1
|
Pei SL, Chen RS, Chen MH. The crucial role of centrioles in tooth growth and development. J Formos Med Assoc 2025; 124:271-277. [PMID: 38704334 DOI: 10.1016/j.jfma.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Tooth development hinged on reciprocal interactions between enamel and dentin, shaping tooth structures. Centrioles influenced cellular direction, critical for stem cell differentiation. Aberrant centrioles contributed to conditions like Huntington's disease and cancers. Centriole-related gene mutations, like Pericentrin and Centrosomal P4.1-associated protein (CPAP), led to tooth abnormalities, microcephaly. Our study explored the role of centrioles in ameloblasts during molar growth, shedding light on tooth development mechanisms. METHODS Tissue sections underwent immunofluorescence and hematoxylin and eosin staining to observe centriole changes in C57BL/6 mouse molars (1,3,5,7, and 9 days). Emphasis was placed on comparing centrioles in enamel and ameloblasts between Nestin-Cremediated Cpap conditional knockout in p53-deficient mice (Cpap(-/-) mice) and normal mice on the ninth day. RESULTS In mouse molar tissue, ameloblasts and enamel underwent notable changes during the 1-9 days after birth. Centrioles in ameloblasts exhibited dynamic temporal localization, migrating away from cell nuclei towards enamel generation. Correlation between enamel thickness and centriole quantity suggested a relationship. Comparative analysis of normal and Cpap (-/-) mice on the ninth day revealed differences in enamel thickness, ameloblast elongation, and centriole distribution, highlighting the impact of CPAP deficiency on tooth development. CONCLUSION This study affirmed the positive contribution of ciliated centrioles in ameloblasts to enamel growth during the secretory phase. Increased centrioles correlated with enhanced enamel formation. Conversely, CPAP loss disrupted centriole organization, impacting ameloblast morphology and functionality, resembling enamel hypoplasia observed in microcephaly patients. Further research is essential to unravel molecular mechanisms and potential interactions with odontoblast centrioles.
Collapse
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Alghadeer A, Hanson-Drury S, Patni AP, Ehnes DD, Zhao YT, Li Z, Phal A, Vincent T, Lim YC, O'Day D, Spurrell CH, Gogate AA, Zhang H, Devi A, Wang Y, Starita L, Doherty D, Glass IA, Shendure J, Freedman BS, Baker D, Regier MC, Mathieu J, Ruohola-Baker H. Single-cell census of human tooth development enables generation of human enamel. Dev Cell 2023; 58:2163-2180.e9. [PMID: 37582367 PMCID: PMC10629594 DOI: 10.1016/j.devcel.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.
Collapse
Affiliation(s)
- Ammar Alghadeer
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sesha Hanson-Drury
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Anjali P Patni
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yan Ting Zhao
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Zicong Li
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ashish Phal
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas Vincent
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yen C Lim
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Diana O'Day
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Cailyn H Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Hai Zhang
- Department of Restorative Dentistry, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lea Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Ian A Glass
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin S Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle WA 98109
| | - David Baker
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Mary C Regier
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Yao S, Zhou X, Gu M, Zhang C, Bartsch O, Vona B, Fan L, Ma L, Pan Y. FGFR1 variants contributed to families with tooth agenesis. Hum Genomics 2023; 17:93. [PMID: 37833774 PMCID: PMC10576343 DOI: 10.1186/s40246-023-00539-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Tooth agenesis is a common dental anomaly that can substantially affect both the ability to chew and the esthetic appearance of patients. This study aims to identify possible genetic factors that underlie various forms of tooth agenesis and to investigate the possible molecular mechanisms through which human dental pulp stem cells may play a role in this condition. RESULTS Using whole-exome sequencing of a Han Chinese family with non-syndromic tooth agenesis, a rare mutation in FGFR1 (NM_001174063.2: c.103G > A, p.Gly35Arg) was identified as causative and confirmed by Sanger sequencing. Via GeneMatcher, another family with a known variant (NM_001174063.2: c.1859G > A, p.Arg620Gln) was identified and diagnosed with tooth agenesis and a rare genetic disorder with considerable intrafamilial variability. Fgfr1 is enriched in the ectoderm during early embryonic development of mice and showed sustained low expression during normal embryonic development of Xenopus laevis frogs. Functional studies of the highly conserved missense variant c.103G > A showed deleterious effects. FGFR1 (c.103G > A) was overexpressed compared to wildtype and promoted proliferation while inhibiting apoptosis in HEK293 and human dental pulp stem cells. Moreover, the c.103G > A variant was found to suppress the epithelial-mesenchymal transition. The variant could downregulate ID4 expression and deactivate the TGF-beta signaling pathway by promoting the expression of SMAD6 and SMAD7. CONCLUSION Our research broadens the mutation spectrum associated with tooth agenesis and enhances understanding of the underlying disease mechanisms of this condition.
