1
|
El-Sayed SF, Mahmoud SM, Samy W, Wahid RM, Talaat A, Seada SG. Vitamin D3 mitigates aspirin-induced gastric injury by modulating gastrokines, E-cadherin, and inhibiting NLRP3 and NF-κB/MMP-9 signaling pathway. Tissue Cell 2025; 93:102724. [PMID: 39823708 DOI: 10.1016/j.tice.2025.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND The prevalence of gastric ulcers has grown significantly in the modern era affecting 10 % of global population. Aspirin downregulates gastrokines 1(GKN1) expression in gastric mucosa and GKN1 down-regulation results in gastric cancer. Vitamin D3 (Vit.D3) has anti-inflammatory and antioxidant effects. AIM Study the gastroprotective impact of Vit.D3 following aspirin-induced gastric injury in relation to gastrokines and investigate the possible underlying mechanisms. MATERIALS AND METHODS 24 rats were divided into 4 groups: control, Vit.D3 supplemented normal, aspirin-induced gastric injury, and Vit.D3 supplemented gastric injury groups. Some oxidative stress markers with gene expression of GKN1&2, mucin 5AC (Muc5ac) and NLR family pyrin domain containing 3 (NLRP3) in the gastric tissue were done. Histopathological and immunohistochemical study of E-Cadherin, nuclear factor kappa beta (NFκB), and metalloproteinase-9 (MMP-9) in the stomach mucosa were identified. RESULTS Vit.D3 supplementation significantly upregulated E-Cadherin, GSH, GKN1 and Muc5ac in the gastric tissue. Also, it improved the morphology, histology of gastric tissue, by alleviating oxidative stress and NFκB, MMP-9 and down regulation of inflammasome (NLRP3). CONCLUSION Vitamin D3 has a potential protective effect against aspirin -induced gastric injury via upregulating gastrokine1 and E-cadherin and down regulation of NFKB/MMP-9 signaling pathway and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Sherein F El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walaa Samy
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Reham M Wahid
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Aliaa Talaat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara G Seada
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Zhou J, Li N, Li X, Ye J, Wang M, Sun G. Review on recent advancements in understanding acetylsalicylic acid-induced gastrointestinal injury: mechanisms, medication, and dosage refinement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3297-3320. [PMID: 39545984 DOI: 10.1007/s00210-024-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Acetylsalicylic acid (ASA) is a clinical drug with multiple effects, including prevention of cardiovascular adverse events and anti-cancer effects. However, gastrointestinal side effects, such as gastrointestinal ulcers and bleeding, limit the use of ASA and reduce patient compliance. Various studies have investigated the mechanisms of ASA-induced gastrointestinal injury, and many medicines have been reported to be effective in preventing and treating the adverse gastrointestinal effects of ASA. New formulations of ASA have demonstrated milder gastrointestinal injury than ASA alone. In this article, we summarized the mechanisms of ASA-induced gastrointestinal injury, drugs that resist gastrointestinal side effects of ASA, and progress in research on formulation improvement of ASA to help resolve the clinical dilemma of ASA usage.
Collapse
Affiliation(s)
- Jiahui Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinzhong Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Chen J, Zhang J, Chen T, Bao S, Li J, Wei H, Hu X, Liang Y, Liu F, Yan S. Xiaojianzhong decoction attenuates gastric mucosal injury by activating the p62/Keap1/Nrf2 signaling pathway to inhibit ferroptosis. Biomed Pharmacother 2022; 155:113631. [PMID: 36122518 DOI: 10.1016/j.biopha.2022.113631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 02/09/2023] Open
Abstract
Gastric mucosal injury is the initial stage of the occurrence and development of gastric diseases. Oxidative stress and ferroptosis caused by the imbalance of redox and iron dynamics in gastric mucosal epithelial cells are present throughout the occurrence and development of gastric mucosal injury. Therefore, the inhibition of oxidative stress and ferroptosis is a potential target for the treatment of the gastric mucosal injury. Xiaojianzhong decoction (XJZ), which consists of six Chinese herbal medicines and extracts, is used for the treatment of diseases related to gastrointestinal mucosal injury; however, its specific mechanism of action has yet to be clarified. In this study, we clarified the protective effect of XJZ on gastric mucosa and revealed its underlying mechanism. We established a gastric mucosal injury model using aspirin and administered XJZ. Furthermore, we systematically evaluated the mucosal injury and examined the expression of genes related to oxidative stress, ferroptosis, and inflammation. The study found that XJZ significantly counteracted aspirin-induced gastric mucosal injury and inhibited oxidative stress and ferroptosis in mice. Upon examining SQSTM1/p62(p62)/Kelch-like ECH-associated protein 1 (Keap1)/Nuclear Factor erythroid 2-Related Factor 2 (Nrf2), a well-known signaling pathway involved in the regulation of oxidative stress and ferroptosis, we found that its activation was significantly inhibited by aspirin treatment and that this signaling pathway was activated after XJZ intervention. Our study suggests that XJZ may inhibit aspirin induced oxidative stress and ferroptosis via the p62/Keap1/Nrf2 signaling pathway, thereby attenuating gastric mucosal injury.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jingtao Li
- Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Hailiang Wei
- Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin 719000, PR China.
