1
|
Migliorini F, Pilone M, Eschweiler J, Katusic D, Memminger MK, Maffulli N. Therapeutic strategies that modulate the acute phase of secondary spinal cord injury scarring and inflammation and improve injury outcomes. Expert Rev Neurother 2025; 25:477-490. [PMID: 40042224 DOI: 10.1080/14737175.2025.2470326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION The acute phase of secondary spinal cord injury (SCI) is a crucial therapeutic window to mitigate ongoing damage and promote tissue repair. The present systematic review critically evaluates the efficacy and safety of current management modalities for this phase, identifying gaps in knowledge and providing insights for future research directions. METHODS In December 2024, PubMed, Web of Science, Google Scholar, and Embase were accessed with no time constraints. All the clinical studies investigating the pharmacological management of secondary SCI were accessed. RESULTS Data from 3017 patients (385 women) were collected. The mean length of the follow-up was 6 ± 3.4 months, and the mean age of the patients was 43.3 ± 10.3 years. CONCLUSION Erythropoietin (EPO) improves motor function, reduces impairment in secondary spinal cord injury, modulates antioxidation and neurogenesis, and minimizes apoptosis and inflammation. Although commonly administered, methylprednisolone shows uncertain efficacy. The rho-GTPases inhibitor VX-210 and levetiracetam did not demonstrate effectiveness in treatment. Monosialotetrahexosylganglioside Sodium Salt (GM-1) and riluzole are associated with favorable neurological outcomes. Granulocyte Colony-Stimulating Factor (G-CSF) and Hepatocyte Growth Factor (HGF) offer improved motor scores with fewer side effects.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Marco Pilone
- Residency Program in Orthopaedic and Trauma Surgery, University of Milan, Milan, Italy
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, BG Klinikum Bergmannstrost Halle, Halle, Germany
| | - Dragana Katusic
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Michael Kurt Memminger
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Kondiles BR, Rana S, Weiner D, Blesch A, St. John J, Haag-Molkenteller C, Freund P, Guest J, Mikol DD, Harkema S, Trumbower RD, Fehlings MG, Weidner N, Hogge GS, Field-Fote EC, Baptista MA, Curt A, Hsieh J, Jones L. Lessons Learned and Recommendations from a SCOPE Spinal Cord Injury Neurorestorative Clinical Trials Update. Neurotrauma Rep 2025; 6:210-231. [PMID: 40309157 PMCID: PMC12040541 DOI: 10.1089/neur.2024.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The Spinal Cord Outcomes Partnership Endeavors presented a clinical trials update (CTU) in collaboration with the International Spinal Research Trust as a precourse to their annual meeting. Selected trials adhered to a priori considerations, prioritizing novelty and a focus on neurorestorative approaches. The sessions featured 13 speakers, covering 4 in-preparation, 4 in-progress, and 4 recently completed trials. In addition to in-person attendance, individuals worldwide viewed a live stream of the presentations. Approximately 1600 participants, comprising clinicians, researchers, industry stakeholders, foundations, and individuals with lived experiences, engaged in the CTU through both in-person and virtual channels. Presentations represented a variety of approaches, including drug, biological, and device-based therapeutics. This summary provides high-level summaries of the trials presented and the resulting discussions including lessons learned. Rather than recapitulating published data, the presentations and discussions emphasized the novelty and strengths of each trial, practical aspects of translation, and lessons learned. Throughout the day, several discussion themes surfaced. These included reflections on the suitability of outcome measures and the distinction between statistically or clinically meaningful effects and meaningful changes in quality of life. Additional topics included novel trial designs, selection of inclusion criteria, recognizing the indispensable role of rehabilitation, tailoring approaches to individual needs, the importance of integrating lived experience, and emphasizing the importance of establishing robust pre-clinical data packages before venturing into clinical translation. Importantly, strategic directives are summarized to address these challenges, focusing resources and efforts to steer forthcoming trials effectively.
Collapse
Affiliation(s)
- Bethany R. Kondiles
- International Collaboration on Repair Discoveries, Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | | | - Armin Blesch
- Department of Neurosciences, University of California-San Diego, and VA San Diego Healthcare System, La Jolla, California, USA
| | - James St. John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Sciences and Griffith Health, Griffith University, Australia
| | | | - Patrick Freund
- Spinal Cord Injury Center, Research, Balgrist University Hospital, Zürich, Switzerland
| | - James Guest
- Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | | | | | - Randy D. Trumbower
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Canada
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Gary S. Hogge
- GSH Biomedical Consulting, San Francisco, California, USA
| | | | | | - Armin Curt
- Balgrist University Hospital, Zürich, Switzerland
| | | | - Linda Jones
- Christopher & Dana Reeve Foundation Short Hills, New Jersey, USA; Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Ma W, Guo R, Hu W. Mapping Theme Trends and Recognizing Hot Spots in Acute Spinal Cord Injury: A Bibliometric Analysis. World Neurosurg 2025; 195:123648. [PMID: 39778628 DOI: 10.1016/j.wneu.2024.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Acute spinal cord injury causes severe motor and sensory dysfunction, significantly burdening individuals and society. This study uses bibliometric analysis to identify research trends and key areas, providing insights for future advancements in treatment. METHODS Scientific publications on acute spinal cord injury were collected from PubMed and the Web of Science Core Collection between 2000 and 2022. Data were analyzed using Bibliometric, CiteSpace, and Bibliographic Item Co-occurrence Matrix Builder, with gCLUTO applied for co-word bicluster analysis based on MeSH term matrices. RESULTS Two thousand five hundred thirteen publications on acute spinal cord injury were published, with the number of articles increasing annually from 38 to 268. Spinal cord has emerged as the leading journal in this field, and the United States maintains its dominant position in global research impact. The University of Toronto ranks first among research institutions, with significant contributions from researchers such as Fehlings and Kwon. Research on acute spinal cord injury primarily focuses on 7 key areas: metabolism, pharmacology, surgical timing, rehabilitation, pathology, clinical predictors, and diagnostic imaging. CONCLUSIONS Our study reveals substantial growth in acute spinal cord injury research over the past 2 decades, emphasizing leading countries, researchers, institutions, and journals. Animal models remain pivotal in drug development for basic medicine and neuroscience. Consensus has been reached among experts regarding the timing of surgical intervention, while artificial intelligence and multidisciplinary approaches are emerging as promising avenues for comprehensive treatment. Additionally, ongoing research into spinal cord injury pathophysiology provides essential guidance for pharmacological and surgical treatments.
Collapse
Affiliation(s)
- Weifeng Ma
- Department of Orthopaedic Surgery, The Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Hu
- Department of Orthopaedic Surgery, The Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, China.
| |
Collapse
|
4
|
Khavandegar A, Ahmadi NS, Mousavi MA, Ramezani Z, Khodadoust E, Hasan Zadeh Tabatabaei MS, Hasanpour Segherlou Z, Zeinaddini-Meymand A, Nasehi F, Moafi M, RayatSanati K, Masoomi R, Hamidi S, Pourkhodadad S, Rahimi-Movaghar V. The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies. Spinal Cord 2025; 63:95-126. [PMID: 39956860 DOI: 10.1038/s41393-025-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To thoroughly assess the existing literature regarding the impact of anti-RhoA/ROCK agents or procedures on functional recovery in animal models of SCI. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. METHODS A comprehensive search was conducted in Ovid MEDLINE, Embase, Scopus, and Web of Science Core Collection utilizing a combination of keywords. All in-vivo animal studies of acute or chronic SCI that evaluated the pharmacological effects of Rho/ROCK inhibitors in English literature were included in this study. RESULTS Totally, 2320 articles were identified, of which, 60 papers were included for further analysis. A total of 47 (78%) studies were conducted merely on rats, 9 (15%) on mice, 3 (5%) used both, and the remaining used other animals. Y-27632, Fasudil, C3 Transferase and its derivatives (C3-05/PEP-C3/CT04/C3bot154-182/C3bot26mer(156-181)), Ibuprofen, Electroacupuncture (EA), SiRhoA, miR-133b, miR-135-5p, miR-381, miR-30b, Statins, 17β-estradiol, β-elemene, Lentivirus-mediated PGC-1a, Repulsive guidance molecule (RGMa), Local profound hypothermia, Jisuikang (JSK), Hyperbaric oxygen (HBO), Lv-shRhoA (Notch-1 inhibitor), Anti-Ryk antibody, LINGO-antagonist, BA-210, p21Cip1/WAF1, ORL-1 antagonist, Epigallocatechin-3-gallate (EGCG), Tamsulosin, AAV.ULK1.DN, and Indomethacin were the 28 reported agents/procedures with anti-RhoA/ROCK effects. The pooled SMD for BBB scores was 0.41 (p = 0.048) in the first week, 0.85 (p < 0.001) in the second week, 1.22 (p = 0.010) in the third week, and 1.53 (p = 0.001) in the fourth week. CONCLUSION Of the 28 identified anti-RhoA/ROCK agents, all but two (C3bot and its derivatives and EGCG) demonstrated promising results. The results of the meta-analysis cautiously indicate a significant increase in BBB scores over time after SCI.