Collapse
Affiliation(s)
- Siyue Yao
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Xi Zhou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Min Gu
- Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou City, Changzhou City, 213003, Jiangsu Province, China
| | - Chengcheng Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Liwen Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
da Silva Figueira R, Mustafa Gomes Muniz FW, Costa LC, Silva de Moura M, Moura LDFADD, Mello de Oliveira B, Lima CCB, Rösing CK, de Lima MDDM. Association between genetic factors and molar-incisor hypomineralisation or hypomineralised second primary molar: A systematic review. Arch Oral Biol 2023; 152:105716. [PMID: 37210809 DOI: 10.1016/j.archoralbio.2023.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To determine the association between genetic factors and molar-incisor hypomineralisation (MIH) and/or hypomineralised second primary molars by means of a systematic review. DESIGN A search was performed in Medline-PubMed, Scopus, Embase and Web of Science databases; manual search and search in gray literature were also performed. Selection of articles was performed independently by two researchers. A third examiner was involved in cases of disagreement. Data extraction was performed using an Excel® spreadsheet and independent analysis was performed for each outcome. RESULTS Sixteen studies were included. There was an association between MIH and genetic variants related to amelogenesis, immune response, xenobiotic detoxification and other genes. Moreover, interactions between amelogenesis and immune response genes, and SNPs in the aquaporin gene and vitamin D receptors were associated with MIH. Greater agreement of MIH was found in pairs of monozygotic twins than dizygotic twins. The heritability of MIH was 20 %. Hypomineralised second primary molars was associated with SNPs in the hypoxia-related HIF-1 gene and methylation in genes related to amelogenesis. CONCLUSION With very low or low certainty of evidence, an association was observed between MIH and SNPs in genes associated with amelogenesis, immune response, xenobiotic detox and ion transport. Interactions between genes related to amelogenesis and immune response as well as aquaporin genes were associated to MIH. With very low certainty of evidence, hypomineralised second primary molars was associated to a hypoxia-related gene and to methylation in genes related to amelogenesis. Moreover, higher agreement of MIH in pairs of monozygotic twins than dizygotic twins was observed.
Collapse
Affiliation(s)
| | | | - Lara Carvalho Costa
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcoeli Silva de Moura
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bibiana Mello de Oliveira
- Post Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
5
|
Hermans F, Bueds C, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Establishment of inclusive single-cell transcriptome atlases from mouse and human tooth as powerful resource for dental research. Front Cell Dev Biol 2022; 10:1021459. [PMID: 36299483 PMCID: PMC9590651 DOI: 10.3389/fcell.2022.1021459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell (sc) omics has become a powerful tool to unravel a tissue's cell landscape across health and disease. In recent years, sc transcriptomic interrogation has been applied to a variety of tooth tissues of both human and mouse, which has considerably advanced our fundamental understanding of tooth biology. Now, an overarching and integrated bird's-view of the human and mouse tooth sc transcriptomic landscape would be a powerful multi-faceted tool for dental research, enabling further decipherment of tooth biology and development through constantly progressing state-of-the-art bioinformatic methods as well as the exploration of novel hypothesis-driven research. To this aim, we re-assessed and integrated recently published scRNA-sequencing datasets of different dental tissue types (healthy and diseased) from human and mouse to establish inclusive tooth sc atlases, and applied the consolidated data map to explore its power. For mouse tooth, we identified novel candidate transcriptional regulators of the ameloblast lineage. Regarding human tooth, we provide support for a developmental connection, not advanced before, between specific epithelial compartments. Taken together, we established inclusive mouse and human tooth sc atlases as powerful tools to potentiate innovative research into tooth biology, development and disease. The maps are provided online in an accessible format for interactive exploration.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
6
|
Kudo T, Kawasaki M, Kawasaki K, Meguro F, Nihara J, Honda I, Kitamura M, Fujita A, Osawa K, Ichikawa K, Nagai T, Ishida Y, Sharpe PT, Maeda T, Saito I, Ohazama A. Ift88 regulates enamel formation via involving Shh signaling. Oral Dis 2022; 29:1622-1631. [PMID: 35189017 DOI: 10.1111/odi.14162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl/fl ;K14Cre). RESULTS Ift88fl/fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.
