1
|
Kristensen JB, Elster L, Lundh M, Ballarín-González B, Alexopoulou F, Kræmer M, Jensen DM, Leurs U, Nielsen JC, Hansen HH, Haanes KA, Degn M. Pipeline for development of acylated peptide based CGRP receptor antagonist with extended half-life for migraine treatment. Sci Rep 2025; 15:1870. [PMID: 39805895 PMCID: PMC11730311 DOI: 10.1038/s41598-024-84547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient. Here, we present a pipeline for development of a peptide-based hCGRP receptor antagonist with increased half-life capable of antagonising the vasodilatory effect of hαCGRP. A series of hαCGRP8-37 analogues carrying a C18-or C20-diacid lipidation was screened for their antagonism against the hCGRP receptor. hαCGRP8-37 analogues with a C20-diacid were 2-6 fold more potent than analogues conjugated with a C18-diacid. Half-life of hαCGRP8-37 analogues carrying a C20-diacid was estimated in mice in a pilot study (n = 1-2). Half-lives ranged from 7.3 to 13.7 h. An hαCGRP8-37 analogue conjugated with a C20 diacid at position 25 was subjected to an amino acid substitution scan to identify mutations that could further enhance hCGRP receptor antagonism. Substituting alanine with serine at position 36 resulted in a ~ 4 fold gain of potency. Vasodilative actions of hαCGRP were successfully antagonized by hαCGRP8-37 analogues carrying a C20 diacid at position 25. Our findings demonstrate that lipidation can improve hαCGRP8-37 pharmacokinetics while maintaining hαCGRP antagonism, thus demonstrating potential for a peptide-based migraine treatment strategy.
Collapse
Affiliation(s)
- Jens Bjelke Kristensen
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark.
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Lisbeth Elster
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | - Morten Lundh
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Flora Alexopoulou
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Martin Kræmer
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Ulrike Leurs
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Henrik H Hansen
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | - Kristian A Haanes
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Matilda Degn
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark.
| |
Collapse
|
2
|
Ro JY, Zhang Y, Asgar J, Shou H, Chung MK, Melemedjian OK, Da Silva JT, Chen S. Forced swim stress exacerbates inflammation-induced hyperalgesia and oxidative stress in the rat trigeminal ganglia. FRONTIERS IN PAIN RESEARCH 2024; 5:1372942. [PMID: 38721062 PMCID: PMC11076691 DOI: 10.3389/fpain.2024.1372942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates the impact of combining psychophysical stress, induced by forced swim (FSS), with masseter inflammation on reactive oxygen species (ROS) production in trigeminal ganglia (TG), TRPA1 upregulation in TG, and mechanical hyperalgesia. In a rat model, we demonstrate that FSS potentiates and prolongs CFA-induced ROS upregulation within TG. The ROS levels in CFA combined with FSS group surpass those in the CFA-only group on days 4 and 28 post-treatment. FSS also enhances TRPA1 upregulation in TG, with prolonged expression compared to CFA alone. Furthermore, CFA-induced mechanical hyperalgesia is significantly prolonged by FSS, persisting up to day 28. PCR array analyses reveal distinct alterations in oxidative stress genes under CFA and CFA combined with FSS conditions, suggesting an intricate regulation of ROS within TG. Notably, genes like Nox4, Hba1, Gpx3, and Duox1 exhibit significant changes, providing potential targets for managing oxidative stress and inflammatory pain. Western blot and immunohistochemistry confirm DUOX1 protein upregulation and localization in TG neurons, indicating a role in ROS generation under inflammatory and stress conditions. This study underscores the complex interplay between psychophysical stress, inflammation, and oxidative stress in the trigeminal system, offering insights into novel therapeutic targets for pain management.