Collapse
Affiliation(s)
- Armin Khavandegar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sadat Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Khodadoust
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Nasehi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Hamidi
- Department of Neurosurgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Pourkhodadad
- Department of Pharmacy and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kunz PB, Maurer MA, Vollmer J, Machacek M, Weinmann O, Klisic J, Schwab ME. Intrathecal administration of Anti-Nogo-A antibody in macaque monkeys: Pharmacokinetics, tissue penetration and target interaction. Neurotherapeutics 2025; 22:e00484. [PMID: 39572304 PMCID: PMC12014330 DOI: 10.1016/j.neurot.2024.e00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 03/05/2025] Open
Abstract
Intrathecal drug administration represents a promising method to deliver biologics effectively to the central nervous system (CNS). However, little is known about the tolerability and pharmacokinetics of intrathecally applied antibodies. Hence, the focus of this study was to evaluate the toxicity, pharmacokinetic, and pharmacodynamic properties of an intrathecally administered human monoclonal antibody against the growth inhibitory CNS membrane protein Nogo-A in the non-human primate (NHP). The antibody was repeatedly injected into the lumbar cerebrospinal fluid (CSF) sack of NHPs, Macaca fascicularis (N = 18), at three dose levels (placebo, 75 and 150 mg antibody/injection, n = 6/group). CSF and serum samples were collected for pharmacokinetic analysis. The health status was constantly monitored to detect any treatment-related abnormalities. After sacrifice, the CNS tissues were evaluated by immunohistochemistry and biochemistry to study the antibody distribution and target interaction in the spinal cord and brain. No treatment-related side effects were observed, and the treatment was well tolerated by NHPs. After administration, the antibody was rapidly cleared from the CSF with a half-life of 6.4 h and accumulated in the serum where it showed a half-life of 13.7 days. The antibody distributed over the spinal cord and brain, penetrated into the CNS parenchyma where it bound to Nogo-A expressing neurons and oligodendrocytes, and induced significant (P < 0.05) downregulation of the target antigen Nogo-A. Collectively, these results support the direct administration of therapeutic antibodies into the CSF and are of relevance for the antibody-based therapeutics currently in development for different CNS diseases.
Collapse
Affiliation(s)
- Pascal B Kunz
- NovaGo Therapeutics AG, 8952 Zurich-Schlieren, Switzerland
| | | | | | | | | | - Jelena Klisic
- NovaGo Therapeutics AG, 8952 Zurich-Schlieren, Switzerland
| | | |
Collapse
|
6
|
Büeler S, Anderson CE, Birkhäuser V, Freund P, Gross O, Kessler TM, Kündig CW, Leitner L, Mahnoor N, Mehnert U, Röthlisberger R, Stalder SA, van der Lely S, Zipser CM, David G, Liechti MD. Remote neurodegeneration in the lumbosacral cord one month after spinal cord injury: a cross-sectional MRI study. Ann Clin Transl Neurol 2025; 12:523-537. [PMID: 39869509 PMCID: PMC11920731 DOI: 10.1002/acn3.52298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI). METHODS Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements). Associations with the degree of neurological impairment were assessed using linear mixed-effects models. RESULTS Twenty-one patients with SCI showed lower white matter (WM) fractional anisotropy (FA) (≤-13.3%) and higher WM radial diffusivity (≤14.6%) compared to 27 healthy controls. Differences were most pronounced in the lateral columns of WM. CSA measurements revealed no group differences. For the lateral columns, lower FA values were associated with lower motor scores and lower amplitudes of motor evoked potentials. For the dorsal columns, lower FA values were associated with lower amplitudes of somatosensory evoked potentials from the lower extremities. INTERPRETATION One month after SCI, first signs of WM degeneration were apparent, without indication of tissue loss. The more pronounced differences observed in the lateral column could be attributed to anterograde degeneration of the motor tracts. The variability among DTI measurements remote from the lesion site can be partially explained by the degree of the SCI-induced neurological impairment. Together with previous studies, our findings indicate that impaired tissue integrity precedes tissue loss. The presented techniques have potential applications in monitoring the progression of various neurological diseases.
Collapse
Affiliation(s)
- Silvan Büeler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Collene E. Anderson
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Swiss Paraplegic ResearchNottwilSwitzerland
- Faculty of Health Sciences and MedicineUniversity of LucerneLucerneSwitzerland
| | - Veronika Birkhäuser
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Oliver Gross
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Thomas M. Kessler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Christian W. Kündig
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Lorenz Leitner
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Nomah Mahnoor
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Ulrich Mehnert
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Raphael Röthlisberger
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stephanie A. Stalder
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stéphanie van der Lely
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Carl M. Zipser
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Gergely David
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Martina D. Liechti
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| |
Collapse
|
7
|
Olaya AMS, Almeida FM, Martinez AMB, Marques SA. Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans. Neural Regen Res 2025; 20:343-353. [PMID: 38819038 PMCID: PMC11317961 DOI: 10.4103/nrr.nrr-d-23-01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Spinal cord injury results in the loss of sensory, motor, and autonomic functions, which almost always produces permanent physical disability. Thus, in the search for more effective treatments than those already applied for years, which are not entirely efficient, researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach, seeking to promote neuronal recovery after spinal cord injury. Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and, consequently, boosting functional recovery. Although the majority of experimental research has been conducted in rodents, there is increasing recognition of the importance, and need, of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans. This article is a literature review from databases (PubMed, Science Direct, Elsevier, Scielo, Redalyc, Cochrane, and NCBI) from 10 years ago to date, using keywords (spinal cord injury, cell therapy, non-human primates, humans, and bioengineering in spinal cord injury). From 110 retrieved articles, after two selection rounds based on inclusion and exclusion criteria, 21 articles were analyzed. Thus, this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans, aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
Collapse
Affiliation(s)
- Ana Milena Silva Olaya
- PhD Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Graduate Program in Pathological Anatomy (PPGAP/UFRJ), Department of Neurobiology/Institute of Biology, Campus do Gragoatá, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Weidner N, Abel R, Maier D, Röhl K, Röhrich F, Baumberger M, Hund-Georgiadis M, Saur M, Benito J, Rehahn K, Aach M, Badke A, Kriz J, Barkovits K, Killeen T, Farner L, Seif M, Hubli M, Marcus K, Maurer MA, Robert B, Rupp R, Scheuren PS, Schubert M, Schuld C, Sina C, Steiner B, Weis T, Hug A, Bolliger M, Weiskopf N, Freund P, Hothorn T, Schwab ME, Curt A. Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: a randomised, double-blind, multicentre, placebo-controlled, phase 2b trial. Lancet Neurol 2025; 24:42-53. [PMID: 39706632 DOI: 10.1016/s1474-4422(24)00447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury. METHODS This randomised, double-blind, placebo-controlled phase 2b clinical trial was done at 13 hospitals in the Czech Republic, Germany, Spain, and Switzerland. Patients aged 18-70 years with acute, complete or incomplete cervical spinal cord injury (neurological level of injury C1-C8) within 4-28 days of injury were eligible for inclusion. Participants were initially randomly assigned 1:1 to intrathecal treatment with 45 mg NG101 or placebo (phosphate-buffered saline); 18 months into the study, the ratio was adjusted to 3:1 to achieve a final distribution of 2:1 to improve enrolment and drug exposure. Randomisation was done using a centralised, computer-based randomisation system and was stratified according to nine distinct outcome categories with a validated upper extremity motor score (UEMS) prediction model based on clinical parameters at screening. Six intrathecal injections were administered every 5 days over 4 weeks, starting within 28 days of injury. Investigators, study personnel, and study participants were masked to treatment allocation. The primary outcome was change in UEMS at 6 months, analysed alongside safety in the full analysis set. The completed trial was registered at ClinicalTrials.gov, NCT03935321. FINDINGS From May 20, 2019, to July 20, 2022, 463 patients with acute traumatic cervical spinal cord injury were screened, 334 were deemed ineligible and excluded, and 129 were randomly assigned to an intervention (80 patients in the NG101 group and 49 in the placebo group). The full analysis set comprised 78 patients from the NG101 group and 48 patients from the placebo group. 