Collapse
Affiliation(s)
- Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kataushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Nihara
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Izumi Honda
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Madoka Kitamura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Fujita
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuaki Osawa
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaya Ichikawa
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoko Ishida
- Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Paul T Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Takeyasu Maeda
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Genetic Aspects of Dental Erosive Wear and Dental Caries. Int J Dent 2021; 2021:5566733. [PMID: 34335772 PMCID: PMC8292068 DOI: 10.1155/2021/5566733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives The present review aims to give an overview of the literature focusing on novel genetic aspects of dental erosion and dental caries. Once the tooth erupts into the oral cavity, the regenerative capability of enamel is fundamentally limited due to the loss of dental epithelium during eruption. The susceptibility or resistance to dental erosion and caries is presumably a result of environmental, phenotypic, and/or genetic influence. Even though it is evident that individuals frequently exposing their teeth to acid and sugar are at high risk of developing dental erosion and caries, the findings exclusively based on these factors are elusive. Data resources and study selection. The present review was based on data collected from the National Library of Medicine database with different combinations of the following terms: "tooth," "dental," "dentin," "enamel," "erosion," "erosive wear," "caries," "decay," "gene," and "genetic." A total of forty-six studies met the inclusion criteria. Data were extracted by one reviewer and verified by another. Conclusion The high prevalence of erosion and caries among certain groups, and observations that not all individuals appearing to be at risk develop these lesions, has sparked research on identifying genetic effects to these conditions. A connection of genome-wide and candidate gene studies has increased considerably in the literature. This review reveals largely varying success among studies, demonstrating the difficulties of developing the study with adequate sample sizes and durable phenotype definitions that permit enough statistical power to identify genetic contributors.
Collapse
|
8
|
Marangoni P, Charles C, Ahn Y, Seidel K, Jheon A, Ganss B, Krumlauf R, Viriot L, Klein OD. Downregulation of FGF Signaling by Spry4 Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus 2019; 3:e10205. [PMID: 31485553 PMCID: PMC6715786 DOI: 10.1002/jbm4.10205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14‐Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14‐Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Youngwook Ahn
- Stowers Institute for Medical Research Kansas City MO USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Andrew Jheon
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City MO USA.,Department of Anatomy and Cell Biology Kansas University Medical Center Kansas City KS USA
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA.,Department of Pediatrics and Institute for Human Genetics University of California San Francisco CA USA
| |
Collapse
|
9
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
10
|
Alaraudanjoki VK, Koivisto S, Pesonen P, Männikkö M, Leinonen J, Tjäderhane L, Laitala ML, Lussi A, Anttonen VAM. Genome-Wide Association Study of Erosive Tooth Wear in a Finnish Cohort. Caries Res 2018; 53:49-59. [PMID: 29898447 DOI: 10.1159/000488208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/25/2018] [Indexed: 11/19/2022] Open
Abstract
Erosive tooth wear is defined as irreversible loss of dental tissues due to intrinsic or extrinsic acids, exacerbated by mechanical forces. Recent studies have suggested a higher prevalence of erosive tooth wear in males, as well as a genetic contribution to susceptibility to erosive tooth wear. Our aim was to examine erosive tooth wear by performing a genome-wide association study (GWAS) in a sample of the Northern Finland Birth Cohort 1966 (n = 1,962). Erosive tooth wear was assessed clinically using the basic erosive wear examination. A GWAS was performed for the whole sample as well as separately for males and females. We identified one genome-wide significant signal (rs11681214) in the GWAS of the whole sample near the genes PXDN and MYT1L. When the sample was stratified by sex, the strongest genome-wide significant signals were observed in or near the genes FGFR1, C8orf86, CDH4, SCD5, F2R, and ING1. Additionally, multiple suggestive association signals were detected in all GWASs performed. Many of the signals were in or near the genes putatively related to oral environment or tooth development, and some were near the regions considered to be associated with dental caries, such as 2p24, 4q21, and 13q33. Replications of these associations in other samples, as well as experimental studies to determine the biological functions of associated genetic variants, are needed.
