2024; 131:104166. [PMID: 38246310 DOI: 10.1016/j.exphem.2024.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by abnormal hemoglobin and deformation of red blood cells (RBCs), leading to complications and reduced life expectancy. This study developed an in vitro assessment, the Sickle Erythrocyte Health Index, using quantitative phase imaging (QPI) and machine learning to model the health of RBCs in people with SCD. The health index combines assessment of cell deformation, sickle-shaped classification, and membrane flexibility to evaluate erythrocyte health. Using QPI and image processing, the percentage of sickle-shaped cells and membrane flexibility were quantified. Statistically significant differences were observed between individuals with and without SCD, indicating the impact of underlying pathophysiology on erythrocyte health. Additionally, sodium metabisulfite led to an increase in sickle-shaped cells and a decrease in flexibility in the sickle cell blood samples. Based on these findings, two approaches were used to calculate the Sickle Erythrocyte Health Index: one using hand-crafted features and one using learned features from deep learning models. Both indices showed significant differences between non-SCD and SCD groups and sensitivity to changes induced by sodium metabisulfite. The Sickle Erythrocyte Health Index has important clinical implications for SCD management and could be used by providers when making treatment decisions. Further research is warranted to evaluate the clinical utility and applicability of the Sickle Erythrocyte Health Index in diverse patient populations.
Collapse
Affiliation(s)
- Yaw Ofosu Nyansa Ansong-Ansongton
- Department of Bioengineering, KovaDx, New Haven, CT; Department of Bioengineering, University of California Berkeley, Bioengineering, Berkeley, CA.
| | - Timothy D Adamson
- Department of Bioengineering, KovaDx, New Haven, CT; Department of Bioengineering, University of California Berkeley, Bioengineering, Berkeley, CA
| |
Collapse
|
9
|
de Sá ACMGN, da Silva AG, Gomes CS, de Sá ATN, Malta DC. Differences between reference intervals of blood counts of Brazilian adults with and without sickle cell trait according to laboratory tests from the National Health Survey. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2023; 26Suppl 1:e230003. [PMID: 39440819 PMCID: PMC10176731 DOI: 10.1590/1980-549720230003.supl.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To compare reference intervals (RI) of blood counts of Brazilian adults with and without sickle cell trait (SCT). METHODS Cross-sectional study, based on the National Health Survey, 2014-2015, composed of 8,952 individuals. The sample of patients with SCT was composed of 234 adults. The RIs of adults with and without SCT were compared in the study "Reference values for laboratory tests of blood count in the Brazilian adult population: National Health Survey", by Rosenfeld et al. (2019). The parametric method and the Student's t test were used for comparison (p≤0.05). RESULTS There were statistically significant differences between RIs of adults with and without SCT as far as sex is concerned for hemoglobin, MCV, MCH, MCHC, white blood cells, absolute lymphocytes, mean platelet volume and RDW; At all ages, for white blood cells and RDW in men and for MCV, MCH, MCHC, mean platelet volume and RDW in women; Between 18 to 59 years, for MCH, MCV, MCHC, neutrophils, lymphocytes and platelets in men and in women for lymphocytes, red blood cells, white blood cells, neutrophils, eosinophils, monocytes and platelets; From 60 years old on, for hemoglobin and hematocrit in men and in women for hematocrit, white blood cells, neutrophils and platelets; In white, black and brown people for white blood cells, neutrophils and platelets (p<0.05). CONCLUSION Brazilian adults with SCT had lower counts of hemoglobin, MCV, MCH, MCHC, white blood cells and higher RDW than without SCT. The results show the importance of genetic counseling and further research to support the proper management of this condition in Brazil.