107 (85%) patients were male and 19 (15%) patients were female, with a median age of 51·5 years (IQR 30·0-60·0). Across all patients, the primary endpoint showed no significant difference between groups (with UEMS change at 6 months 1·37 [95% CI -1·44 to 4·18]; placebo group mean 19·20 [SD 11·78] at baseline and 30·91 [SD 15·49] at day 168; NG101 group mean 18·23 [SD 15·14] at baseline and 31·31 [19·54] at day 168). Treatment-related adverse events were similar between groups (nine in the NG101 group and six in the placebo group). 25 severe adverse events were reported: 18 in 11 (14%) patients in the NG101 group and seven in six (13%) patients in the placebo group. Although no treatment-related fatalities were reported in the NG101 group, one fatality not related to treatment occurred in the placebo group. Infections were the most common adverse event affecting 44 (92%) patients in the placebo group and 65 (83%) patients in the NG101 group. INTERPRETATION NG101 did not improve UEMS in patients with acute spinal cord injury. Post-hoc subgroup analyses assessing UEMS and Spinal Cord Independence Measure of self-care in patients with motor-incomplete injury indicated potential beneficial effects that require investigation in future studies. FUNDING EU program Horizon2020; Swiss State Secretariat for Education, Research and Innovation; Wings for Life; the Swiss Paraplegic Foundation; and the CeNeReg project of Wyss Zurich (University of Zurich and Eidgenössische Technische Hochschule Zurich).
Collapse
Affiliation(s)
- Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany.
| | - Rainer Abel
- Clinic for Paraplegia, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Doris Maier
- Spinal Cord Injuries, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | - Klaus Röhl
- BG Klinikum Bergmannstrost Halle gGmbH, Zentrum für Rückenmarkverletzte und Klinik für Orthopädie, Halle, Germany
| | - Frank Röhrich
- BG Klinikum Bergmannstrost Halle gGmbH, Zentrum für Rückenmarkverletzte und Klinik für Orthopädie, Halle, Germany
| | | | | | - Marion Saur
- Orthopädische Klinik, Hessisch Lichtenau, Germany
| | - Jesús Benito
- Fundacio Institut d'Investigacio en Ciencies de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Kerstin Rehahn
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Berlin, Germany
| | - Mirko Aach
- Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Jiri Kriz
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Katalin Barkovits
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lynn Farner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Michael A Maurer
- Institute for Regenerative Medicine, University of Zurich, Switzerland
| | - Bérénice Robert
- Clinical Study Coordination Center, University of Heidelberg, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Sina
- Wyss Zurich Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Bettina Steiner
- Wyss Zurich Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Tanja Weis
- Department of Cardiology, Angiology and Pneumonology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg/Mannheim, Germany
| | - Andreas Hug
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Torsten Hothorn
- Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Switzerland; Wyss Zurich Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Curt A, Zipser CM. The rise and fall of Queckenstedt's test between 1916 and 1970, a milestone in spinal cord diagnostics and why it matters. Eur J Neurol 2025; 32:e16556. [PMID: 39601454 PMCID: PMC11625948 DOI: 10.1111/ene.16556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE In 1916, Hans H. G. Queckenstedt (1876-1918) was the first to describe a test aimed at detecting spinal cerebrospinal fluid (CSF) space obstruction through lumbar CSF pressure measurements in paraplegic patients. For this test, bilateral jugular vein compression was applied during lumbar puncture and consecutive changes in lumbar CSF pressure were then observed. Findings were rated as normal, or indicative of incomplete or complete spinal block. This test, known as Queckenstedt's test, became widely adopted and further developed in the field. METHODS This systematic literature review provides an overview of the milestones in research using Queckenstedt's test. RESULTS Clinical research involving Queckenstedt's test was widely disseminated across the globe. In 1922, the proof of concept for Queckenstedt's test was provided by James B. Ayer (1882-1963) through simultaneous cisternal and lumbar CSF pressure measurements. He found that the cisternal (in contrast to lumbar) pressure remained responsive in cases with spinal block. The test was further refined up until the 1960s, and was considered a routine diagnostic procedure for testing of spinal canal obstruction. Developments in non-invasive spinal computed tomography and magnetic resonance imaging led to a significant decline in interest in Queckenstedt's test, and the test eventually disappeared from textbooks and clinical routine. However, at the beginning of the 21st century there was renewed interest in revealing the biomechanical properties of the CSF through advanced recording and computational techniques to complement spinal imaging. CONCLUSION Spine and spinal cord physicians should be familiar with Queckenstedt's test, which not only represented a milestone in spinal diagnostics, but provided a physiological framework for the appreciation of spinal cord compression that is still valid today.
Collapse
Affiliation(s)
- Armin Curt
- Spinal Cord Injury CenterBalgrist University HospitalZurichSwitzerland
| | | |
Collapse
|
10
|
Sherrod BA, Porche K, Condie CK, Dailey AT. Pharmacologic Therapy for Spinal Cord Injury. Clin Spine Surg 2024; 37:433-439. [PMID: 39264675 DOI: 10.1097/bsd.0000000000001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Neuroprotective strategies aimed at preventing secondary neurologic injury following acute spinal cord injury remain an important area of clinical, translational, and basic science research. Despite recent advancement in the understanding of basic mechanisms of primary and secondary neurologic injury, few pharmacologic agents have shown consistent promise in improving neurologic outcomes following SCI in large randomized clinical trials. The authors review the existing literature and clinical guidelines for pharmacologic therapy investigated for managing acute SCI, including corticosteroids, GM-1 ganglioside (Sygen), Riluzole, opioid antagonists, Cethrin, minocycline, and vasopressors for mean arterial pressure augmentation. Therapies for managing secondary effects of SCI, such as bradycardia, are discussed. Current clinical trials for pharmacotherapy and cellular transplantation following acute SCI are also reviewed. Despite the paucity of current evidence for clinically beneficial post-SCI pharmacotherapy, future research efforts will hopefully elucidate promising therapeutic agents to improve neurologic function.
Collapse
|
11
|
Schuch CP, Jovanovic LI, Balbinot G. Corticospinal Tract Sparing in Cervical Spinal Cord Injury. J Clin Med 2024; 13:6489. [PMID: 39518628 PMCID: PMC11545869 DOI: 10.3390/jcm13216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Disruptions in the brain's connections to the hands resulting from a cervical spinal cord injury (cSCI) can lead to severe and persistent functional impairments. The integrity of these connections is an important predictor of upper extremity recovery in stroke and may similarly act as a biomarker in cSCI. In this perspective article, we review recent findings from a large cohort of individuals with cSCI, demonstrating the predictive value of corticospinal tract (CST) integrity in cSCI-CST sparing. This research underscores that, akin to stroke, the integrity of brain-to-hand connections is crucial for predicting upper extremity recovery following cSCI. We address the limitations of commonly used metrics, such as sacral sparing and the concept of central cord syndrome. Furthermore, we offer insights on emerging metrics, such as tissue bridges, emphasizing their potential in assessing the integrity of brain connections to the spinal cord.
