1
|
Shao M, Jin M, Feizhou L, Ma X, Wei Z. Administration of hypoxic pretreated adipose-derived mesenchymal stem cell exosomes promotes spinal cord repair after injury via delivery of circ-Astn1 and activation of autophagy. Int Immunopharmacol 2025; 152:114324. [PMID: 40049089 DOI: 10.1016/j.intimp.2025.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND The aim of this study was to investigate the role and mechanism of exosomes isolated from adipose-derived mesenchymal stem cells (ADSCs) on spinal cord repair. METHODS High-throughput sequencing was used to investigate abnormal expression of circular RNA (circRNA) in ADSC exosomes pretreated under hypoxic conditions (HExos) and ADSCs exosomes under normal conditions (Exos). The abnormal expression of mRNA in spinal cord tissues was also analyzed using high-throughput sequencing. Bioinformatics and luciferase reporter analyses were used to clarify the relationship among circRNA, micro RNA (miRNA), and mRNA. BV2 cells were used to analyze apoptosis levels and inflammatory cytokine expression under oxygen-glucose deprivation (OGD) conditions by using immunofluorescence and enzyme-linked immunosorbent assay (ELISAs). An SCI mouse model was also constructed and the therapeutic effect of Exos was detected using immunohistochemistry and immunofluorescence. RESULTS High-throughput sequencing results showed that circ-Astn1 played a role in HExo-mediated spinal cord repair after SCI. Downregulation of circ-Astn1 decreased the therapeutic effect of HExos. We also found that Atg7 played a role in HExo-mediated spinal cord repair after SCI. Luciferase reporter analysis confirmed that both miR-138-5p and Atg7 were downstream targets of circ-Astn1. Downregulation of Atg7 or overexpression of miR-138-5p reversed the protective effect of circ-Astn1 on BV2 cells after exposure to OGD conditions. In contrast, upregulation of circ-Astn1 increased the therapeutic effects of Exo-mediated spinal cord repair after SCI via autophagy activation. CONCLUSIONS Taken together, the results indicate that ADSC-Exos containing circ-Astn1 promoted spinal cord repair after SCI by targeting the miR-138-5p/Atg7 pathway, which mediated autophagy.
Collapse
Affiliation(s)
- Minghao Shao
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Lv Feizhou
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaosheng Ma
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhu Wei
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China.
| |
Collapse
|
2
|
Jiang M, Li Y, Fan W, Shen X, Jiang K, Wang D. Circ-KATNAL1 Knockdown Reduces Neuronal Apoptosis and Alleviates Spinal Cord Injury Through the miR-98-5p/PRDM5 Regulatory Axis. Mol Biotechnol 2024; 66:2841-2849. [PMID: 37758970 DOI: 10.1007/s12033-023-00895-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Spinal cord injury (SCI) is a common disease of the central nervous system. circRNAs play a crucial role in neurological disease. The purpose of this study was to investigate the role of circ-KATNAL1 in SCI and its regulatory mechanism. T9-L10 spinal segment of Sprague Dawley rats was compressed or contused after T10 laminectomy to establish the SCI rat model. Then, rats were divided into SCI group, si-NC group, si-circ-KATNAL1 group, si-circ-KATNAL1 + antagomir NC group, si-circ-KATNAL1 + miR-98-5p antagomir group, si-circ-KATNAL1 + oe-NC group, and si-circ-KATNAL1 + oe-PRDM5 group, with 6 rats in each group. There was another sham operation group that received no treatment. Basso, Beattie, and Bresnahan (BBB) scores were used to evaluate the neural function of rats. In addition to that, the pathological changes of spinal cord tissue, neuronal apoptosis, and inflammatory responses were correspondingly observed and analyzed. Quantitative measurements of circ-KATNAL1, miR-98-5p, and PRDM5 levels were conducted, as well as analyses of their interrelationship. Circ-KATNAL1 was up-regulated in the spinal cord tissue of SCI rats, and circ-KATNAL1 knockdown could improve neural function, alleviate pathological changes of spinal cord tissue, and inhibit neuronal apoptosis and inflammatory responses in SCI rats. For miR-98-5p, circ-KATNAL1 was an upstream factor, while PRDM5 was a downstream actor. miR-98-5p deficiency or PRDM5 restoration impaired the remission effect of circ-KATNAL1 knockdown on SCI. Circ-KATNAL1 knockdown reduces neuronal apoptosis and alleviates SCI through miR-98-5p/PRDM5 regulatory axis.
Collapse
Affiliation(s)
- MinBo Jiang
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China
| | - Yang Li
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China
| | - WenWen Fan
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China
| | - XiaoYan Shen
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China
| | - Kai Jiang
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China.
| | - DeGuo Wang
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, No. 746 Zhongshan Middle Road, Songjiang District, Shanghai, 201699, China.