Collapse
Affiliation(s)
| | - Alanna Gomes da Silva
- Universidade Federal de Minas Gerais, Nursing School, Department of Maternal-Child and Public Health Nursing, Graduate Program in Nursing – Belo Horizonte (MG), Brazil
| | - Crizian Saar Gomes
- Universidade Federal de Minas Gerais, Medical School, Graduate Program in Public Health – Belo Horizonte (MG), Brazil
| | - Antonio Tolentino Nogueira de Sá
- Universidade Federal de Minas Gerais, Medical School, Graduate Program in Sciences Applied to Adult Health, Hospital das Clínicas, and Department of Occupational Health Assistance – Belo Horizonte (MG), Brazil
- Faculdade de Ciências Médicas de Minas Gerais, Medical Clinic Department – Belo Horizonte (MG), Brazil
| | - Deborah Carvalho Malta
- Universidade Federal de Minas Gerais, Nursing School, Department of Maternal-Child and Public Health Nursing – Belo Horizonte (MG), Brasil
| |
Collapse
|
10
|
Bizjak DA, John L, Matits L, Uhl A, Schulz SVW, Schellenberg J, Peifer J, Bloch W, Weiß M, Grüner B, Bracht H, Steinacker JM, Grau M. SARS-CoV-2 Altered Hemorheological and Hematological Parameters during One-Month Observation Period in Critically Ill COVID-19 Patients. Int J Mol Sci 2022; 23:15332. [PMID: 36499657 PMCID: PMC9735540 DOI: 10.3390/ijms232315332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hematological and hemorheological parameters are known to be altered in COVID-19; however, the value of combined monitoring in order to deduce disease severity is only scarcely examined. A total of 44 acute SARS-CoV-2-infected patients (aCOV) and 44 age-matched healthy controls (Con) were included. Blood of aCOV was sampled at admission (T0), and at day 2 (T2), day 5 (T5), day 10 (T10), and day 30 (T30) while blood of Con was only sampled once. Inter- and intra-group differences were calculated for hematological and hemorheological parameters. Except for mean cellular volume and mean cellular hemoglobin, all blood cell parameters were significantly different between aCOV and Con. During the acute disease state (T0-T5), hematological and hemorheological parameters were highly altered in aCOV; in particular, anemic conditions and increased immune cell response/inflammation, oxidative/nitrosative stress, decreased deformability, as well as increased aggregation, were observed. During treatment and convalescence until T30, almost all abnormal values of aCOV improved towards Con values. During the acute state of the COVID-19 disease, the hematological, as well as the hemorheological system, show fast and potentially pathological changes that might contribute to the progression of the disease, but changes appear to be largely reversible after four weeks. Measuring RBC deformability and aggregation, as well as oxidative stress induction, may be helpful in monitoring critically ill COVID-19 patients.
Collapse
Affiliation(s)
| | - Lucas John
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Alisa Uhl
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | | | - Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Johannes Peifer
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Manfred Weiß
- Clinic for Anaesthesiology and Intensive Care Medicine, University Hospital Medical School, 89081 Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine III, Division of Infectious Diseases, University Hospital Ulm, 89081 Ulm, Germany
| | - Hendrik Bracht
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Marijke Grau
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
11
|
Man Y, An R, Monchamp K, Sekyonda Z, Kucukal E, Federici C, Wulftange WJ, Goreke U, Bode A, Sheehan VA, Gurkan UA. OcclusionChip: A functional microcapillary occlusion assay complementary to ektacytometry for detection of small-fraction red blood cells with abnormal deformability. Front Physiol 2022; 13:954106. [PMID: 36091387 PMCID: PMC9452903 DOI: 10.3389/fphys.2022.954106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Red blood cell (RBC) deformability is a valuable hemorheological biomarker that can be used to assess the clinical status and response to therapy of individuals with sickle cell disease (SCD). RBC deformability has been measured by ektacytometry for decades, which uses shear or osmolar stress. However, ektacytometry is a population based measurement that does not detect small-fractions of abnormal RBCs. A single cell-based, functional RBC deformability assay would complement ektacytometry and provide additional information. Here, we tested the relative merits of the OcclusionChip, which measures RBC deformability by microcapillary occlusion, and ektacytometry. We tested samples containing glutaraldehyde-stiffened RBCs for up to 1% volume fraction; ektacytometry detected no significant change in Elongation Index (EI), while the OcclusionChip showed significant differences in Occlusion Index (OI). OcclusionChip detected a significant increase in OI in RBCs from an individual with sickle cell trait (SCT) and from a subject with SCD who received allogeneic hematopoietic stem cell transplant (HSCT), as the sample was taken from normoxic (pO2:159 mmHg) to physiologic hypoxic (pO2:45 mmHg) conditions. Oxygen gradient ektacytometry detected no difference in EI for SCT or HSCT. These results suggest that the single cell-based OcclusionChip enables detection of sickle hemoglobin (HbS)-related RBC abnormalities in SCT and SCD, particularly when the HbS level is low. We conclude that the OcclusionChip is complementary to the population based ektacytometry assays, and providing additional sensitivity and capacity to detect modest abnormalities in red cell function or small populations of abnormal red cells.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Karamoja Monchamp