Collapse
Affiliation(s)
| | | | - Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Movement Neurorehabilitation and Neurorepair Laboratory, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, V5A 1S6 BC, Canada
| |
Collapse
|
12
|
Brüningk SC, Bourguignon L, Lukas LP, Maier D, Abel R, Weidner N, Rupp R, Geisler F, Kramer JLK, Guest J, Curt A, Jutzeler CR. Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores. Exp Neurol 2024; 380:114905. [PMID: 39097076 DOI: 10.1016/j.expneurol.2024.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. METHODS This study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. RESULTS We obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). DISCUSSION Our approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials.
Collapse
Affiliation(s)
- Sarah C Brüningk
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland.
| | - Lucie Bourguignon
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland
| | - Louis P Lukas
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland
| | - Doris Maier
- Spinal Cord Injury Center, Trauma Center Murnau, Murnau, Germany
| | - Rainer Abel
- Spinal Cord Injury Center, Klinikum Bayreuth, Bayreuth, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Fred Geisler
- University of Saskatchewan, Saskatchewan, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada; Hugill Centre for Anesthesia, University of British Columbia, Canada
| | - James Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, USA; Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, USA
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Switzerland
| | - Catherine R Jutzeler
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland
| |
Collapse
|
13
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
15
|
Guérout N. Combined Treatments and Therapies to Cure Spinal Cord Injury. Biomedicines 2024; 12:1095. [PMID: 38791057 PMCID: PMC11118184 DOI: 10.3390/biomedicines12051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Traumatic injuries of the spinal cord (SCIs) are still pathologies with a disastrous outcome [...].
Collapse
Affiliation(s)
- Nicolas Guérout
- Saints Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR8003, 75006 Paris, France
| |
Collapse
|
16
|
Fischer G, Bättig L, Stienen MN, Curt A, Fehlings MG, Hejrati N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front Neurosci 2024; 18:1372920. [PMID: 38812974 PMCID: PMC11133582 DOI: 10.3389/fnins.2024.1372920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) continue to be a major healthcare concern, with a rising prevalence worldwide. In response to this growing medical challenge, considerable scientific attention has been devoted to developing neuroprotective and neuroregenerative strategies aimed at improving the prognosis and quality of life for individuals with SCIs. This comprehensive review aims to provide an up-to-date and thorough overview of the latest neuroregenerative and neuroprotective therapies currently under investigation. These strategies encompass a multifaceted approach that include neuropharmacological interventions, cell-based therapies, and other promising strategies such as biomaterial scaffolds and neuro-modulation therapies. In addition, the review discusses the importance of acute clinical management, including the role of hemodynamic management as well as timing and technical aspects of surgery as key factors mitigating the secondary injury following SCI. In conclusion, this review underscores the ongoing scientific efforts to enhance patient outcomes and quality of life, focusing on upcoming strategies for the management of traumatic SCI. Each section provides a working knowledge of the fundamental preclinical and patient trials relevant to clinicians while underscoring the pathophysiologic rationale for the therapies.
Collapse
Affiliation(s)
- Gregor Fischer
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Linda Bättig
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Martin N. Stienen
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nader Hejrati
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
17
|
Kvistad CE, Kråkenes T, Gavasso S, Bø L. Neural regeneration in the human central nervous system-from understanding the underlying mechanisms to developing treatments. Where do we stand today? Front Neurol 2024; 15:1398089. [PMID: 38803647 PMCID: PMC11129638 DOI: 10.3389/fneur.2024.1398089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Mature neurons in the human central nervous system (CNS) fail to regenerate after injuries. This is a common denominator across different aetiologies, including multiple sclerosis, spinal cord injury and ischemic stroke. The lack of regeneration leads to permanent functional deficits with a substantial impact on patient quality of life, representing a significant socioeconomic burden worldwide. Great efforts have been made to decipher the responsible mechanisms and we now know that potent intra- and extracellular barriers prevent axonal repair. This knowledge has resulted in numerous clinical trials, aiming to promote neuroregeneration through different approaches. Here, we summarize the current understanding of the causes to the poor regeneration within the human CNS. We also review the results of the treatment attempts that have been translated into clinical trials so far.
Collapse
Affiliation(s)
| | - Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, Aydin MS, Altintas E, Erim UC. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol Biosci 2024; 24:e2300453. [PMID: 38224015 DOI: 10.1002/mabi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Nese Aysit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Zeynep Balcikanli
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Nilufer Ulas Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Asel Aydeger
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, 34815, Turkey
| |
Collapse
|
19
|
Behnammoghadam M, Alimohammadi N, Riazi A, Eghbali-Babadi M, Rezvani M. Care needs of adults with spinal trauma in the prehospital and hospital setting from the perspective of patient care team: A qualitative research. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:83. [PMID: 38720688 PMCID: PMC11078458 DOI: 10.4103/jehp.jehp_282_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2024]
Abstract
BACKGROUND Appropriate care of patients with definite spinal cord injury or at risk of it in the prehospital and hospital stages requires comprehensive planning in the health system. It is also the requirement of any successful program to explain the needs from the perspective of its stakeholders. Thus, this study aimed to discover the care needs of adults with spinal trauma in prehospital and hospital settings from the perspective of the patient care team. MATERIALS AND METHODS This qualitative study was conducted with the participation of urban and rural prehospital emergency personnel and emergency departments of educational and therapeutic hospitals affiliated to Isfahan, Tehran, Shiraz, Kermanshah, Ahvaz, and Yasuj Universities of Medical Sciences, through conducting 36 in-depth semi-structured interviews from September to December 2021. Using purposive sampling method, the participants were selected considering the maximum variation. The data saturation was reached after conducting interviews and group discussions with 36 subjects. Data were analyzed using conventional content analysis approach. Lundman and Graneheim approach were used for the study rigour. Data were simultaneously analyzed using MAXQDA software version 10. RESULT During the data analysis, two themes of prehospital care with two main categories (emergency care and management of secondary complications of spinal trauma) and hospital care with two main categories (emergency care and management of secondary complications of spinal trauma) emerged. CONCLUSION Emergency care and management of secondary complications of spinal cord injury in the prehospital and hospital stages can affect treatment results, improve quality of life, and reduce mortality rate, secondary injuries, and healthcare costs. Thus, identification of the care needs of the adults with spinal trauma from the perspective of the patient care team can help the authorities to plan appropriate interventions.
Collapse
Affiliation(s)
- Mohammad Behnammoghadam
- Department of Critical Care Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrollah Alimohammadi
- Department of Critical Care Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Riazi
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Eghbali-Babadi
- Department of Critical Care Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Rezvani
- Department of Neurosurgery, Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Bourguignon L, Lukas LP, Guest JD, Geisler FH, Noonan V, Curt A, Brüningk SC, Jutzeler CR. Studying missingness in spinal cord injury data: challenges and impact of data imputation. BMC Med Res Methodol 2024; 24:5. [PMID: 38184529 PMCID: PMC10770973 DOI: 10.1186/s12874-023-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND In the last decades, medical research fields studying rare conditions such as spinal cord injury (SCI) have made extensive efforts to collect large-scale data. However, most analysis methods rely on complete data. This is particularly troublesome when studying clinical data as they are prone to missingness. Often, researchers mitigate this problem by removing patients with missing data from the analyses. Less commonly, imputation methods to infer likely values are applied. OBJECTIVE Our objective was to study how handling missing data influences the results reported, taking the example of SCI registries. We aimed to raise awareness on the effects of missing data and provide guidelines to be applied for future research projects, in SCI research and beyond. METHODS Using the Sygen clinical trial data (n = 797), we analyzed the impact of the type of variable in which data is missing, the pattern according to which data is missing, and the imputation strategy (e.g. mean imputation, last observation carried forward, multiple imputation). RESULTS Our simulations show that mean imputation may lead to results strongly deviating from the underlying expected results. For repeated measures missing at late stages (> = 6 months after injury in this simulation study), carrying the last observation forward seems the preferable option for the imputation. This simulation study could show that a one-size-fit-all imputation strategy falls short in SCI data sets. CONCLUSIONS Data-tailored imputation strategies are required (e.g., characterisation of the missingness pattern, last observation carried forward for repeated measures evolving to a plateau over time). Therefore, systematically reporting the extent, kind and decisions made regarding missing data will be essential to improve the interpretation, transparency, and reproducibility of the research presented.