Collapse
Affiliation(s)
- Jin Y. Ro
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Youping Zhang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Jamila Asgar
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Huizhong Shou
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Joyce T. Da Silva
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Shou Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Zhou Y, Chen R, Kong L, Sun Y, Deng J. Neuroimmune communication in allergic rhinitis. Front Neurol 2023; 14:1282130. [PMID: 38178883 PMCID: PMC10764552 DOI: 10.3389/fneur.2023.1282130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence rate of allergic rhinitis (AR) is high worldwide. The inhalation of allergens induces AR, which is an immunoglobulin E-mediated and type 2 inflammation-driven disease. Recently, the role of neuroimmune communication in AR pathogenesis has piqued the interest of the scientific community. Various neuropeptides, such as substance P (SP), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU), released via "axon reflexes" or "central sensitization" exert regulatory effects on immune cells to elicit "neurogenic inflammation," which contributes to nasal hyperresponsiveness (NHR) in AR. Additionally, neuropeptides can be produced in immune cells. The frequent colocalization of immune and neuronal cells at certain anatomical regions promotes the establishment of neuroimmune cell units, such as nerve-mast cells, nerve-type 2 innate lymphoid cells (ILC2s), nerve-eosinophils and nerve-basophils units. Receptors expressed both on immune cells and neurons, such as TRPV1, TRPA1, and Mas-related G protein-coupled receptor X2 (MRGPRX2) mediate AR pathogenesis. This review focused on elucidating the mechanisms underlying neuroimmune communication in AR.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Ru Chen
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Lili Kong
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yaoyao Sun
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jing Deng
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
4
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Modification of the TRP Channel TRPA1 as a Relevant Factor in Migraine-Related Intracranial Hypersensitivity. Int J Mol Sci 2023; 24:ijms24065375. [PMID: 36982450 PMCID: PMC10049246 DOI: 10.3390/ijms24065375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Recently, the transient receptor potential ankyrin 1 (TRPA1) has gained more attention in migraine-related research. The involvement of the TRPA1 receptor in migraine headaches is proposed by the fact that TRPA1 may be a target of some migraine-triggering factors. Although it is doubtful that activation of TRPA1 alone is sufficient to induce pain, behavioral studies have demonstrated that TRPA1 is involved in injury- and inflammation-induced hypersensitivity. Here, we review the functional relevance of TRPA1 in headaches and its therapeutic potential, mainly focusing on its role in the development of hypersensitivity, referring to its altered expression in pathological conditions, and its functional interaction with other TRP channels.
Collapse
|
6
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang L, Lu C, Kang L, Li Y, Tang W, Zhao D, Yu S, Liu R. Temporal characteristics of astrocytic activation in the TNC in a mice model of pain induced by recurrent dural infusion of inflammatory soup. J Headache Pain 2022; 23:8. [PMID: 35033010 PMCID: PMC8903672 DOI: 10.1186/s10194-021-01382-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Astrocytic activation might play a significant role in the central sensitization of chronic migraine (CM). However, the temporal characteristics of the astrocytic activation in the trigeminal nucleus caudalis (TNC) and the molecular mechanism under the process remain not fully understood. Therefore, this study aims to investigate the duration and levels change of astrocytic activation and to explore the correlation between astrocytic activation and the levels change of cytokines release. Methods We used a mice model induced by recurrent dural infusion of inflammatory soup (IS). The variation with time of IS-induced mechanical thresholds in the periorbital and hind paw plantar regions were evaluated using the von Frey filaments test. We detected the expression profile of glial fibrillary acidic protein (GFAP) in the TNC through immunofluorescence staining and western blot assay. We also investigated the variation with time of the transcriptional levels of GFAP and ionized calcium binding adapter molecule 1 (Iba1) through RNAscope in situ hybridization analysis. Then, we detected the variation with time of cytokines levels in the TNC tissue extraction and serum, including c-c motif chemokine ligand 2 (CCL2), c-c motif chemokine ligand 5 (CCL5), c-c motif chemokine ligand 7 (CCL7), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 1 (CXCL1), c-x-c motif chemokine ligand 13 (CXCL13), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), macrophage colony-stimulating factor (M-CSF), interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 17A (IL-17A). Results Recurrent IS infusion resulted in cutaneous allodynia in both the periorbital region and hind paw plantar, ranging from 5 d (after the second IS infusion) to 47 d (28 d after the last infusion) and 5 d to 26 d (7 d after the last infusion), respectively. The protein levels of GFAP and messenger ribonucleic acid (mRNA) levels of GFAP and Iba1 significantly increased and sustained from 20 d to 47 d (1 d to 28 d after the last infusion), which was associated with the temporal characteristics of astrocytic activation in the TNC. The CCL7 levels in the TNC decreased from 20 d to 47 d. But the CCL7 levels in serum only decreased on 20 d (1 d after the last infusion). The CCL12 levels in the TNC decreased on 22 d (3 d after the last infusion) and 33 d (14 d after the last infusion). In serum, the CCL12 levels only decreased on 22 d. The IL-10 levels in the TNC increased on 20 d. Conclusions Our results indicate that the astrocytic activation generated and sustained in the IS-induced mice model from 1 d to 28 d after the last infusion and may contribute to the pathology through modulating CCL7, CCL12, and IL-10 release.
