1
|
Chi Z, Lu B, Liu R, Pan C, Meng B, Xing X, Yuan H, Wu X, Chen Y, Ren Y, Wu W, Miao M, Chen J, Chen X. Inhibition of histone deacetylase 6 alleviates neuropathic pain via direct regulating post-translation of spinal STAT3 and decreasing downstream C-C Motif Chemokine Ligand 7 synthesis. J Neuroinflammation 2025; 22:74. [PMID: 40069860 PMCID: PMC11895277 DOI: 10.1186/s12974-025-03400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Neuropathic pain, a debilitating nerve injury-induced condition, remains a significant clinical challenge. This study evaluates the effect of histone deacetylase 6 (HDAC6) inhibition in a spared nerve injury (SNI) mouse model. Systemic administration of the selective HDAC6 inhibitor ACY-1215 (20 mg/kg/day, 14 days), alleviated SNI-induced pain in mice of both sexes. ACY-1215 increased acetylated signal transducer and activator of transcription 3 (Ac-STAT3) and reduced phosphorylated STAT3 (p-STAT3) in the lumbar spinal cord of SNI mice. HDAC6 and p-STAT3 were expressed in spinal dorsal horn neurons, and SNI-enhanced HDAC6/STAT3 interaction was reversed by ACY-1215. Neuronal STAT3 overexpression induced pain hypersensitivity and elevated p-STAT3, tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), effects suppressed by ACY-1215. Cytokine profiling identified CC-chemokine ligand 7 (CCL7) as a key downstream effector of the HDAC6/STAT3 axis, with ACY-1215 attenuating SNI-induced CCL7 upregulation. HDAC6 knockdown in neurons reduced p-STAT3, while HDAC6 or STAT3 knockdown diminished CCL7 production. These findings demonstrate that ACY-1215 mitigates neuropathic pain by modulating STAT3 acetylation/phosphorylation and suppressing HDAC6/STAT3-driven CCL7 and cytokine release. This study underscores the role of the HDAC6/STAT3/CCL7 signaling axis in neuropathic pain and highlights the therapeutic potential of HDAC6 inhibitors for pain management.
Collapse
Affiliation(s)
- Zhexi Chi
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Bo Lu
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Rongjun Liu
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Chen Pan
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Bo Meng
- Department of Pain, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Xiuzhong Xing
- Department of Pain, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Hui Yuan
- Department of Pain, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Xuewei Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yushan Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yuxuan Ren
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wenwei Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mengmeng Miao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Junping Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China.
| | - Xiaowei Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
2
|
Hajimirzaei P, Eyni H, Razmgir M, Abolfazli S, Pirzadeh S, Ahmadi Tabatabaei FS, Vasigh A, Yazdanian N, Ramezani F, Janzadeh A, Butler AE, Sahebkar A. The analgesic effect of curcumin and nano-curcumin in clinical and preclinical studies: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:393-416. [PMID: 39186190 DOI: 10.1007/s00210-024-03369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Chronic pain remains a treatment challenge. Curcumin, a natural plant product found in the Curcuma genus, has been shown to possess anti-inflammatory, antioxidant, and neuroprotective properties. In this systematic review and meta-analysis, we aimed to evaluate the efficacy of curcumin and nano-curcumin for treating chronic pain in clinical and preclinical studies. A systematic search was performed through PubMed, SCOPUS, Web of Science Core Collection, Cochrane, and Google Scholar up to April 1, 2023, using relevant keywords. Trials that met the inclusion criteria were included in this study. We applied the mean difference (MD) or standardized mean difference (SMD) in random or fixed-effects models to analyze the impact of combined trials. We also evaluated the potential risk of bias using the Higgins method for clinical studies and the SYRCLE Risk of Bias tool for animal studies. Our meta-analysis included 59 studies, comprising 29 animal studies and 30 clinical studies. Curcumin strongly reduced pain in preclinical studies, and both the intraperitoneal (SMD = 1.48; 95% CI, 0.81 to 2.14; p < 0.001, and I2 = 77.9%) and oral (SMD = 1.27; 95% CI, 1.01 to 1.55; p < 0.001, and I2 = 0.0%) administration