Collapse
Affiliation(s)
- Lucie Bourguignon
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland.
- Schulthess Klinik, Lengghalde 2, 8008, Zürich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Louis P Lukas
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Schulthess Klinik, Lengghalde 2, 8008, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James D Guest
- Neurological Surgery and the Miami Project to Cure Paralysis, U Miami, Miami, FL, 33136, USA
| | - Fred H Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vanessa Noonan
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Lengghalde 2, 8006, Zürich, Switzerland
| | - Sarah C Brüningk
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Schulthess Klinik, Lengghalde 2, 8008, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Catherine R Jutzeler
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Schulthess Klinik, Lengghalde 2, 8008, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
21
|
Balbinot G. Neuromodulation to guide circuit reorganization with regenerative therapies in upper extremity rehabilitation following cervical spinal cord injury. FRONTIERS IN REHABILITATION SCIENCES 2024; 4:1320211. [PMID: 38234989 PMCID: PMC10791849 DOI: 10.3389/fresc.2023.1320211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Spinal cord injury (SCI) is a profoundly debilitating condition with no effective treatment to date. The complex response of the central nervous system (CNS) to injury and its limited regeneration capacity pose bold challenges for restoring function. Cervical SCIs are the most prevalent and regaining hand function is a top priority for individuals living with cervical SCI. A promising avenue for addressing this challenge arises from the emerging field of regenerative rehabilitation, which combines regenerative biology with physical medicine approaches. The hypothesis for optimizing gains in upper extremity function centers on the integration of targeted neurorehabilitation with novel cell- and stem cell-based therapies. However, the precise roles and synergistic effects of these components remain poorly understood, given the intricate nature of SCI and the diversity of regenerative approaches. This perspective article sheds light on the current state of regenerative rehabilitation for cervical SCI. Notably, preclinical research has yet to fully incorporate rehabilitation protocols that mimic current clinical practices, which often rely on neuromodulation strategies to activate spared circuits below the injury level. Therefore, it becomes imperative to comprehensively investigate the combined effects of neuromodulation and regenerative medicine strategies in animal models before translating these therapies to individuals with SCI. In cases of severe upper extremity paralysis, the advent of neuromodulation strategies, such as corticospinal tract (CST) and spinal cord stimulation, holds promise as the next frontier in enhancing the effectiveness of cell- and stem cell-based therapies. Future preclinical studies should explore this convergence of neuromodulation and regenerative approaches to unlock new possibilities for upper extremity treatment after SCI.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- KITE Research Institute – Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Hirt J, Khanteymoori A, Hohenhaus M, Kopp MA, Howells DW, Schwab JM, Watzlawick R. Inhibition of the Nogo-pathway in experimental spinal cord injury: a meta-analysis of 76 experimental treatments. Sci Rep 2023; 13:22898. [PMID: 38129508 PMCID: PMC10739940 DOI: 10.1038/s41598-023-49260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Recovery after spinal cord injury (SCI) may be propagated by plasticity-enhancing treatments. The myelin-associated nerve outgrowth inhibitor Nogo-A (Reticulon 4, RTN4) pathway has been shown to restrict neuroaxonal plasticity in experimental SCI models. Early randomized controlled trials are underway to investigate the effect of Nogo-A/Nogo-Receptor (NgR1) pathway blockers. This systematic review and meta-analysis of therapeutic approaches blocking the Nogo-A pathway interrogated the efficacy of functional locomotor recovery after experimental SCI according to a pre-registered study protocol. A total of 51 manuscripts reporting 76 experiments in 1572 animals were identified for meta-analysis. Overall, a neurobehavioral improvement by 18.9% (95% CI 14.5-23.2) was observed. Subgroup analysis (40 experiments, N = 890) revealed SCI-modelling factors associated with outcome variability. Lack of reported randomization and smaller group sizes were associated with larger effect sizes. Delayed treatment start was associated with lower effect sizes. Trim and Fill assessment as well as Egger regression suggested the presence of publication bias. Factoring in theoretically missing studies resulted in a reduced effect size [8.8% (95% CI 2.6-14.9)]. The available data indicates that inhibition of the Nogo-A/NgR1pathway alters functional recovery after SCI in animal studies although substantial differences appear for the applied injury mechanisms and other study details. Mirroring other SCI interventions assessed earlier we identify similar factors associated with outcome heterogeneity.
Collapse
Affiliation(s)
- Julian Hirt
- Department of Neurology and Experimental Neurology, Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alireza Khanteymoori
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Marcel A Kopp
- Department of Neurology and Experimental Neurology, Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David W Howells
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.
| |
Collapse
|
23
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
25
|
Schellhammer L, Beffinger M, Salazar U, Laman JD, Buch T, vom Berg J. Exit pathways of therapeutic antibodies from the brain and retention strategies. iScience 2023; 26:108132. [PMID: 37915602 PMCID: PMC10616392 DOI: 10.1016/j.isci.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Treating brain diseases requires therapeutics to pass the blood-brain barrier (BBB) which is nearly impermeable for large biologics such as antibodies. Several methods now facilitate crossing or circumventing the BBB for antibody therapeutics. Some of these exploit receptor-mediated transcytosis, others use direct delivery bypassing the BBB. However, successful delivery into the brain does not preclude exit back to the systemic circulation. Various mechanisms are implicated in the active and passive export of antibodies from the central nervous system. Here we review findings on active export via transcytosis of therapeutic antibodies - in particular, the role of the neonatal Fc receptor (FcRn) - and discuss a possible contribution of passive efflux pathways such as lymphatic and perivascular drainage. We point out open questions and how to address these experimentally. In addition, we suggest how emerging findings could aid the design of the next generation of therapeutic antibodies for neurologic diseases.
Collapse
Affiliation(s)
- Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Michal Beffinger
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| | - Ulisse Salazar
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| |
Collapse
|
26
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Powers BE, Ton ST, Farrer RG, Chaudhary S, Nockels RP, Kartje GL, Tsai SY. Anti-Nogo-A Antibody Therapy Improves Functional Outcome Following Traumatic Brain Injury. Neurorehabil Neural Repair 2023; 37:682-693. [PMID: 37837331 PMCID: PMC10843026 DOI: 10.1177/15459683231203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause sensorimotor deficits, and recovery is slow and incomplete. There are no effective pharmacological treatments for recovery from TBI, but research indicates potential for anti-Nogo-A antibody (Ab) therapy. This Ab neutralizes Nogo-A, an endogenous transmembrane protein that inhibits neuronal plasticity and regeneration. OBJECTIVE We hypothesized that anti-Nogo-A Ab treatment following TBI results in disinhibited axonal growth from the contralesional cortex, the establishment of new compensatory neuronal connections, and improved function. METHODS We modeled TBI in rats using the controlled cortical impact method, resulting in focal brain damage and motor deficits like those observed in humans with a moderate cortical TBI. Rats were trained on the skilled forelimb reaching task and the horizontal ladder rung walking task. They were then given a TBI, targeting the caudal forelimb motor cortex, and randomly divided into 3 groups: TBI-only, TBI + Anti-Nogo-A Ab, and TBI + Control Ab. Testing resumed 3 days after TBI and continued for 8 weeks, when rats received an injection of the anterograde neuronal tracer, biotinylated dextran amine (BDA), into the corresponding area contralateral to the TBI. RESULTS We observed significant improvement in rats that received anti-Nogo-A Ab treatment post-TBI compared to controls. Analysis of BDA-positive axons revealed that anti-Nogo-A Ab treatment resulted in cortico-rubral plasticity to the deafferented red nucleus. Conclusions. Anti-Nogo-A Ab treatment may improve functional recovery via neuronal plasticity to brain areas important for skilled movements, and this treatment shows promise to improve outcomes in humans who have suffered a TBI.