Collapse
Affiliation(s)
| | - Salla Koivisto
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
| | - Paula Pesonen
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jukka Leinonen
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
| | - Leo Tjäderhane
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland.,Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018:7549160. [PMID: 29713351 PMCID: PMC5866892 DOI: 10.1155/2018/7549160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
The mineralized tissue of the tooth is composed of enamel, dentin, cementum, and alveolar bone; enamel is a calcified tissue with no living cells that originates from oral ectoderm, while the three other tissues derive from the cranial neural crest. The fibroblast growth factors (FGFs) are critical during the tooth development. Accumulating evidence has shown that the formation of dental tissues, that is, enamel, dentin, and supporting alveolar bone, as well as the development and homeostasis of the stem cells in the continuously growing mouse incisor is mediated by multiple FGF family members. This review discusses the role of FGF signaling in these mineralized tissues, trying to separate its different functions and highlighting the crosstalk between FGFs and other signaling pathways.
Collapse
|
12
|
Cooper RL, Martin KJ, Rasch LJ, Fraser GJ. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks. EvoDevo 2017; 8:8. [PMID: 28469835 PMCID: PMC5414203 DOI: 10.1186/s13227-017-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays) possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales). Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula) to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN) member function, we undertook small molecule inhibition of fibroblast growth factor (FGF) signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh) and bone morphogenetic protein 4 (bmp4). Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed placode development is FGF dependent, and inhibiting FGF activity resulted in downregulation of shh and bmp4 expression, consistent with the expectation from comparison to the amniote integumentary appendage GRN. Conclusion Overall, these findings suggest the core GRN for building vertebrate integumentary epithelial appendages has been highly conserved over 450 million years. This provides evidence for the continuous, historical homology of epithelial appendage placodes throughout jawed vertebrates, from sharks to mammals. Epithelial placodes constitute the shared foundation upon which diverse vertebrate integumentary organs have evolved. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0071-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Kyle J Martin
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Liam J Rasch
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
13
|
Gao S, Moreno M, Eliason S, Cao H, Li X, Yu W, Bidlack FB, Margolis HC, Baldini A, Amendt BA. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Hum Mol Genet 2015; 24:2330-48. [PMID: 25556186 DOI: 10.1093/hmg/ddu750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.
Collapse
Affiliation(s)
- Shan Gao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Huojun Cao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiao Li
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | | | - Henry C Margolis
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA and
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and the Institute of Genetics and Biophysics CNR, Naples, Italy
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA,
| |
Collapse
|
14
|
Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2013; 102:1-13. [DOI: 10.1007/s10266-013-0142-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
|
15
|
Goodwin AF, Tidyman WE, Jheon AH, Sharir A, Zheng X, Charles C, Fagin JA, McMahon M, Diekwisch TGH, Ganss B, Rauen KA, Klein OD. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet 2013; 23:682-92. [PMID: 24057668 DOI: 10.1093/hmg/ddt455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.