method of curcumin had pain-relieving effects. However, the subcutaneous method (SMD = 0.24; 95% CI, - 0.89 to 1.38; p = 0.67) had no effect. The drug's efficacy within the 100-250 mg range (SMD = 1.46; 95% CI, 0.76 to 2.15; p < 0.001; and I2 = 73.4%) surpassed that observed above 250 mg (SMD = 1.23; 95% CI, 0.89 to 1.57; p < 0.001; and I2 = 0.0%). In clinical studies, nano-curcumin had a powerful effect on pain reduction compared to placebo (MD = - 1.197; CI 95% (- 1.94 to - 0.45); p = 0.002; and I2 = 80.9%), and the effects of NSAIDs on pain were not significantly altered when used in combination with Curcuma longa extract (MD = - 0.23; CI 95% (- 0.99 to 0.53); p = 0.554; and I2 = 92%). In addition, the effect of increased bioavailability of curcumin (MD = - 1.54; CI 95% (- 2.06 to - 1.02); p < 0.001; and I2 = 89.6%), curcumin (MD = - 1.35; CI 95% (- 2.451 to - 0.252); p = 0.016; and I2 = 90.8%), and nano-curcumin was greater than placebo. Our meta-analysis suggests that curcumin and nano-curcumin are effective in reducing chronic pain. These findings have important implications for pharmaceutical science and may lead to the development of new treatments for chronic pain. However, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razmgir
- Department of Medical Library and Information, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simin Pirzadeh
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ayda Vasigh
- International Campus of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Yazdanian
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhang M, Wang X, Zhao J, Yan J, He X, Qin D, Liang F, Tong K, Wang J. CircRNA-CIRH1A Promotes the Development of Osteosarcoma by Regulating PI3K/AKT and JAK2/STAT3 Signaling Pathways. Mol Biotechnol 2024; 66:2241-2253. [PMID: 37608076 PMCID: PMC11424664 DOI: 10.1007/s12033-023-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Osteogenic sarcoma (OS), one of the mesenchymal tumors with a high degree of malignancy, mainly occurs in the metaphysis of the long bones and around the knee joints in children and adolescents. The poor diagnosis in patients with OS can be attributed to the lack of early clinical symptoms, although the growth of tumor mass gradually results in severe pain and systemic symptoms. The mechanisms underlying the pathogenesis of OS are not fully understood. Thus, identifying early diagnostic biomarkers and novel targets involved in the progression of OS is of critical significance in the management of OS. CircRNA is a class of non-coding RNAs characterized by the close-loop structure and increased stability, which are implicated in the regulation of cell proliferation, differentiation, migration, and apoptosis. Moreover, circRNAs also play significant roles in aging and chronic disorders, such as cancer and cardiovascular diseases. Accordingly, we reported the upregulation of circRNA-CIRH1A in OS tissues and cell lines. Silencing circRNA-CIRH1A in OS cell lines (U2OS, HOS, Saos-2, and MG-63) could inhibit the cell proliferation, invasion, migration, and apoptosis, which was also validated in xenograft tumorigenesis mouse model. We further demonstrated that circRNA-CIRH1A sponged miR-1276, which subsequently disrupted the effect of miR-1276 on PI3K/AKT and JAK2/STAT3 signaling pathways. Together, our study revealed the oncogenic role of circRNA-CIRH1A in OS, and identified miR-1276/ PI3K-AKT and JAK2-STAT3 signaling axis as the key downstream mediators of circRNA-CIRH1A.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Thoracic and Bone-Soft Tissue Surgery, Hubei Cancer Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430079, China
| | - Xiang Wang
- Department of Thoracic and Bone-Soft Tissue Surgery, Hubei Cancer Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430079, China
| | - Jianfeng Zhao
- Department of Orthopedics, Fuyang Traditional Chinese Medicine Orthopedics Hospital, Hangzhou, 311400, Zhejiang, China
| | - Jizhou Yan
- Department of Orthopedics, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| | - Xiaodan He
- Department of Orthopedics, Fuyang Traditional Chinese Medicine Orthopedics Hospital, Hangzhou, 311400, Zhejiang, China
| | - Danxia Qin
- Department of Orthopedics, Fuyang Traditional Chinese Medicine Orthopedics Hospital, Hangzhou, 311400, Zhejiang, China
| | - Fang Liang
- Department of Orthopedics, Fuyang Traditional Chinese Medicine Orthopedics Hospital, Hangzhou, 311400, Zhejiang, China.