Collapse
Affiliation(s)
- Brian E Powers
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | | | | | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Health Sciences Division, Maywood, IL, USA
| | - Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| |
Collapse
|
28
|
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023; 14:635-652. [PMID: 36856750 PMCID: PMC10501188 DOI: 10.1093/procel/pwad003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Collapse
Affiliation(s)
- Ting Tian
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Kelly-Hedrik M, Abd-El-Barr MM, Aarabi B, Curt A, Howley SP, Harrop JS, Kirshblum S, Neal CJ, Noonan V, Park C, Ugiliweneza B, Tator C, Toups EG, Fehlings MG, Williamson T, Guest JD. Importance of Prospective Registries and Clinical Research Networks in the Evolution of Spinal Cord Injury Care. J Neurotrauma 2023; 40:1834-1848. [PMID: 36576020 DOI: 10.1089/neu.2022.0450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Only 100 years ago, traumatic spinal cord injury (SCI) was commonly lethal. Today, most people who sustain SCI survive with continual efforts to improve their quality of life and neurological outcomes. SCI epidemiology is changing as preventative interventions reduce injuries in younger individuals, and there is an increased incidence of incomplete injuries in aging populations. Early treatment has become more intensive with decompressive surgery and proactive interventions to improve spinal cord perfusion. Accurate data, including specialized outcome measures, are crucial to understanding the impact of epidemiological and treatment trends. Dedicated SCI clinical research and data networks and registries have been established in the United States, Canada, Europe, and several other countries. We review four registry networks: the North American Clinical Trials Network (NACTN) SCI Registry, the National Spinal Cord Injury Model Systems (SCIMS) Database, the Rick Hansen SCI Registry (RHSCIR), and the European Multi-Center Study about Spinal Cord Injury (EMSCI). We compare the registries' focuses, data platforms, advanced analytics use, and impacts. We also describe how registries' data can be combined with electronic health records (EHRs) or shared using federated analysis to protect registrants' identities. These registries have identified changes in epidemiology, recovery patterns, complication incidence, and the impact of practice changes such as early decompression. They've also revealed latent disease-modifying factors, helped develop clinical trial stratification models, and served as matched control groups in clinical trials. Advancing SCI clinical science for personalized medicine requires advanced analytical techniques, including machine learning, counterfactual analysis, and the creation of digital twins. Registries and other data sources help drive innovation in SCI clinical science.
Collapse
Affiliation(s)
| | | | - Bizhan Aarabi
- University of Maryland School of Medicine, Maryland, USA
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Susan P Howley
- Christopher & Dana Reeve Foundation, Short Hills, New Jersey, USA
| | - James S Harrop
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Steven Kirshblum
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Christopher J Neal
- Division of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Vanessa Noonan
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | - Christine Park
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Charles Tator
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth G Toups
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James D Guest
- Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami, Miami, USA
| |
Collapse
|
30
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
31
|
Maynard G, Kannan R, Liu J, Wang W, Lam TKT, Wang X, Adamson C, Hackett C, Schwab JM, Liu C, Leslie DP, Chen D, Marino R, Zafonte R, Flanders A, Block G, Smith E, Strittmatter SM. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol 2023; 22:672-684. [PMID: 37479373 PMCID: PMC10410101 DOI: 10.1016/s1474-4422(23)00215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery. METHODS We conducted a two-part study in adults (aged 18-65 years) with chronic (>1 year) cervical traumatic SCI at six rehabilitation centres in the USA. In part 1, AXER-204 was delivered open label as single intrathecal doses of 3 mg, 30 mg, 90 mg, or 200 mg, with primary outcomes of safety and pharmacokinetics. Part 2 was a randomised, parallel, double-blind comparison of six intrathecal doses of 200 mg AXER-204 over 104 days versus placebo. Participants were randomly allocated (1:1) by investigators using a central electronic system, stratified in blocks of four by American Spinal Injury Association Impairment Scale grade and receipt of AXER-204 in part 1. All investigators and patients were masked to treatment allocation until at least day 169. The part 2 primary objectives were safety and pharmacokinetics, with a key secondary objective to assess change in International Standards for Neurological Classification of SCI (ISNCSCI) Upper Extremity Motor Score (UEMS) at day 169 for all enrolled participants. This trial is registered with ClinicalTrials.gov, NCT03989440, and is completed. FINDINGS We treated 24 participants in part 1 (six per dose; 18 men, six women), and 27 participants in part 2 (13 placebo, 14 AXER-204; 23 men, four women), between June 20, 2019, and June 21, 2022. There were no deaths and no discontinuations from the study due to an adverse event in part 1 and 2. In part 2, treatment-related adverse events were of similar incidence in AXER-204 and placebo groups (ten [71%] vs nine [69%]). Headache was the most common treatment-related adverse event (five [21%] in part 1, 11 [41%] in part 2). In part 1, AXER-204 reached mean maximal CSF concentration 1 day after dosing with 200 mg of 412 000 ng/mL (SD 129 000), exceeding those concentrations that were efficacious in animal studies. In part 2, mean changes from baseline to day 169 in ISNCSCI UEMS were 1·5 (SD 3·3) for AXER-204 and 0·9 (2·3) for placebo (mean difference 0·54, 95% CI -1·48 to 2·55; p=0·59). INTERPRETATION This study delivers the first, to our knowledge, clinical trial of a rationally designed pharmacological treatment intended to promote neural repair in chronic SCI. AXER-204 appeared safe and reached target CSF concentrations; exploratory biomarker results were consistent with target engagement and synaptic stabilisation. Post-hoc subgroup analyses suggest that future trials could investigate efficacy in patients with moderately severe SCI without prior AXER-204 exposure. FUNDING Wings for Life Foundation, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Sciences, National Institute on Drug Abuse, and ReNetX Bio.
Collapse
Affiliation(s)
| | - Ramakrishnan Kannan
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jian Liu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA
| | - Tu Kiet T Lam
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Xingxing Wang
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Charles Liu
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Ralph Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Flanders
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
32
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
33
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
34
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
35
|
Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2023; 13:1070540. [PMID: 36685599 PMCID: PMC9849245 DOI: 10.3389/fimmu.2022.1070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
Collapse
Affiliation(s)
- Huaguo Tang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanjie Gu
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Lei Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Gang Zheng
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiugui Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
36
|
Schwaiger C, Haider T, Endmayr V, Zrzavy T, Gruber VE, Ricken G, Simonovska A, Hametner S, Schwab JM, Höftberger R. Dynamic induction of the myelin-associated growth inhibitor Nogo-A in perilesional plasticity regions after human spinal cord injury. Brain Pathol 2023; 33:e13098. [PMID: 35698271 PMCID: PMC9836369 DOI: 10.1111/bpa.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
The myelin-associated inhibitor Nogo-A (Reticulon 4, RTN4) restricts axonal outgrowth, plasticity, and neural circuitry formation in experimental models of spinal cord injury (SCI) and is targeted in clinical interventions starting treatment within 4 weeks post-SCI. Specifically, Nogo-A expressed by oligodendroglia restricts compensatory neurite sprouting. To interrogate the hypothesis of an inducible, lesion reactive Nogo-A expression over time, we analyzed the spatiotemporal Nogo-A expression at the spinal lesion core (region of tissue necrosis and axonal damage/pruning) and perilesional rim (region of plasticity formation). Spinal cord specimens of SCI subjects (n = 22) were compared to neuropathologically unaltered controls (n = 9). Nogo-A expression was investigated ranging from acute (0-3 days), early subacute (4-21 days), late subacute (22-90 days) to early chronic-chronic (91 days to 1.5 years after SCI) stages after SCI. Nogo-A expression in controls is confined to motoneurons in the anterior horn and to oligodendrocytes in gray and white matter. After SCI, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes (i) inclined at the organizing perilesional rim specifically, (ii) increased further over time, and (iii) peaked at chronic stages after SCI. By contrast, at the lesion core, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes did not increase. Increasing numbers of Nogo-A+ oligodendrocytes coincided with oligodendrogenesis corroborated by Nogo-A coexpression of Ki67+ , TPPP/p25+ proliferating oligodendrocytes. Nogo-A oligodendrocyte expression emerges at perilesional (plasticity) regions over time and suggests an extended therapeutical window for anti-Nogo-A pathway targeting interventions beyond 4 weeks in patients after SCI.