Collapse
Affiliation(s)
- Leyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China.,Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenglong Lu
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China.,Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Li Kang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Yingji Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| | - Ruozhuo Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
8
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
9
|
Investigation of Hemodynamic Receptors of the Internal Carotid Artery Segments. Artery Res 2021. [DOI: 10.1007/s44200-021-00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abstract
Objectives
Internal carotid artery (ICA), the main artery of the brain, passes through the cavernous sinus (CS) which forms one of these venous pools. During this transition, while there is arterial blood in the lumen of ICA, its outer surface is in contact with venous blood from the brain. Herein, we aimed to detect the receptor differences of ICA in this highly specialized anatomical region of the skull base.
Methods
We performed the study on 10 human cadavers and searched CGRPR, TRP12, ASIC3 and ACTHR receptors via immunostaining using laser scanning confocal microscopy.
Results
We determined TRP12 receptor positive in the tunica media and tunica adventitia layers of the cavernous segment of ICA. We did not detect similar positivity in the cervical part of the ICA. In the receptor scan we made in terms of CGRPR, while we detected positivity in the tunica media layer of the cavernous segment, we found positivity in the tunica intima layer of the cervicalis segment of the ICA. We did not detect any positivity for ASIC3 and ACTHR receptors in both parts of the ICA.
Conclusions
As a result, we observed various differences in receptors between ICA segments. While the outer surface of the ICA in the cervical region did not show any receptor positivity, we detected TRP12 receptor positivity along the tissue contour of vessel in the CS. We assume that it may provide a new perspective on pathologies of the CS/ICA and preservation of brain hemodynamics for clinicians.
Collapse
|
10
|
Lackovic J, Price TJ, Dussor G. De novo protein synthesis is necessary for priming in preclinical models of migraine. Cephalalgia 2020; 41:237-246. [PMID: 33200943 DOI: 10.1177/0333102420970514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Migraine attacks are often triggered by normally innocuous stimuli, suggesting that sensitization within the nervous system is present. One mechanism that may contribute to neuronal sensitization in this context is translation regulation of new protein synthesis. The goal of this study was to determine whether protein synthesis contributes to behavioral responses and priming in preclinical models of migraine. METHODS Mice received a dural injection of interleukin-6 in the absence or presence of the protein synthesis inhibitor anisomycin or the translation initiation inhibitor 4EGI-1 and were tested for facial hypersensitivity. Upon returning to baseline, mice were given a second, non-noxious dural injection of pH 7.0 to test for priming. Additionally, eIF4ES209Amice lacking phosphorylation of mRNA cap-binding protein eIF4E received dural interleukin-6 or were subjected to repeated restraint stress and then tested for facial hypersensitivity. After returning to baseline, mice were given either dural pH 7.0 or a systemic sub-threshold dose of the nitric oxide donor sodium nitroprusside and tested for priming. RESULTS Dural injection of interleukin-6 in the presence of anisomycin or 4EGI-1 or in eIF4ES209Amice resulted in the partial attenuation of acute facial hypersensitivity and complete block of hyperalgesic priming. Additionally, hyperalgesic priming following repeated restraint stress was blocked in eIF4ES209Amice. CONCLUSIONS These studies show that de novo protein synthesis regulated by activity-dependent translation is critical to the development of priming in two preclinical models of migraine. This suggests that targeting the regulation of protein synthesis may be a novel approach for new migraine treatment strategies.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
11
|