| | - Kai Tong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jianjian Wang
- Department of Thoracic and Bone-Soft Tissue Surgery, Hubei Cancer Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430079, China.
| |
Collapse
|
4
|
Chen L, Hua B, He Q, Han Z, Wang Y, Chen Y, Ni H, Zhu Z, Xu L, Yao M, Ni C. Curcumin analogue NL04 inhibits spinal cord central sensitization in rats with bone cancer pain by inhibiting NLRP3 inflammasome activation and reducing IL-1β production. Eur J Pharmacol 2024; 970:176480. [PMID: 38490468 DOI: 10.1016/j.ejphar.2024.176480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
The management and therapy of bone cancer pain (BCP) remain formidable clinical challenges. Curcumin and its analogues have been shown to have anti-inflammatory and analgesic properties. In the present study, we investigated the efficacy of curcumin analogue NL04 (NL04) in modulating inflammation in spinal dorsal horn (SDH), thereby exploring its potential to reduce central sensitization of BCP in a rat model. Differing doses of NL04 and curcumin were administered intrathecally either once (on day 12 of BCP) or over seven consecutive days (from day 6-12 of BCP). Results indicated that the ED50 for NL04 and curcumin ameliorating BCP-induced mechanical hyperalgesia is 49.08 μg/kg and 489.6 μg/kg, respectively. The analgesic effects at various doses of NL04 lasted between 4 and 8 h, with sustained administration over a week maintaining pain relief for 1-4 days, while also ameliorating locomotor gait via gait analysis and reducing depressive and anxiety-like behaviors via open-field and light-dark transition tests. The analgesic effects at various doses of curcumin lasted 4 h, with sustained administration over a week maintaining pain relief for 0-2 days. ELISA, Western blotting, qPCR, and immunofluorescence assays substantiated that intrathecal administration of NL04 on days 6-12 of BCP dose-dependently lowered spinal IL-1β and IL-18 levels and significantly reduced the expression of IKKβ genes and proteins, as well as the downstream cleavage of the trans-Golgi network (TGN). Whole-cell patch-clamp results demonstrated that NL04 inhibits potassium ion efflux in rat primary spinal neurons. Thus, NL04 exhibits significant analgesic effects in a BCP rat model by downregulating IKKβ expression and inhibiting neuronal potassium ion efflux, which, in turn, suppresses the activation of NLRP3 inflammasomes and reduces IL-1β production, potentially ameliorating pain management in BCP.