Collapse
Affiliation(s)
- Carmen Schwaiger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Thomas Haider
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Victoria E. Gruber
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna (Affiliated Partner of the ERN EpiCARE)ViennaAustria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Anika Simonovska
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury and Departments of Neurology, Physical Medicine and Rehabilitation and NeurosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
37
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
38
|
Wang H, Zhang H, Xie Z, Chen K, Ma M, Huang Y, Li M, Cai Z, Wang P, Shen H. Injectable hydrogels for spinal cord injury repair. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
Fehlings MG, Pedro K, Hejrati N. Management of Acute Spinal Cord Injury: Where Have We Been? Where Are We Now? Where Are We Going? J Neurotrauma 2022; 39:1591-1602. [PMID: 35686453 DOI: 10.1089/neu.2022.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nader Hejrati
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
42
|
Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. SCIENCE ADVANCES 2022; 8:eabq2611. [PMID: 36103534 PMCID: PMC9473583 DOI: 10.1126/sciadv.abq2611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks occur in many acute and long-term neurological conditions, including neurodegeneration, neurotrauma, and stroke. Nonrepaired breaks chronically activate the DNA damage response in neurons, leading to neural dysfunction and apoptosis. Here, we show that targeting of the central ATM-Chk2 pathway regulating the response to double-strand breaks slows neural decline in Drosophila models of chronic neurodegeneration. Inhibitors of ATM-Chk2, but not the parallel ATR-Chk1 pathway, also promote marked, functional recovery after acute central nervous system injury in rats, suggesting that inhibiting nonhomologous end-joining rather than homologous recombination is crucial for neuroprotection. We demonstrate that the Chk2 inhibitor, prexasertib, which has been evaluated in phase 2 clinical trials for cancer, has potent neuroprotective effects and represents a new treatment option to promote functional recovery after spinal cord or optic nerve injury.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam M. Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharif Alhajlah
- Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Richard I. Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
43
|
Thomas AX, Riviello JJ, Davila-Williams D, Thomas SP, Erklauer JC, Bauer DF, Cokley JA. Pharmacologic and Acute Management of Spinal Cord Injury in Adults and Children. Curr Treat Options Neurol 2022; 24:285-304. [PMID: 35702419 PMCID: PMC9184374 DOI: 10.1007/s11940-022-00720-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Purpose of Review This review provides guidance for acute spinal cord injury (SCI) management through an analytical assessment of the most recent evidence on therapies available for treating SCI, including newer therapies under investigation. We present an approach to the SCI patient starting at presentation to acute rehabilitation and prognostication, with additional emphasis on the pediatric population when evidence is available. Recent Findings Further studies since the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) demonstrated a potential functional outcome benefit with ultra-early surgical intervention ≤ 8 h post-SCI. Subsequent analysis of the National Acute Spinal Cord Injury Study (NASCIS) II and NASCIS III trials have demonstrated potentially serious complications from intravenous methylprednisolone with limited benefit. Newer therapies actively being studied have demonstrated limited or no benefit in preclinical and clinical trials with insufficient evidence to support use in acute SCI treatment. Summary Care for SCI patients requires a multi-disciplinary team. Immediate evaluation and management are focused on preventing additional injury and restoring perfusion to the affected cord. Rapid assessment and intervention involve focused neurological examination, targeted imaging, and surgical intervention when indicated. There are currently no evidence-based recommendations for pathomechanistically targeted therapies.
Collapse
Affiliation(s)
- Ajay X. Thomas
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX USA
| | - James J. Riviello
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Daniel Davila-Williams
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sruthi P. Thomas
- Division of Pediatric Physical Medicine and Rehabilitation, Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Baylor College of Medicine, Houston, TX USA
| | - Jennifer C. Erklauer
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - David F. Bauer
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Baylor College of Medicine, Houston, TX USA
| | - Jon A. Cokley
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Department of Pharmacy, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
44
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
45
|
Nogo-A Is a Potential Prognostic Marker for Spinal Cord Injury. DISEASE MARKERS 2022; 2022:2141854. [PMID: 35571610 PMCID: PMC9095389 DOI: 10.1155/2022/2141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Objective Spinal cord injury (SCI) has become prevalent worldwide in recent years, and its prognosis is poor and the pathological mechanism has not been fully elucidated. Nogo-A is one of the isoforms of the neurite outgrowth inhibitory protein reticulon 4. The purpose of this study was to determine whether Nogo-A could be used as a marker for predicting the prognosis of SCI. Methods We screened eligible SCI patients and controls based on inclusion and exclusion criteria. We also collected baseline clinical information and peripheral venous blood of the enrolled population. Participants' baseline serum Nogo-A levels were measured by enzyme-linked immunosorbent assay (ELISA). The American Spinal Injury Association (ASIA) scale was used to evaluate the prognosis of SCI patients after 3 months. Results Baseline clinical information (age; gender; smoking; drinking; SBP, systolic blood pressure; DBP, diastolic blood pressure; fasting blood glucose; WBC, white blood cells; CRP, C-reactive protein) of SCI patients and controls were not statistically significant academic differences (p > 0.05). The baseline serum Nogo-A levels of SCI patients and controls were 192.7 ± 13.9 ng/ml and 263.1 ± 22.4 ng/ml, respectively, and there was a statistically significant difference between the two groups (p < 0.05). We divided SCI patients into 4 groups according to their baseline serum Nogo-A quartile levels and analyzed their relationship with ASIA scores. The trend test results showed that with the increase of Nogo-A level, the ASIA sensation score and ASIA motor score were significantly decreased (p < 0.001). Multivariate regression analysis showed that serum Nogo-A levels remained a potential cause affecting the prognosis of SCI after adjusting for confounding factors in multiple models. Conclusions Serum Nogo-A levels were significantly elevated in SCI patients. Moreover, elevated Nogo-A levels often indicate poor prognosis and can be used as a marker to predict the prognosis of SCI.
