1
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
2
|
Verma K, Amitabh, Prasad DN, Reddy MPK, Kohli E. Kynurenines Dynamics in the Periphery and Central Nervous System Steers Behavioral Deficits in Rats under Hypobaric Hypoxia. ACS Chem Neurosci 2024; 15:1084-1095. [PMID: 38462729 DOI: 10.1021/acschemneuro.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
People travel to high-altitude regions as tourists, workers, and military personnel on duty. Despite the consistent 21% oxygen content in the atmosphere, ascending to higher altitudes results in a decrease in the partial pressure of oxygen, inducing a state known as hypobaric hypoxia (HH). HH is an environmental stress that is responsible for neuroinflammation and behavioral deficits (anxiety, depression, mood disturbance, etc.), but little is known about its metabolic pathways. The kynurenine pathway (KP) is a promising candidate to uncover the mysteries of HH stress, as it is an important regulator of the immune system and is associated with behavioral deficits. To investigate the role of KP under HH, the levels of KP metabolites in the serum, cerebrospinal fluid (CSF), and brain tissue (prefrontal cortex-PFC, neocortex, and hippocampus) of male Sprague-Dawley rats exposed to HH at 7620 m for 1, 3, and 7 days were estimated utilizing high-performance liquid chromatography (HPLC). The behavioral analogs for anxiety-like and depression-like behavior were assessed using the open field test and forced swim test, respectively. Upon HH exposure, crosstalk between the periphery and central nervous system and KP metabolite region-dependent differential expression in the brain were observed. KP metabolites showed a positive correlation with behavioral parameters. The results of our study are indicative that KP can be proposed as the etiology of behavioral deficits, and KP metabolite levels in serum or CSF can be used as plausible markers for anxiety-like and depression-like behaviors under HH stress with a scope of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kalyani Verma
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Amitabh
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Dipti N Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - M Prasanna Kumar Reddy
- Department of Applied Physiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Ekta Kohli
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| |
Collapse
|
3
|
Wences Chirino T, Rangel López E, Luna Angulo A, Carrillo Mora P, Landa Solis C, Samudio Cruz MA, Fuentes Bello AC, Paniagua Pérez R, Ríos Martínez J, Sánchez Chapul L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals (Basel) 2023; 16:1421. [PMID: 37895892 PMCID: PMC10609722 DOI: 10.3390/ph16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.
Collapse
Affiliation(s)
- Tiffany Wences Chirino
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Edgar Rangel López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Paul Carrillo Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Carlos Landa Solis
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - María Alejandra Samudio Cruz
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Alim C. Fuentes Bello
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Rogelio Paniagua Pérez
- Biochemistry Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Juan Ríos Martínez
- Health Sciences Research Institute, Mexican Navy, Mexico City 04470, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| |
Collapse
|
4
|
Michal M, Schulz A, Wild PS, Koeck T, Münzel T, Schuster AK, Strauch K, Lackner K, Süssmuth SD, Niessen HG, Borta A, Allers KA, Zahn D, Beutel ME. Tryptophan catabolites and depression in the general population: results from the Gutenberg Health Study. BMC Psychiatry 2023; 23:27. [PMID: 36631760 PMCID: PMC9835277 DOI: 10.1186/s12888-023-04520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Previous studies reported significantly altered tryptophan catabolite concentrations in major depression. Thus, tryptophan catabolites were considered as potential biomarkers of depression and their modulators as potential targets for psychopharmacotherapy. However, the results were based mainly on studies with small sample sizes limiting their generalizability. Against this background, we investigated the relationship of peripheral tryptophan catabolites with depression in a population-based sample with n = 3,389 participants (with fasting status ≥ 8 h and C-reactive protein < 10 mg/L). N = 248 had clinically significant depression according to a PHQ-9 score of ≥ 10, n = 1,101 subjects had mild depressive symptoms with PHQ-9 scores between 5 and 9, and n = 2,040 had no depression. After multivariable adjustment, clinically significant depression was associated with lower kynurenine and kynurenic acid. Spearman correlation coefficients of the tryptophan catabolites with the severity of depression were very small (rho ≤ 0.080, p ≤ 0.015). None of the tryptophan catabolites could diagnostically separate depressed from not depressed persons. Concerning linear associations, kynurenine and kynurenic acid were associated only with the severity and the cognitive dimension of depression but not its somatic dimension. Tryptophan catabolites were not associated with persistence or recurrence of depression at the 5 year follow-up. The results replicated the association between kynurenine and kynurenic acid with depression. However, the associations were small raising doubts about their clinical utility. Findings underline the complexity of the relationships between depression and tryptophan catabolites. The search for subgroups of depression with a potentially higher impact of depression might be warranted.