Collapse
Affiliation(s)
- Alice F Goodwin
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chang JYF, Wang C, Liu J, Huang Y, Jin C, Yang C, Hai B, Liu F, D'Souza RN, McKeehan WL, Wang F. Fibroblast growth factor signaling is essential for self-renewal of dental epithelial stem cells. J Biol Chem 2013; 288:28952-61. [PMID: 23979135 DOI: 10.1074/jbc.m113.506873] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A constant supply of epithelial cells from dental epithelial stem cell (DESC) niches in the cervical loop (CL) enables mouse incisors to grow continuously throughout life. Elucidation of the cellular and molecular mechanisms underlying this unlimited growth potential is of broad interest for tooth regenerative therapies. Fibroblast growth factor (FGF) signaling is essential for the development of mouse incisors and for maintenance of the CL during prenatal development. However, how FGF signaling in DESCs controls the self-renewal and differentiation of the cells is not well understood. Herein, we report that FGF signaling is essential for self-renewal and the prevention of cell differentiation of DESCs in the CL as well as in DESC spheres. Inhibiting the FGF signaling pathway decreased proliferation and increased apoptosis of the cells in DESC spheres. Suppressing FGFR or its downstream signal transduction pathways diminished Lgr5-expressing cells in the CL and promoted cell differentiation both in DESC spheres and the CL. Furthermore, disruption of the FGF pathway abrogated Wnt signaling to promote Lgr5 expression in DESCs both in vitro and in vivo. This study sheds new light on understanding the mechanism by which the homeostasis, expansion, and differentiation of DESCs are regulated.
Collapse
Affiliation(s)
- Julia Yu Fong Chang
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030-3303
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Chang JYF, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis. J Biol Chem 2013; 288:22174-83. [PMID: 23754280 DOI: 10.1074/jbc.m113.463620] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleft palate is a common congenital birth defect. The fibroblast growth factor (FGF) family has been shown to be important for palatogenesis, which elicits the regulatory functions by activating the FGF receptor tyrosine kinase. Mutations in Fgf or Fgfr are associated with cleft palate. To date, most mechanistic studies on FGF signaling in palate development have focused on FGFR2 in the epithelium. Although Fgfr1 is expressed in the cranial neural crest (CNC)-derived palate mesenchyme and Fgfr1 mutations are associated with palate defects, how FGFR1 in palate mesenchyme regulates palatogenesis is not well understood. Here, we reported that by using Wnt1(Cre) to delete Fgfr1 in neural crest cells led to cleft palate, cleft lip, and other severe craniofacial defects. Detailed analyses revealed that loss-of-function mutations in Fgfr1 did not abrogate patterning of CNC cells in palate shelves. However, it upset cell signaling in the frontofacial areas, delayed cell proliferation in both epithelial and mesenchymal compartments, prevented palate shelf elevation, and compromised palate shelf fusion. This is the first report revealing how FGF signaling in CNC cells regulates palatogenesis.
Collapse
Affiliation(s)
- Cong Wang
- College of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jágr M, Eckhardt A, Pataridis S, Mikšík I. Comprehensive proteomic analysis of human dentin. Eur J Oral Sci 2012; 120:259-68. [DOI: 10.1111/j.1600-0722.2012.00977.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michal Jágr
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Adam Eckhardt
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Statis Pataridis
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Ivan Mikšík
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| |
Collapse
|
19
|
Poché RA, Sharma R, Garcia MD, Wada AM, Nolte MJ, Udan RS, Paik JH, DePinho RA, Bartlett JD, Dickinson ME. Transcription factor FoxO1 is essential for enamel biomineralization. PLoS One 2012; 7:e30357. [PMID: 22291941 PMCID: PMC3265481 DOI: 10.1371/journal.pone.0030357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 01/10/2023] Open
Abstract
The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.
Collapse
Affiliation(s)
- Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ramaswamy Sharma
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aya M. Wada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Nolte
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald A. DePinho
- Departments of Medical Oncology, Medicine, and Genetics, Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kettunen P, Furmanek T, Chaulagain R, Kvinnsland IH, Luukko K. Developmentally regulated expression of intracellular Fgf11-13, hormone-like Fgf15 and canonical Fgf16, -17 and -20 mRNAs in the developing mouse molar tooth. Acta Odontol Scand 2011; 69:360-6. [PMID: 21449687 DOI: 10.3109/00016357.2011.568968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate and compare the cellular expression of non-secreted Fgf11-14 and secreted Fgf15-18 and -20 mRNAs during tooth formation. MATERIALS AND METHODS mRNA expression was analyzed from the morphological initiation of the mouse mandibular first molar development to the onset of crown calcification using sectional in situ hybridization. RESULTS This study found distinct, differentially regulated expression patterns for the Fgf11-13, -15-17 and -20, in particular in the epithelial-mesenchymal interface, whereas Fgf14 and 18 mRNAs were not detected. Fgf11, -15, -16, -17 and -20 were seen in the epithelium, whereas Fgf12 and -13 signals were restricted to the mesenchymal tissue component of the tooth. Fgf11 was observed in the putative epithelial signaling areas, the tertiary enamel knots and enamel free areas of the calcifying crown. Fgf15, Fgf17 and -20 were transiently colocalized in the thickened dental epithelium at E11.5. Later Fgf15 and -20 were exclusively expressed in the epithelial enamel knot signaling centers. In contrast, Fgf13 was present in the dental mesenchyme including odontoblasts cell lineage, whereas Fgf12 appeared transiently in the preodontoblasts. CONCLUSIONS The expression of the Fgf11-13, -15, -17 and -20 in the epithelial signaling centers and/or epithelial-mesenchymal interfaces at key stages of the tooth formation suggest important functions in odontogenesis. Future analyses of the transgenic mice will help elucidate in vivo functions of the studied Fgfs during odontogenesis and whether any of the functions of the tooth expressed epithelial and mesenchymal Fgfs of different sub-families are redundant.