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
- Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Chiara Federici
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
- Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - William J. Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
- Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Umut A. Gurkan,
| |
Collapse
|
12
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Kanne CK, Nebor D, Pochron M, Oksenberg D, Sheehan VA. Rheological Impact of GBT1118 Cessation in a Sickle Mouse Model. Front Physiol 2021; 12:742784. [PMID: 34630162 PMCID: PMC8497897 DOI: 10.3389/fphys.2021.742784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
In sickle cell disease (SCD), higher whole blood viscosity is a risk factor for vaso-occlusive crisis, avascular necrosis, and proliferative retinopathy. Blood viscosity is strongly impacted by hemoglobin (Hb) levels and red blood cell (RBC) deformability. Voxelotor is a hemoglobin S (HbS) polymerization inhibitor with anti-sickling properties that increases the Hb affinity for oxygen, thereby reducing HbS polymerization. In clinical trials, voxelotor increased Hb by an average of 1g/dl, creating concern that this rise in Hb could increase viscosity, particularly when the drug was cleared. To investigate this potential rebound hyperviscosity effect, we treated SCD mice with GBT1118, a voxelotor analog, and stopped the treatment to determine the effect on blood viscosity and RBC deformability under a range of oxygen concentrations. GBT1118 treatment increased Hb, improved RBC deformability by increasing the elongation index under normoxic (EImax) and hypoxic conditions (EImin), and decreased the point of sickling (PoS) without increasing blood viscosity. The anti-sickling effects and improvement of RBC deformability balanced the effect of increased Hb such that there was no increase in blood viscosity. Forty-eight hours after ceasing GBT1118, Hb declined from the rise induced by treatment, viscosity did not increase, and EImin remained elevated compared to control animals. Hb and PoS were not different from control animals, suggesting a return to native oxygen affinity and clearance of the drug. RBC deformability did not return to baseline, suggesting some residual rheological improvement. These data suggest that concerns regarding viscosity rise above pre-treatment levels upon sudden cessation of voxelotor are not warranted.
Collapse
Affiliation(s)
- Celeste K. Kanne
- Aflac Cancer & Blood Disorders Center Children’s Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| | - Danitza Nebor
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| | - Mira Pochron
- Global Blood Therapeutics, South, San Francisco, CA, United States
| | - Donna Oksenberg
- Global Blood Therapeutics, South, San Francisco, CA, United States
| | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center Children’s Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarizes the significant biophysical and rheological aspects of red blood cell physiology and pathophysiology in relation to recent advances in microfluidic biomarker assays and emerging targeted or curative intent therapies. RECENT FINDINGS Alterations in red cell biophysical properties and blood rheology have been associated with numerous hematologic and circulatory disorders. Recent advances in biomarker assays enable effective assessment of these biophysical and rheological properties in normoxia or physiological hypoxia in a clinically meaningful way. There are emerging targeted or curative therapies that aim to improve red cell pathophysiology, especially in the context of inherited hemoglobin disorders, such as sickle cell disease. SUMMARY Red cell pathophysiology can be therapeutically targeted and the improvements in membrane and cellular biophysics and blood rheology can now be feasibly assessed via new microfluidic biomarker assays. Recent advances provide a new hope and novel treatment options for major red cell ailments, including inherited hemoglobin disorders, membrane disorders, and other pathologies of the red cell, such as malaria.
Collapse
Affiliation(s)
- Umut A. Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
16
|
Man Y, Kucukal E, An R, Bode A, Little JA, Gurkan UA. Standardized microfluidic assessment of red blood cell-mediated microcapillary occlusion: Association with clinical phenotype and hydroxyurea responsiveness in sickle cell disease. Microcirculation 2021; 28:e12662. [PMID: 33025653 DOI: 10.1111/micc.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Little
- Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Kucukal E, Man Y, Hill A, Liu S, Bode A, An R, Kadambi J, Little JA, Gurkan UA. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. Am J Hematol 2020; 95:1246-1256. [PMID: 32656816 PMCID: PMC7689825 DOI: 10.1002/ajh.25933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β‐globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Ailis Hill
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Allison Bode
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jaikrishnan Kadambi
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jane A. Little
- Division of Hematology and Blood Research Center, Department of Medicine University of North Carolina Chapel Hill North Carolina
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| |
Collapse
|