Dux M, Rosta J, Messlinger K. TRP Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches. Int J Mol Sci 2020; 21:ijms21010342. [PMID: 31948011 PMCID: PMC6981722 DOI: 10.3390/ijms21010342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pain in trigeminal areas is driven by nociceptive trigeminal afferents. Transduction molecules, among them the nonspecific cation channels transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are activated by endogenous and exogenous ligands, are expressed by a significant population of trigeminal nociceptors innervating meningeal tissues. Many of these nociceptors also contain vasoactive neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P. Release of neuropeptides and other functional properties are frequently examined using the cell bodies of trigeminal neurons as models of their sensory endings. Pathophysiological conditions cause phosphorylation, increased expression and trafficking of transient receptor potential (TRP) channels, neuropeptides and other mediators, which accelerate activation of nociceptive pathways. Since nociceptor activation may be a significant pathophysiological mechanism involved in both peripheral and central sensitization of the trigeminal nociceptive pathway, its contribution to the pathophysiology of primary headaches is more than likely. Metabolic disorders and medication-induced painful states are frequently associated with TRP receptor activation and may increase the risk for primary headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-374; Fax: +36-62-545-842
| | - Judit Rosta
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany;
| |
Collapse
|
12
|
Dux M, Babes A, Manchen J, Sertel-Nakajima J, Vogler B, Schramm J, Messlinger K. High-dose phenylephrine increases meningeal blood flow through TRPV1 receptor activation and release of calcitonin gene-related peptide. Eur J Pain 2019; 24:383-397. [PMID: 31661581 DOI: 10.1002/ejp.1495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The α1 -adrenoceptor agonist, phenylephrine, is used at high concentrations as a mydriatic agent and for the treatment of nasal congestion. Among its adverse side-effects transient burning sensations are reported indicating activation of the trigeminal nociceptive system. METHODS Neuropeptide release, calcium imaging and meningeal blood flow recordings were applied in rodent models of meningeal nociception to clarify possible receptor mechanisms underlying these pain phenomena. RESULTS Phenylephrine above 10 mM dose-dependently released calcitonin gene-related peptide (CGRP) from the dura mater and isolated trigeminal ganglia, whereas hyperosmotic mannitol at 90 mM was ineffective. The phenylephrine-evoked release was blocked by the transient receptor potential vanilloid 1 (TRPV1) antagonist BCTC and did not occur in trigeminal ganglia of TRPV1-deficient mice. Phenylephrine at 30 mM caused calcium transients in cultured trigeminal ganglion neurons responding to the TRPV1 agonist capsaicin and in HEK293T cells expressing human TRPV1. Local application of phenylephrine at micromolar concentrations to the exposed rat dura mater reduced meningeal blood flow, whereas concentrations above 10 mM caused increased meningeal blood flow. The flow increase was abolished by pre-application of the CGRP receptor antagonist CGRP8-37 or the TRPV1 antagonist BCTC. CONCLUSIONS Phenylephrine at high millimolar concentrations activates TRPV1 receptor channels of perivascular afferents and, upon calcium inflow, releases CGRP, which increases meningeal blood flow. Activation of TRPV1 receptors may underlie trigeminal nociception leading to cranial pain such as local burning sensations or headaches caused by administration of high doses of phenylephrine. SIGNIFICANCE Phenylephrine is used at high concentrations as a mydriaticum and for treating nasal congestion. As adverse side-effects burning sensations and headaches have been described. Phenylephrine at high concentrations causes calcium transients in trigeminal afferents, CGRP release and increased meningeal blood flow upon activation of TRPV1 receptor channels, which is likely underlying the reported pain phenomena.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Jessica Manchen
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Julika Sertel-Nakajima
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Jana Schramm
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| |
Collapse
|
13
|
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20:105. [PMID: 31718551 PMCID: PMC6852900 DOI: 10.1186/s10194-019-1055-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). Methods With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. Results Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. Conclusion We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark. .,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
14
|