Collapse
Affiliation(s)
- Päivi Kettunen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|
21
|
Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT, Ohazama A. Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat 2011; 218:534-43. [PMID: 21332717 DOI: 10.1111/j.1469-7580.2011.01352.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11-Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15(-/-) and Fgf15(-/-) ;Fgf8(+/-) mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy.
Collapse
Affiliation(s)
- Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Cao Z, Jiang B, Xie Y, Liu CJ, Feng JQ. GEP, a local growth factor, is critical for odontogenesis and amelogenesis. Int J Biol Sci 2010; 6:719-29. [PMID: 21152114 PMCID: PMC2999849 DOI: 10.7150/ijbs.6.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.
Collapse
Affiliation(s)
- Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, CHINA
| | | | | | | | | |
Collapse
|
23
|
Bailleul-Forestier I, Gros C, Zenaty D, Bennaceur S, Leger J, de Roux N. Dental agenesis in Kallmann syndrome individuals with FGFR1 mutations. Int J Paediatr Dent 2010; 20:305-12. [PMID: 20536592 DOI: 10.1111/j.1365-263x.2010.01056.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kallmann syndrome (KS) is a rare genetic disorder characterised by central hypogonadism with a lack of sense of smell and in some cases renal aplasia, deafness, syndactyly, cleft lip/palate, and dental agenesis. To date, five genes for KS have been identified: KAL1, located on the X chromosome, and FGFR1, PROKR2, PROK2 and FGF8, which are involved in autosomally transmitted forms of KS. AIM The study characterised the dental ageneses of individuals with KS associated with mutations in the FGFR1 gene. DESIGN Six individuals displaying dental agenesis were included. Clinical and radiological dental evaluations as well as medical anamneses were carried out. RESULTS Microdontia, screwdriver-shaped mandibular incisors, thin molar roots, and patterns of dental agenesis in both dentitions were observed. One to nine teeth were missing, most frequently, in descending order, lateral mandibular incisors, second premolars of upper and lower jaws, and lateral maxillary incisors. The pattern of dental agenesis is associated with four new mutations in the FGFR1 gene. CONCLUSION Dental agenesis may be a clinical feature of Kallmann syndrome caused by a mutation in the FGFR1 gene. These findings highlight the role that odontologists can play in the early diagnosis and treatment of gonadotropic deficiency.