Collapse
Affiliation(s)
- Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany.
| | - Andreas Schulz
- grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S. Wild
- grid.410607.4German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany ,grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Koeck
- grid.410607.4German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany ,grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- grid.410607.4Center for Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander K. Schuster
- grid.410607.4Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Strauch
- grid.5802.f0000 0001 1941 7111Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Karl Lackner
- grid.410607.4Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sigurd D. Süssmuth
- Clinical Development, uniQure NV, Allschwil, Switzerland ,grid.410712.10000 0004 0473 882XDepartment of Neurology, Univeristy Hospital of Ulm University, Ulm, Germany
| | - Heiko G. Niessen
- grid.420061.10000 0001 2171 7500Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an Der Riss, Germany
| | - Andreas Borta
- Clinical Development, uniQure NV, Allschwil, Switzerland
| | - Kelly A. Allers
- grid.420061.10000 0001 2171 7500CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an Der Riss, Germany
| | - Daniela Zahn
- grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manfred E. Beutel
- grid.410607.4Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
5
|
Almulla AF, Thipakorn Y, Vasupanrajit A, Abo Algon AA, Tunvirachaisakul C, Hashim Aljanabi AA, Oxenkrug G, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in major depressive and bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun Health 2022; 26:100537. [PMID: 36339964 PMCID: PMC9630622 DOI: 10.1016/j.bbih.2022.100537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background There is now evidence that affective disorders including major depressive disorder (MDD) and bipolar disorder (BD) are mediated by immune-inflammatory and nitro-oxidative pathways. Activation of these pathways may be associated with activation of the tryptophan catabolite (TRYCAT) pathway by inducing indoleamine 2,3-dioxygenase (IDO, the rate-limiting enzyme) leading to depletion of tryptophan (TRP) and increases in tryptophan catabolites (TRYCATs). Aims To systematically review and meta-analyze central and peripheral (free and total) TRP levels, its competing amino-acids (CAAs) and TRYCATs in MDD and BD. Methods This review searched PubMed, Google Scholar and SciFinder and included 121 full-text articles and 15470 individuals, including 8024 MDD/BD patients and 7446 healthy controls. Results TRP levels (either free and total) and the TRP/CAAs ratio were significantly decreased (p < 0.0001) in MDD/BD as compared with controls with a moderate effect size (standardized mean difference for TRP: SMD = -0.513, 95% confidence interval, CI: -0.611; -0.414; and TRP/CAAs: SMD = -0.558, CI: -0.758; -0.358). Kynurenine (KYN) levels were significantly decreased in patients as compared with controls with a small effect size (p < 0.0001, SMD = -0.213, 95%CI: -0.295; -0.131). These differences were significant in plasma (p < 0.0001, SMD = -0.304, 95%CI: -0.415, -0.194) but not in serum (p = 0.054) or the central nervous system (CNS, p = 0.771). The KYN/TRP ratio, frequently used as an index of IDO activity, and neurotoxicity indices based on downstream TRYCATs were unaltered or even lowered in MDD/BD. Conclusions Our findings suggest that MDD and BD are accompanied by TRP depletion without IDO and TRYCAT pathway activation. Lowered TRP availability is probably the consequence of lowered serum albumin during the inflammatory response in affective disorders.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
8
|
Martos D, Tuka B, Tanaka M, Vécsei L, Telegdy G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022; 10:biomedicines10040849. [PMID: 35453599 PMCID: PMC9027307 DOI: 10.3390/biomedicines10040849] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous tryptophan (Trp) metabolite known to possess neuroprotective property. KYNA plays critical roles in nociception, neurodegeneration, and neuroinflammation. A lower level of KYNA is observed in patients with neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases or psychiatric disorders such as depression and autism spectrum disorders, whereas a higher level of KYNA is associated with the pathogenesis of schizophrenia. Little is known about the optimal concentration for neuroprotection and the threshold for neurotoxicity. In this study the effects of KYNA on memory functions were investigated by passive avoidance test in mice. Six different doses of KYNA were administered intracerebroventricularly to previously trained CFLP mice and they were observed for 24 h. High doses of KYNA (i.e., 20–40 μg/2 μL) significantly decreased the avoidance latency, whereas a low dose of KYNA (0.5 μg/2 μL) significantly elevated it compared with controls, suggesting that the low dose of KYNA enhanced memory function. Furthermore, six different receptor blockers were applied to reveal the mechanisms underlying the memory enhancement induced by KYNA. The series of tests revealed the possible involvement of the serotonergic, dopaminergic, α and β adrenergic, and opiate systems in the nootropic effect. This study confirmed that a low dose of KYNA improved a memory component of cognitive domain, which was mediated by, at least in part, four systems of neurotransmission in an animal model of learning and memory.