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
4
|
Kumadoh D, Archer MA, Yeboah GN, Kyene MO, Boakye-Yiadom M, Adi-Dako O, Osei-Asare C, Adase E, Appiah AA, Mintah SO. A review on anti-peptic ulcer activities of medicinal plants used in the formulation of Enterica, Dyspepsia and NPK 500 capsules. Heliyon 2021; 7:e08465. [PMID: 34917789 PMCID: PMC8645450 DOI: 10.1016/j.heliyon.2021.e08465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022] Open
Abstract
Peptic ulcer disease affects many people globally. With the increasing resistance to some orthodox antibiotics such as Clarithromycin and Metronidazole, it is important that new acceptable, safer and effective therapies are developed to manage this disease. Various herbal medicines have been used traditionally for the remedy of peptic ulcer disease (PUD), however scientific information with regards to their anti-peptic ulcer both in-vivo and in-vitro as well as clinical studies supporting their use is still inadequate. The Centre for Plant Medicine Research, (CPMR) Mampong-Akuapem, Ghana manufactures three herbal Products namely Enterica, Dyspepsia and NPK 500 capsules which are currently used for the remedy of PUD as a triple therapy at its out-patient clinic with promising effects. The aim of this review is to gather information from literature on the anti-ulcer properties, pharmacological, phytochemical constituents and related activities of herbal plants used at the CPMR for formulation of the triple herbal therapy. This review may, provide some scientific bases for the use of Enterica, Dyspepsia and NPK 500 capsules in the management of Peptic ulcer at the CPMR out-patient clinic. METHODS Organization for the review involved the on and/or offline search for information from available literature using electronic data and scientific research information resources such as PubMed, Science Direct and Google scholar. RESULTS In this review, fifteen ethno-medicinal plants used for the formulation of Enterica, Dyspepsia and NPK capsules have been discussed, presenting the description of the plants, composition and pharmacological activity. INTERPRETATION Tables with the summary of reviewed medicinal plants with their anti-ulcer models and inference on possible mechanisms of action were drawn up. The mechanism(s) of action of individual plants and products (Enterica, Dyspepsia and NPK 500 capsules) must be further investigated and established experimentally in-vitro in addition to in-vivo pharmacological and clinical activity studies to confirm their use in the remedy of PUD.
Collapse
Affiliation(s)
- Doris Kumadoh
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
- Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Mary-Ann Archer
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Genevieve N. Yeboah
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Michael O. Kyene
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Mavis Boakye-Yiadom
- Department of Clinical Research, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Legon, Accra, Ghana
| | - Christina Osei-Asare
- Department of Pharmaceutics and Microbiology, Central University College, Accra, Ghana
| | - Emmanuel Adase
- Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Alfred A. Appiah
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Susana O. Mintah
- Department of Microbiology, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| |
Collapse
|
5
|
Osuntokun OS, Babatunde AA, Olayiwola G, Atere TG, Oladokun OO, Adedokun KI. Assessment of the biomarkers of hepatotoxicity following carbamazepine, levetiracetam, and carbamazepine-levetiracetam adjunctive treatment in male Wistar rats. Toxicol Rep 2021; 8:592-598. [PMID: 33786324 PMCID: PMC7994541 DOI: 10.1016/j.toxrep.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Objective This study examined some of the biomarkers of hepatotoxicity following chronic treatment with carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in male rats. Method Twenty-four male Wistar rats (140-150 g) were randomized into four groups (n = 6) to receive oral dose of normal saline (0.1 mL), CBZ (25 mg/kg), LEV (50 mg/kg) or sub-therapeutic dose of CBZ (12.5 mg/kg) together with LEV (25 mg/kg) for 28 days. Activities of the liver enzymes and oxidative stress markers were determined while liver histomorphology was also carried out. Data were analyzed using descriptive and inferential statistics. The results were presented as mean ± SEM in graphs or tables, while the level of significance was taken at p < 0.05. Results The activities of alkaline-phosphatase and malondialdehyde concentrations increased significantly in all the drug treatment groups, while the activities of superoxide dismutase decreased significantly following CBZ, and CBZ + LEV treatment. Alanine-aminotransferase activities increased significantly in the CBZ and CBZ + LEV treated rats compared with control. The liver section of CBZ treated rats showed mild vascular congestion. Conclusion None of these AEDs treatment is devoid of hepatotoxicity. However, the adverse effects in CBZ were greater than LEV, or CBZ + LEV adjunctive treatment.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Ademola Adeniyi Babatunde