Collapse
Affiliation(s)
- Isabelle Bailleul-Forestier
- Paediatric Dentistry, Garancière Hotel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Paris Diderot University, France
| | | | | | | | | | | |
Collapse
|
24
|
Surman TL, Logan RM, Townsend GC, Anderson PJ. Oral features in Apert syndrome: a histological investigation. Orthod Craniofac Res 2010; 13:61-7. [DOI: 10.1111/j.1601-6343.2009.01478.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Fletcher AM, Bregman CL, Woicke J, Salcedo TW, Zidell RH, Janke HE, Fang H, Janusz WJ, Schulze GE, Mense MG. Incisor degeneration in rats induced by vascular endothelial growth factor/fibroblast growth factor receptor tyrosine kinase inhibition. Toxicol Pathol 2010; 38:267-79. [PMID: 20100840 DOI: 10.1177/0192623309357950] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BMS-645737, an inhibitor of vascular endothelial growth factor (VEGF) receptor-2 and fibroblast growth factor (FGF) receptor-1, has anti-angiogenic activity and was evaluated in nonclinical studies as a treatment for cancer. This article characterizes the BMS-645737-induced clinical, gross, and histologic lesions of incisor teeth in Sprague-Dawley (SD) rats. Rats received 0 800 mg/kg BMS-645737 in a single-dose study or consecutive daily doses of 0 20 mg/kg/day in a 1-month study. The reversibility of these effects was assessed in the 1-month study. White discoloration and fracture of incisors were observed clinically and grossly in the 1-month study. In both studies, dose-dependent histopathologic lesions of incisors were degeneration and/or necrosis of odontoblasts and ameloblasts; decreased mineralization of dentin; inflammation and necrosis of the dental pulp; and edema, congestion, and hemorrhage in the pulp and periodontal tissue adjacent to the enamel organ. Partial recovery was observed at lower doses after a two-week dose-free period in the one-month study. Drug-induced incisor lesions were considered to be related to the pharmacologic inhibitory effects on VEGF and FGF signaling, that is, inhibition of growth and maintenance of small-diameter vessels that support the formation of dentin and enamel in growing teeth and/or to perturbances of function of odontoblasts and ameloblasts or their precursors.
Collapse
Affiliation(s)
- Anthony M Fletcher
- Drug Safety Evaluation, Bristol-Myers Squibb Company, Syracuse, New York, NY 13221-4755, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin Y, Cheng YSL, Qin C, Lin C, D'Souza R, Wang F. FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors. Dev Dyn 2009; 238:324-30. [PMID: 18985768 DOI: 10.1002/dvdy.21778] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Constant supplies of dental epithelial cells from stem cell niches in the cervical loop enable mouse incisors to grow continuously through life. Fibroblast growth factor 10 (FGF10) has been shown to be essential for development of mouse incisors and maintenance of incisor cervical loops during prenatal development. Whether its cognate receptor, FGFR2IIIB, in the dental epithelium is required for postnatal tooth development remains unknown because Fgfr2IIIb ablation causes neonatal lethality. Here we report that tissue-specific ablation of Fgfr2 in the dental epithelium led to defective maxillary incisors that lacked ameloblasts and the enamel, and had poorly developed odontoblasts. Although the cervical loop in Fgfr2 null maxillary incisors was formed initially, it failed to continue to develop and gradually diminished soon after birth. The results suggest that the FGFR2 signaling axis plays a role in maintaining the stem cell niche required for incisor development and lifelong growth.
Collapse
Affiliation(s)
- Yongshun Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
27
|
Porto IM, Rocha LB, Rossi MA, Gerlach RF. In situ zymography and immunolabeling in fixed and decalcified craniofacial tissues. J Histochem Cytochem 2009; 57:615-22. [PMID: 19188488 DOI: 10.1369/jhc.2009.952127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In situ zymography is a very important technique that shows the proteolytic activity in sections and allows researchers to observe the specific sites of proteolysis in tissues or cells. It is normally performed in non-fixed frozen sections and is not routinely performed in calcified tissues. In this study, we describe a technique that maintains proteolytic activity in fixed and decalcified sections obtained after routine paraffin sectioning in conventional microtome and cryostat sections. We used adult rat hemimandibles, which presented bone, enamel, and dentine matrices; the substrate used was dye-quenched-gelatin. Gelatinolytic activity was colocalized with MMP-2 using fluorescent antibodies. Specific proteolytic activity was observed in all sections, compatible with metalloproteinase activity, particularly in dentine and bone. Furthermore, matrix metalloproteinase-2 was colocalized to the sites of green fluorescence in dentine. In conclusion, the technique presented here will allow in situ zymography reactions in fixed, decalcified, and paraffin-embedded tissues, and we showed that paraformaldehyde-lysine-periodate-fixed cryostat sections are suitable for colocalization of gelatinolytic activity and protein labeling with antibodies.
Collapse
Affiliation(s)
- Isabel M Porto
- Department of Morphology, Dental School of Piracicaba, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|