Collapse
Affiliation(s)
- Diána Martos
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-342-361
| | - Gyula Telegdy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 5, H-6725 Szeged, Hungary;
| |
Collapse
|
9
|
Xenograft of Human Umbilical Mesenchymal Stem Cells Promotes Recovery from Chronic Ischemic Stroke in Rats. Int J Mol Sci 2022; 23:ijms23063149. [PMID: 35328574 PMCID: PMC8953545 DOI: 10.3390/ijms23063149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke is a leading cause of adult disability. In our previous study, transplantation of human umbilical mesenchymal stem cells (HUMSCs) in Wharton’s jelly in the acute phase of ischemic stroke promotes recovery in rats. Unfortunately, there is no cure for chronic stroke. Patients with chronic stroke can only be treated with rehabilitation or supportive interventions. This study aimed to investigate the potential of xenograft of HUMSCs for treating chronic stroke in rats. Rats were subjected to 90 min middle cerebral artery occlusion and then reperfusion to mimic ischemic cerebral stroke. On day 14 following stroke, HUMSCs were transplanted into the damaged cerebral cortex. The motor function in rats of the Stroke + HUMSCs group exhibited significant improvement compared to that of the Stroke + Saline group, and the trend persisted until day 56 post stroke. The cerebral cortex changes were tracked using magnetic resonance imaging, showing that cerebral atrophy was found starting on day 7 and was reduced significantly in rats receiving HUMSCs compared to that in the Stroke + Saline group from day 21 to day 56. HUMSCs were found to be existed in the rats’ cerebral cortex on day 56, with signs of migration. The grafted HUMSCs did not differentiate into neurons or astrocytes and may release cytokines to improve neuroprotection, decrease inflammation and increase angiogenesis. Our results demonstrate that xeno-transplantation of HUMSCs has therapeutic benefits for chronic ischemic stroke. Most importantly, patients do not need to use their own HUMSCs, which is a gospel thing for clinical patients.
Collapse
|
10
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
11
|
Tanaka M, Török N, Tóth F, Szabó Á, Vécsei L. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:biomedicines9080897. [PMID: 34440101 PMCID: PMC8389666 DOI: 10.3390/biomedicines9080897] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic pain is an unpleasant sensory and emotional experience that persists or recurs more than three months and may extend beyond the expected time of healing. Recently, nociplastic pain has been introduced as a descriptor of the mechanism of pain, which is due to the disturbance of neural processing without actual or potential tissue damage, appearing to replace a concept of psychogenic pain. An interdisciplinary task force of the International Association for the Study of Pain (IASP) compiled a systematic classification of clinical conditions associated with chronic pain, which was published in 2018 and will officially come into effect in 2022 in the 11th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-11) by the World Health Organization. ICD-11 offers the option for recording the presence of psychological or social factors in chronic pain; however, cognitive, emotional, and social dimensions in the pathogenesis of chronic pain are missing. Earlier pain disorder was defined as a condition with chronic pain associated with psychological factors, but it was replaced with somatic symptom disorder with predominant pain in the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) in 2013. Recently clinical nosology is trending toward highlighting neurological pathology of chronic pain, discounting psychological or social factors in the pathogenesis of pain. This review article discusses components of the pain pathway, the component-based mechanisms of pain, central and peripheral sensitization, roles of chronic inflammation, and the involvement of tryptophan-kynurenine pathway metabolites, exploring the participation of psychosocial and behavioral factors in central sensitization of diseases progressing into the development of chronic pain, comorbid diseases that commonly present a symptom of chronic pain, and psychiatric disorders that manifest chronic pain without obvious actual or potential tissue damage.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Fanni Tóth
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
12
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
13
|
The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev 2021; 127:917-927. [PMID: 34029552 DOI: 10.1016/j.neubiorev.2021.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
Major depression is a serious psychiatric disorder, occurring in up to 20 % of the population. Despite its devastating burden, the neurobiological changes associated with depression are not fully understood. A growing body of evidence suggests the kynurenine pathway is implicated in the pathophysiology of depression. In this review, we bring together the literature examining elements of the kynurenine pathway in depression and explore the implications for the pathophysiology and treatment of depression, while highlighting the gaps in the current knowledge. Current research indicates an increased potential for neurotoxic activity of the kynurenine pathway in peripheral blood samples but an increased activation of the putative neuroprotective arm in some brain regions in depression. The disconnect between these findings requires further investigation, with a greater research effort on elucidating the central effects of the kynurenine pathway in driving depression symptomology. Research investigating the benefits of targeting the kynurenine pathway centred on human brain findings and the heterogenous subtypes of depression will help guide the identification of effective drug targets in depression.