Collapse
|
46
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
47
|
Kauer SD, Fink KL, Li EHF, Evans BP, Golan N, Cafferty WBJ. Inositol Polyphosphate-5-Phosphatase K ( Inpp5k) Enhances Sprouting of Corticospinal Tract Axons after CNS Trauma. J Neurosci 2022; 42:2190-2204. [PMID: 35135857 PMCID: PMC8936595 DOI: 10.1523/jneurosci.0897-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Failure of CNS neurons to mount a significant growth response after trauma contributes to chronic functional deficits after spinal cord injury. Activator and repressor screening of embryonic cortical neurons and retinal ganglion cells in vitro and transcriptional profiling of developing CNS neurons harvested in vivo have identified several candidates that stimulate robust axon growth in vitro and in vivo Building on these studies, we sought to identify novel axon growth activators induced in the complex adult CNS environment in vivo We transcriptionally profiled intact sprouting adult corticospinal neurons (CSNs) after contralateral pyramidotomy (PyX) in nogo receptor-1 knock-out mice and found that intact CSNs were enriched in genes in the 3-phosphoinositide degradation pathway, including six 5-phosphatases. We explored whether inositol polyphosphate-5-phosphatase K (Inpp5k) could enhance corticospinal tract (CST) axon growth in preclinical models of acute and chronic CNS trauma. Overexpression of Inpp5k in intact adult CSNs in male and female mice enhanced the sprouting of intact CST terminals after PyX and cortical stroke and sprouting of CST axons after acute and chronic severe thoracic spinal contusion. We show that Inpp5k stimulates axon growth in part by elevating the density of active cofilin in labile growth cones, thus stimulating actin polymerization and enhancing microtubule protrusion into distal filopodia. We identify Inpp5k as a novel CST growth activator capable of driving compensatory axon growth in multiple complex CNS injury environments and underscores the veracity of using in vivo transcriptional screening to identify the next generation of cell-autonomous factors capable of repairing the damaged CNS.SIGNIFICANCE STATEMENT Neurologic recovery is limited after spinal cord injury as CNS neurons are incapable of self-repair post-trauma. In vitro screening strategies exploit the intrinsically high growth capacity of embryonic CNS neurons to identify novel axon growth activators. While promising candidates have been shown to stimulate axon growth in vivo, concomitant functional recovery remains incomplete. We identified Inpp5k as a novel axon growth activator using transcriptional profiling of intact adult corticospinal tract (CST) neurons that had initiated a growth response after pyramidotomy in plasticity sensitized nogo receptor-1-null mice. Here, we show that Inpp5k overexpression can stimulate CST axon growth after pyramidotomy, stroke, and acute and chronic contusion injuries. These data support in vivo screening approaches to identify novel axon growth activators.
Collapse
Affiliation(s)
- Sierra D Kauer
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kathryn L Fink
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elizabeth H F Li
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Brian P Evans
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| | - Noa Golan
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - William B J Cafferty
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
48
|
Franz S, Rust L, Heutehaus L, Rupp R, Schuld C, Weidner N. Impact of Heterotopic Ossification on Functional Recovery in Acute Spinal Cord Injury. Front Cell Neurosci 2022; 16:842090. [PMID: 35221928 PMCID: PMC8864137 DOI: 10.3389/fncel.2022.842090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: In spinal cord injury (SCI), heterotopic ossification is a frequent secondary complication, commonly associated with limited range of motion of affected joints, which could lead to secondary disability in activities of daily living. Additionally, heterotopic ossifications might challenge the effect of regeneration-promoting therapies on neurological and functional recovery. This study evaluated the impact of heterotopic ossification on clinical recovery within the first year after SCI. Methods: The study was conducted as a monocentric longitudinal paired cohort study. Recruitment was based on consecutive sampling in the framework of the European Multicenter about Spinal Cord Injury (EMSCI). Recovery profiles were determined using standardized neurological and functional clinical assessments within the 1st year following SCI. All study participants underwent at least two comprehensive standardized neurological and functional clinical examinations according to the International Standards for Neurological Classification of SCI and the Spinal Cord Independence Measure, respectively. Data regarding the diagnosis and treatment of heterotopic ossification were obtained by reviewing the patient medical records. The most similar “digital twin” from the entire EMSCI database were matched in terms of age, acute neurological and functional status to each individual with SCI, and heterotopic ossification. Results: Out of 25 participants diagnosed with heterotopic ossification, 13 individuals were enrolled and matched to control individuals. Most individuals presented with motor complete injury (75%). Ossifications were most frequently located at the hip joints (92%) and mainly occurred within the first 3 months after SCI. Individuals with heterotopic ossification achieved around 40% less functional improvement over time compared to their matched counterparts, whereas neurological recovery was not altered in individuals with SCI and heterotopic ossification. Conclusion: Heterotopic ossification—a common complication of SCI—unfavorably affects functional recovery, which in the end is most relevant for the best possible degree of independence in activities of daily living. Upon presentation with heterotopic ossification, neurological improvement achieved through potential restorative therapies might not translate into clinically meaningful functional improvement. Diagnostic algorithms and effective early prevention/treatment options for heterotopic ossification need to be established to ensure the best possible functional outcome. Clinical Trial Registration: NCT01571531 (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Rust
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
49
|
Estrada V, Oldenburg E, Popa O, Muller HW. Mapping the long rocky road to effective spinal cord injury therapy - A meta-review of pre-clinical and clinical research. J Neurotrauma 2022; 39:591-612. [PMID: 35196894 DOI: 10.1089/neu.2021.0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a rare condition, which even after decades of research, to date still presents an incurable condition with a complex symptomatology. SCI can result in paralysis, pain, loss of sensation, bladder and sexual dysfunction, and muscle degeneration to name but a few. The large number of publications makes it difficult to keep track of current progress in the field and of the many treatment options, which have been suggested and are being proposed with increasing frequency. Scientific databases with user-oriented search options will offer possible solutions, but they are still mostly in the development phase. In this meta-analysis, we summarize and narrow down SCI therapeutic approaches applied in pre-clinical and clinical research. Statistical analyses of treatment clusters - assorted after counting annual publication numbers in PubMed and ClinicalTrials.gov databases - were performed to allow the comparison of research foci and of their translation efficacy into clinical therapy. Using the example of SCI research, our findings demonstrate the challenges that come with the accelerating research progress - an issue, which many research fields are faced with today. The analyses point out similarities and differences in the prioritization of SCI research in pre-clinical versus clinical therapy strategies. Moreover, the results demonstrate the rapidly growing importance of modern (bio-)engineering technologies.
Collapse
Affiliation(s)
- Veronica Estrada
- Heinrich Heine University Düsseldorf, 9170, Neurology, Molecular Neurobiology Laboratory, Düsseldorf, Germany;
| | - Ellen Oldenburg
- Heinrich Heine University Düsseldorf, 9170, Institute of Quantitative and Theoretical Biology, Düsseldorf, Germany;
| | - Ovidiu Popa
- Heinrich Heine University Düsseldorf, 9170, Institute of Quantitative and Theoretical Biology, Düsseldorf, Germany;
| | - Hans W Muller
- Heinrich Heine University Düsseldorf, 9170, Neurology, Düsseldorf, Germany;
| |
Collapse
|
50
|
Thakre PP, Sunshine MD, Fuller DD. Spinally delivered ampakine CX717 increases phrenic motor output in adult rats. Respir Physiol Neurobiol 2022; 296:103814. [PMID: 34775071 PMCID: PMC9235873 DOI: 10.1016/j.resp.2021.103814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 02/03/2023]
Abstract
Ampakines are synthetic molecules that allosterically modulate AMPA-type glutamate receptors. We tested the hypothesis that delivery of ampakines to the intrathecal space could stimulate neural drive to the diaphragm. Ampakine CX717 (20 mM, dissolved in 10 % HPCD) or an HPCD vehicle solution were delivered via a catheter placed in the intrathecal space at the fourth cervical segment in urethane-anesthetized, mechanically ventilated adult male Sprague-Dawley rats. The electrical activity of the phrenic nerve was recorded for 60-minutes following drug application. Intrathecal application of CX717 produced a gradual and sustained increase in phrenic inspiratory burst amplitude (n = 10). In contrast, application of HPCD (n = 10) caused no sustained change in phrenic motor output. Phrenic burst rate, heart rate, and mean arterial pressure were similar between CX717 and HPCD treated rats. We conclude that intrathecally delivered ampakines can modulate phrenic motor output. This approach may have value for targeted induction of spinal neuroplasticity in the context of neurorehabiliation.
Collapse
Affiliation(s)
- Prajwal P. Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL,Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL,McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Michael D. Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL,Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL,McKnight Brain Institute, University of Florida, Gainesville, FL
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL,Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL,McKnight Brain Institute, University of Florida, Gainesville, FL,Corresponding author: David D. Fuller, Department of Physical Therapy, University of Florida, 1149 Newell Drive, Gainesville, FL 32611
| |
Collapse
|