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tope Gafar Atere
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| |
Collapse
|
6
|
|
7
|
Graded doses of grape seed methanol extract attenuated hepato-toxicity following chronic carbamazepine treatment in male Wistar rats. Toxicol Rep 2020; 7:1592-1596. [PMID: 33304829 PMCID: PMC7711278 DOI: 10.1016/j.toxrep.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic carbamazepine treatment decreased the body weight and relative liver weight of male Wistar rats. Carbamazepine induced the activities of liver enzymes in male Wistar rats. Carbamazepine increased the product of lipid peroxidation (malondialdehyde) of the liver. Carbamazepine induced various hepatic histomorphological alterations in male Wistar rats. Most of these derangements were attenuated by grape seed methanolic extract.
Aim This study investigated the effects of co-administration of carbamazepine (CBZ) with grape (Vitis vinifera) seed methanolic extract (GSME) on liver toxicity. Method Thirty-five male rats (145−155 g) were randomized into 5 groups (n = 7) and administered with propylene glycol (PG 0.1 mL/day), CBZ (25 mg/kg), CBZ (25 mg/kg) + GSME (200 mg/kg), CBZ (25 mg/kg) + GSME (100 mg/kg), or CBZ (25 mg/kg) + GSME (50 mg/kg) orally for 28 days. Twenty-four hours after the last dose, changes in the body weights were determined. The rats were euthanized by cervical dislocation. The liver was weighed and later homogenized; while the supernatant was analyzed biochemically. The liver tissues were preserved in 10 % neutral-buffered formalin for the histomorphological investigation. Result There was significant (p = 0.0001) decrease in the body weight following carbamazepine treatment. The relative liver weight also decreased significantly (p = 0.0004) across the treatment group compared with control. The activities of the liver enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and glutathione activities), including the concentrations of malondialdehyde, increased significantly (p ≤ 0.0004) following carbamazepine treatment. Various morphological alterations were observed, especially in the photomicrograph of the CBZ treated rats. However, these derangements were attenuated significantly in the CBZ - GSME co-treated group. Conclusion This study concludes that GSME treatment may serve as a potential therapeutic agent in carbamazepine-induced hepatotoxicity/ dysfunction.
Collapse
|
8
|
Yasin H, Tariq F, Sameen A, Ahmad N, Manzoor MF, Yasin M, Tariq T, Iqbal MW, Ishfaq B, Mahmood S, Siddeeg A. Ethanolic extract of okra has a potential gastroprotective effect on acute gastric lesions in Sprague Dawley rats. Food Sci Nutr 2020; 8:6691-6698. [PMID: 33312552 PMCID: PMC7723190 DOI: 10.1002/fsn3.1963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
Okra (Abelmoschus esculentus) has various bioactive components used for the treatment of different diseases such as gastritis and ulcers. This research aims to examine the anti-inflammatory and anti-ulcer attributes of okra extract against gastric lesions. Adult Sprague Dawley male albino rats were divided into five groups. The negative control (G1) received normal feed, positive control (G2) received ulcer-inducing drug aspirin 150 mg/kg of body weight (b.w), G3 group received reference drug omeprazole 20 mg/kg of b.w, G4 group received okra extract 250 mg/kg of b.w, and G5 group received 500 mg/kg of b.w. Acute gastric damage was induced in G1, G2, G3, and G4 using aspirin 150 mg/kg of b.w, during 14-day-long efficacy trials after that all the animals were sacrificed. Anti-ulcer parameters and histopathological analysis of stomachs were performed to evaluate the degree of recovery against tissue damage by the administration of okra extract. The obtained results indicated that the 500 mg/kg of b.w okra extract exerted a protective effect in aspirin-induced gastric ulcers by significantly (p < .05) reducing ulcer score, ulcer area, total acidity, and gastric volume, and significantly (p < .05) increasing gastric pH. Moreover, histopathological observation revealed that gastric mucosa was normal in G1, G3, G4, and G5; however, disruptions in the gastric epithelium were observed in G2. Congestion was observed in all groups except G1 and G5. Gastric pits and gastric glands were increased in size in G2 and G4. A higher concentration of okra extract (500 mg/kg of b.w) showed almost similar results when compared to the reference drug omeprazole.