Ohlsson L, Haanes KA, Kronvall E, Xu C, Snellman J, Edvinsson L. Erenumab (AMG 334), a monoclonal antagonist antibody against the canonical CGRP receptor, does not impair vasodilatory or contractile responses to other vasoactive agents in human isolated cranial arteries. Cephalalgia 2019; 39:1745-1752. [PMID: 31366221 DOI: 10.1177/0333102419867282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a neuronal transmitter present in intracranial sensory nerves, where it is involved in migraine pathophysiology as well as other biological functions. Recently, the fully human monoclonal antibody erenumab (AMG 334), which targets the canonical calcitonin gene-related peptide receptor, showed significant prophylactic efficacy and favourable safety in phase II and III clinical trials for episodic and chronic migraine and is now approved for migraine prevention in several countries. OBJECTIVE Given that calcitonin gene-related peptide can mediate vasodilation, we investigated the effect of erenumab on vasoactive responses in the presence or absence of various vasodilatory and vasocontractile mediators in a model using isolated human cerebral and meningeal arteries. METHODS Ring segments of human isolated cerebral and meningeal arteries were mounted in a sensitive myograph. On arterial segments pre-contracted with 30 mM potassium chloride, vasoactive responses to calcitonin gene-related peptide were studied in the presence of different concentrations of erenumab. At the maximal tested inhibitory concentration of erenumab (100 nM), functional arterial relaxation in response to nicardipine or substance P, and the contractile responses to sumatriptan and dihydroergotamine were examined. RESULTS 30 mM potassium chloride produced a stable contraction of the vessel segments and calcitonin gene-related peptide induced a concentration-dependent relaxation. We observed that (i) erenumab had no direct contractile or relaxant effects per se (by itself), (ii) pre-treatment with erenumab antagonized the calcitonin gene-related peptide-induced relaxation in a competitive manner, (iii) the relaxant responses to nicardipine or substance P were unaffected in the presence of erenumab and (iv) the contraction induced by sumatriptan or dihydroergotamine was not modified by erenumab. CONCLUSION Our findings demonstrate that erenumab, while not associated with vasoactive properties per se, specifically inhibits calcitonin gene-related peptide-induced relaxation of cranial arteries without impacting vasodilatory responses or contractile responses of endogenous or pharmacological vasoactive compounds.
Collapse
Affiliation(s)
- Lena Ohlsson
- Department of Internal Medicine, Lund University, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Erik Kronvall
- Department of Neurosurgery, Lund University Hospital, Lund, Sweden
| | - Cen Xu
- Amgen Inc., Thousand Oaks, CA, USA
| | | | - Lars Edvinsson
- Department of Internal Medicine, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
15
|
Abstract
Migraine is a strongly disabling disease characterized by a unilateral throbbing headache lasting for up to 72 h for each individual attack. There have been many theories on the pathophysiology of migraine throughout the years. Currently, the neurovascular theory dominates, suggesting clear involvement of the trigeminovascular system. The most recent data show that a migraine attack most likely originates in the hypothalamus and activates the trigeminal nucleus caudalis (TNC). Although the mechanisms are unknown, activation of the TNC leads to peripheral release of calcitonin gene-related protein (CGRP), most likely from C-fibers. During the past year monoclonal antibodies against CGRP or the CGRP receptor have emerged as the most promising targets for migraine therapy, and at the same time established the strong involvement of CGRP in the pathophysiology of migraine. The viewpoint presented here focuses further on the activation of the CGRP receptor on the sensory Aδ-fiber, leading to the sensation of pain. The CGRP receptor activates adenylate cyclase, which leads to an increase in cyclic adenosine monophosphate (cAMP). We hypothesize that cAMP activates the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, triggering an action potential sensed as pain. The mechanisms behind migraine pain on a molecular level, particularly their importance to cAMP, provide clues to potential new anti-migraine targets. In this article we focus on the development of targets related to the CGRP system, and further include novel targets such as the pituitary adenylate cyclase-activating peptide (PACAP) system, the serotonin 5-HT1F receptor, purinergic receptors, HCN channels, adenosine triphosphate-sensitive potassium channels (KATP), and the glutaminergic system.
Collapse
|