| |
Collapse
|
3
|
Zong Y, Dai Y, Yan J, Yu B, Wang D, Mao S. The roles of circular RNAs in nerve injury and repair. Front Mol Neurosci 2024; 17:1419520. [PMID: 39077756 PMCID: PMC11284605 DOI: 10.3389/fnmol.2024.1419520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Nerve injuries significantly impact the quality of life for patients, with severe cases posing life-threatening risks. A comprehensive understanding of the pathophysiological mechanisms underlying nerve injury is crucial to the development of effective strategies to promote nerve regeneration. Circular RNAs (circRNAs), a recently characterized class of RNAs distinguished by their covalently closed-loop structures, have been shown to play an important role in various biological processes. Numerous studies have highlighted the pivotal role of circRNAs in nerve regeneration, identifying them as potential therapeutic targets. This review aims to succinctly outline the latest advances in the role of circRNAs related to nerve injury repair and the underlying mechanisms, including peripheral nerve injury, traumatic brain injury, spinal cord injury, and neuropathic pain. Finally, we discuss the potential applications of circRNAs in drug development and consider the potential directions for future research in this field to provide insights into circRNAs in nerve injury repair.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Guo Z, Zhao Z, Wang X, Zhou J, Liu J, Plunet W, Ren W, Tian L. Identification of mitophagy-related hub genes during the progression of spinal cord injury by integrated multinomial bioinformatics analysis. Biochem Biophys Rep 2024; 38:101654. [PMID: 38375420 PMCID: PMC10875195 DOI: 10.1016/j.bbrep.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Spinal cord injury (SCI) is a disturbance of peripheral and central nerve conduction that causes disability in sensory and motor function. Currently, there is no effective treatment for SCI. Mitophagy plays a vital role in mitochondrial quality control during various physiological and pathological processes. The study aimed to elucidate the role of mitophagy and identify potential mitophagy-related hub genes in SCI pathophysiology. Two datasets (GSE15878 and GSE138637) were analyzed. Firstly, the differentially expressed genes (DEGs) were identified and mitophagy-related genes were obtained from GeneCards, then the intersection between SCI and mitophagy-related genes was determined. Next, we performed gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), protein-protein interaction network (PPI network), least absolute shrinkage and selection operator (LASSO), and cluster analysis to identify and define the hub genes in SCI. Finally, the link between hub genes and infiltrating immune cells was investigated and the potential transcriptional regulation/small molecular compounds to target hub genes were predicted. In total, SKP1 and BAP1 were identified as hub genes of mitophagy-related DEGs during SCI development and regulatory T cells (Tregs)/resting NK cells/activated mast cells may play an essential role in the progression of SCI. LINC00324 and SNHG16 may regulate SKP1 and BAP1, respectively, through miRNAs. Eleven and eight transcriptional factors (TFs) regulate SKP1 and BAP1, respectively, and six small molecular compounds target BAP1. Then, the mRNA expression levels of BAP1 and SKP1 were detected in the injured sites of spinal cord of SD rats at 6 h and 72 h after injury using RT-qPCR, and found that the level were decreased. Therefore, the pathways of mitophagy are downregulated during the pathophysiology of SCI, and SKP1 and BAP1 could be accessible targets for diagnosing and treating SCI.
Collapse
Affiliation(s)
- Zhihao Guo
- The Department of Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zihui Zhao
- Institute of Trauma & Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoge Wang
- Institute of Trauma & Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Zhou
- The Department of Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Liu
- Institute of Trauma & Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ward Plunet
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Wenjie Ren
- Institute of Trauma & Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linqiang Tian
- The Department of Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Trauma & Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Zhang Y, Zhang D, Jiao X, Yue X, Cai B, Lu S, Xu R. Uncovering the shared neuro-immune-related regulatory mechanisms between spinal cord injury and osteoarthritis. Heliyon 2024; 10:e30336. [PMID: 38707272 PMCID: PMC11068815 DOI: 10.1016/j.heliyon.2024.e30336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Adults with spinal cord injury (SCI), a destructive neurological injury, have a significantly higher incidence of osteoarthritis (OA), a highly prevalent chronic joint disorder. This study aimed to dissect the neuroimmune-related regulatory mechanisms of SCI and OA using bioinformatics analysis. Using microarray data from the Gene Expression Omnibus database, differentially expressed genes (DEGs) were screened between SCI and sham samples and between OA and control samples. Common DEGs were used to construct a protein-protein interaction (PPI) network. Weighted gene co-expression network analysis (WGCNA) was used to mine SCI- and OA-related modules. Shared miRNAs were identified, and target genes were predicted using the Human MicroRNA Disease Database (HMDD) database. A miRNA-gene-pathway regulatory network was constructed with overlapping genes, miRNAs, and significantly enriched pathways. Finally, the expression of the identified genes and miRNAs was verified using RT-qPCR. In both the SCI and OA groups, 185 common DEGs were identified, and three hub clusters were obtained from the PPI network. WGCNA revealed three SCI-related modules and two OA-related modules. There were 43 overlapping genes between the PPI network clusters and the WGCNA network modules. Seventeen miRNAs shared between patients with SCI and OA were identified. A regulatory network consisting of five genes, six miRNAs, and six signaling pathways was constructed. Upregulation of CD44, TGFBR1, CCR5, and IGF1, while lower levels of miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p in both SCI and OA were successfully verified using RT-qPCR. Our study suggests that a miRNA-gene-pathway network is implicated in the neuroimmune-related regulatory mechanisms of SCI and OA. CD44, TGFBR1, CCR5, and IGF1, and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) may serve as promising biomarkers and candidate therapeutic targets for SCI and OA.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Renjie Xu
- Department of Rehabilitation Medicine, Kunshan Rehabilitation Hospital, Suzhou 210000, Jiangsu, China
| |
Collapse
|