Collapse
Affiliation(s)
- Hafsa Yasin
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Farwa Tariq
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Aysha Sameen
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Nazir Ahmad
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Faisal Manzoor
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- School of Food Science and EngineeringSouth China University and TechnologyGuangzhouChina
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Maria Yasin
- District Head Quarters HospitalPakpattanPakistan
| | - Tayyaba Tariq
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Bushra Ishfaq
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Sana Mahmood
- National Institute of Food Science and TechnologyFaculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity GeziraWad MedaniSudan
| |
Collapse
|
9
|
Xiao W, Zhou S, Wu K, Deng B, Wu D, Wang Y, Gong W, Ding Y, Lu G. Low-dose aspirin and the severity of ıschemic colitis: A single-center retrospective study. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2020; 31:848-852. [PMID: 33625996 PMCID: PMC7928255 DOI: 10.5152/tjg.2020.19507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS This retrospective study aimed to evaluate the effect of low-dose aspirin (50-150 mg/d) on the severity of ischemic colitis. MATERIALS AND METHODS A total of 244 patients admitted to our hospital for ischemic colitis between 2013 and 2018 were included in the study. Patients were divided into two groups-aspirin and non-aspirin groups-based on their recent history of aspirin use before the onset of ischemic colitis. Clinical performance, biochemical indices, and endoscopic findings were compared. RESULTS The average age and the proportion of underlying disease, including hypertension, cerebral infarction, and coronary heart disease in the aspirin group was significantly higher than those in the non-aspirin group (p<0.05). In terms of clinical symptoms, the proportion of diarrhea in the aspirin group was significantly higher than that in the non-aspirin group, while the proportion of abdominal pain was significantly lower in the aspirin group compared with the non-aspirin group. Colonoscopy results showed that the incidence of ulceration was significantly higher in the aspirin group than in the non-aspirin group (p<0.05). CONCLUSION The use of low-dose aspirin may aggravate the severity and mask the symptoms of abdominal pain in ischemic colitis.
Collapse
Affiliation(s)
- Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Shuaiyang Zhou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Dacheng Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Yuanzhi Wang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| |
Collapse
|
10
|
Song H, Hou X, Zeng M, Chen X, Chen X, Yang T, Xu F, Peng J, Peng Q, Cai X, Yu R. Traditional Chinese Medicine Li-Zhong-Tang accelerates the healing of indomethacin-induced gastric ulcers in rats by affecting TLR-2/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112979. [PMID: 32442585 DOI: 10.1016/j.jep.2020.112979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Li-Zhong-Tang (LZT) is a well-known Chinese herbal formulation first described in one of traditional Chinese medicine (TCM) scriptures, Treatise on Febrile Diseases. LZT has been commonly prescribed for the treatment of various gastrointestinal diseases for over 1800 years, and has demonstrated pronounced therapeutic effects on patients with gastric ulcers. AIM OF THE STUDY The present study aimed to scientifically evaluate protective effects of LZT on indomethacin (IND)-induced gastric injury in rats and to elucidate whether LZT exerts its gastro-protective effects via enhancing mucosal immunity by regulating TLR-2/MyD88 signaling pathway. MATERIAL AND METHODS Gastric ulcers were induced in male Sprague-Dawley (SD) rats with a single oral dose of 150 mg/kg IND. Ulcer index (UI) and curative index (CI) were evaluated. Histopathological examinations were performed and microscopic score (MS) was macroscopically calculated. The volume of gastric juice, free acidity, total acidity, and gastric pH was measured. The gastroprotective and inflammatory biomarkers including levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and malondialdehyde (MDA) were determined. Expression levels of TLR-2 and MyD88 mRNA were assessed by qRT-PCR. The expression, distribution, and co-localization of TLR-2 and MyD88 protein were determined by Western blot, immunohistochemistry, and immunofluorescence, respectively. RESULTS Induction of gastric ulcers in rats resulted in very significantly increased UI and elevated volume and acidity of gastric juice, which were markedly attenuated by LZT treatment. Microscopic examinations of the IND-induced gastric ulcers revealed severe gastric hemorrhagic necrosis, submucosal edema, and destruction of