Collapse
|
14
|
Balogh L, Tanaka M, Török N, Vécsei L, Taguchi S. Crosstalk between Existential Phenomenological Psychotherapy and Neurological Sciences in Mood and Anxiety Disorders. Biomedicines 2021; 9:biomedicines9040340. [PMID: 33801765 PMCID: PMC8066576 DOI: 10.3390/biomedicines9040340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Psychotherapy is a comprehensive biological treatment modifying complex underlying cognitive, emotional, behavioral, and regulatory responses in the brain, leading patients with mental illness to a new interpretation of the sense of self and others. Psychotherapy is an art of science integrated with psychology and/or philosophy. Neurological sciences study the neurological basis of cognition, memory, and behavior as well as the impact of neurological damage and disease on these functions, and their treatment. Both psychotherapy and neurological sciences deal with the brain; nevertheless, they continue to stay polarized. Existential phenomenological psychotherapy (EPP) has been in the forefront of meaning-centered counseling for almost a century. The phenomenological approach in psychotherapy originated in the works of Martin Heidegger, Ludwig Binswanger, Medard Boss, and Viktor Frankl, and it has been committed to accounting for the existential possibilities and limitations of one's life. EPP provides philosophically rich interpretations and empowers counseling techniques to assist mentally suffering individuals by finding meaning and purpose to life. The approach has proven to be effective in treating mood and anxiety disorders. This narrative review article demonstrates the development of EPP, the therapeutic methodology, evidence-based accounts of its curative techniques, current understanding of mood and anxiety disorders in neurological sciences, and a possible converging path to translate and integrate meaning-centered psychotherapy and neuroscience, concluding that the EPP may potentially play a synergistic role with the currently prevailing medication-based approaches for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Lehel Balogh
- Center for Applied Ethics and Philosophy, Hokkaido University, North 10, West 7, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: ; Tel.: +81-80-8906-4263
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Shigeru Taguchi
- Faculty of Humanities and Human Sciences & Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
15
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
16
|
Early Depression Independently of Other Neuropsychiatric Conditions, Influences Disability and Mortality after Stroke (Research Study-Part of PROPOLIS Study). Biomedicines 2020; 8:biomedicines8110509. [PMID: 33213019 PMCID: PMC7698511 DOI: 10.3390/biomedicines8110509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Post-stroke depression (PSD) is the most frequent neuropsychiatric consequence of stroke. The nature of the relationship between PSD and mortality still remains unknown. One hypothesis is that PSD could be more frequent in those patients who are more vulnerable to physical disability, a mediator variable for higher level of physical damage related to higher risk of mortality. Therefore, the authors' objective was to explore the assumption that PSD increases disability after stroke, and secondly, that mortality is higher among patients with PSD regardless of stroke severity and other neuropsychiatric conditions. We included 524 consecutive patients with acute stroke or transient ischemic attack, who were screened for depression between 7-10 days after stroke onset. Physical impairment and death were the outcomes measures at evaluation check points three and 12 months post-stroke. PSD independently increased the level of disability three (OR = 1.94, 95% CI 1.31-2.87, p = 0.001), and 12 months post-stroke (OR = 1.61, 95% CI 1.14-2.48, p = 0.009). PSD was also an independent risk factor for death three (OR = 5.68, 95% CI 1.58-20.37, p = 0.008) and 12 months after stroke (OR = 4.53, 95% CI 2.06-9.94, p = 0.001). Our study shows the negative impact of early PSD on the level of disability and survival rates during first year after stroke and supports the assumption that depression may act as an independent mediator for disability leading to death in patients who are more vulnerable for brain injury.
Collapse
|
17
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|