epithelial cells, which were significantly attenuated in LZT-treated rats. Moreover, treatment with LZT remarkably increased gastric mucosal levels of PGE2 and NO, and lowered highly elevated levels of TNF-α and MDA in gastric ulcerative rats. Mechanistically, LZT inhibited mRNA and protein expression of TLR-2 and MyD88 and enhanced immune function in gastric mucosa. Immunohistochemical analyses and immunofluorescent detection further confirmed a markedly decreased co-localization of TLR-2 and MyD88 protein in the gastric mucosa of LZT-treated rats as compared to that of gastric ulcerative rats. CONCLUSIONS These findings indicate that LZT alleviates serious gastric mucosal ulcerations induced by IND. Protective effects of LZT on gastric ulcers are believed to be associated with the intensification of the anti-oxidative defense system, mitigation of proinflammatory cytokines, stimulation of the production of cytoprotective mediators, and improvement of the mucosal immunity through TLR-2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Houpan Song
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai' an, Shandong, 271016, China.
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiaojuan Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xinyi Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Tao Yang
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Fuping Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
| | - Jun Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
11
|
Abstract
Gastrointestinal disease is a major global threat to public health. In the past few decades, numerous studies have focuses on the application of small molecule gases in the disease treatment. Increasing evidence has shown that hydrogen sulfide (H2S) has anti-inflammatory and anti-oxidative effects, and can regulate gastric mucosal blood flow in the gastric mucosa. After gastric mucosa damage, the level of H2S in the stomach decreases. Administration of H2S can protect and repair the damaged gastric mucosa. Therefore, H2S is a new target for the repair and treatment of gastric mucosa damage. In this review, we introduce the roles of H2S in the treatment of gastric mucosa damage and provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Song H, Zeng M, Chen X, Chen X, Peng J, Lin Y, Yu R, Cai X, Peng Q. Antiulcerogenic Activity of Li-Zhong Decoction on Duodenal Ulcers Induced by Indomethacin in Rats: Involvement of TLR-2/MyD88 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6538156. [PMID: 32063985 PMCID: PMC6996687 DOI: 10.1155/2020/6538156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Administration of nonsteroidal anti-inflammatory drugs (NSAIDs) often causes small intestinal ulcers in patients, but few effective drugs are currently available to manage such serious adverse events of NSAIDs. Li-Zhong decoction (LZD), a well-known traditional Chinese medicine (TCM) formula, is commonly prescribed for treatment of gastrointestinal diseases. The present study aimed to investigate the anti-ulcerogenic activity of LZD on indomethacin- (IND-) induced duodenal ulcer in rats. Mechanistic studies of action of LZD were focused on involvement of TLR-2/MyD88 signaling pathway. METHODS Fifty male Sprague-Dawley (SD) rats were randomly and evenly divided into five groups: normal control, ulcer control (IND, 25 mg/kg), IND + esomeprazole (ESO, 4.17 mg/kg), and IND + low and high doses of LZD (3.75 and 7.50 g/kg). Macroscopic and histopathological examinations were performed for evaluation of ulcer index (UI), curative index (CI), and microscopic score (MS). Levels of duodenal inflammatory biomarkers and cytoprotective mediators including interleukin-4 (IL-4), IL-10, tumor necrosis factor-α (TNF-α (TNF. RESULTS Gross and microscopic examinations of the IND-treated rats revealed severe duodenal hemorrhagic necrosis, inflammatory infiltration, villus destruction, and crypt abscess, while LZD-treated rats manifested these pathological events to a markedly lesser degree. LZD significantly decreased UI and MS, increased CI, preserved the integrity of the villus and crypt, and normalized the tissue architecture of the duodenum of rats. The elevated TNF-α (TNF. CONCLUSIONS Our data demonstrate that LZD protects the duodenal mucosa from IND-caused lesions, which is at least partially attributable to the interaction of its potential cytoprotective and anti-inflammatory mechanisms together with enhancement of the mucosal immunity through TLR-2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Houpan Song
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaojuan Chen
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyi Chen
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Peng
- Department of Ophthalmology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research, Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|