Collapse
Affiliation(s)
- Liping Chen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Bohan Hua
- Anesthesia Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zixin Han
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yujing Chen
- Department of Pathology, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zefeng Zhu
- Department of Radiology, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
5
|
Dai XY, Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Liu DQ, Zhou YQ, Mei W. Targeting the JAK2/STAT3 signaling pathway for chronic pain. Aging Dis 2024; 15:186-200. [PMID: 37307838 PMCID: PMC10796104 DOI: 10.14336/ad.2023.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
Chronic pain is a notable health concern because of its prevalence, persistence, and associated mental stress. Drugs targeting chronic pain with potent abirritation, and minimal side effects remain unidentified. Substantial evidence indicates that the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a distinct and critical role in different stages of chronic pain. Aberrant activation of the JAK2/STAT3 signaling pathway is evident in multiple chronic pain models. Moreover, an increasing number of studies have demonstrated that the downregulation of JAK2/STAT3 can attenuate chronic pain in different animal models. In this review, we investigated the mechanism and role of the JAK2/STAT3 signaling pathway in modulating chronic pain. The aberrant activation of JAK2/STAT3 can trigger chronic pain by interacting with microglia and astrocytes, releasing proinflammatory cytokines, inhibiting anti-inflammatory cytokines, and regulating synaptic plasticity. We also retrospectively reviewed current reports on JAK2/STAT3 pharmacological inhibitors that demonstrated their significant therapeutic potential in different types of chronic pain. In summary, our results provide strong evidence that the JAK2/STAT3 signaling pathway is a promising therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Xin-Yi Dai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Lin Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| |
Collapse
|
6
|
Liu B, Meng D, Luo M, Xu L, Yao M. Fat mass and obesity-related protein contributes to the development and maintenance of bone cancer pain in rats by abrogating m6A methylation of RNA. Mol Pain 2024; 20:17448069241295987. [PMID: 39415414 PMCID: PMC11490980 DOI: 10.1177/17448069241295987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Effective prevention and treatment options for bone cancer-related pain (BCP) are lacking. In recent years, numerous studies have investigated the association between m6A epigenetic modifications and pain, revealing their significant role in pain initiation and maintenance. This study aimed to provide theoretical support for the treatment of BCP and to identify target drugs for future development. Specifically, we investigated the involvement of fat mass and obesity-related protein (FTO) in rat models of BCP by administering varying doses (1/5/10 mg/kg) of the FTO inhibitor meclofenamic acid (MA) and assessing changes in mechanical sensitivity through domain analysis, gait analysis, and open-field experiments. After successfully establishing the BCP model, we verified it by performing mechanical sensitivity assessments. We observed significantly increased expression levels of the demethylase FTO within the spinal dorsal horn accompanied by decreased m6A methylation levels in the model. Compared with untreated BCP rats, remarkably improved behavioral responses indicative of reduced pain were observed in the model rats after administration of 10 mg/kg MA, concomitant with decreased expression levels of FTO and increased m6A methylation levels. Compared with untreated BCP rats, the expression levels of p-ERK and pro-inflammatory cytokines were also significantly decreased after MA administration. Taken together, FTO can downregulate m6A methylation level and activate ERK/inflammatory cytokines signaling pathway to maintain BCP in rats.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Zhang Y, He J, Xiang L, Tang X, Wang S, Li A, Wang C, Li L, Zhu B. Molecular Mechanisms of Medicinal Plant Securinega suffruticosa-derived Compound Securinine against Spinal Muscular Atrophy based on Network Pharmacology and Experimental Verification. Curr Pharm Des 2024; 30:1178-1193. [PMID: 38561613 DOI: 10.2174/0113816128288504240321041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is a severe motor neuronal disorder with high morbidity and mortality. Securinine has shown the potential to treat SMA; however, its anti-SMA role remains unclear. OBJECTIVE This study aims to reveal the anti-SMA mechanisms of securinine. METHODS Securinine-associated targets were acquired from Herbal Ingredients' Targets (HIT), Similarity Ensemble Approach (SEA), and SuperPred. SMA-associated targets were obtained from GeneCards and Dis- GeNET. Protein-protein Interaction (PPI) network was constructed using GeneMANIA, and hug targets were screened using cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfifiler. Molecular docking was conducted using Pymol and Auto- Dock. In vitro assays were used to verify the anti-SMA effects of securinine. RESULTS Twenty-six intersection targets of securinine and SMA were obtained. HDAC1, HDAC2, TOP2A, PIK3R1, PRMT5, JAK2, HSP90AB1, TERT, PTGS2, and PAX8 were the core targets in PPI network. GO analysis demonstrated that the intersecting targets were implicated in the regulation of proteins, steroid hormones, histone deacetylases, and DNA transcription. KEGG analysis, pathway-pathway, and hub target-pathway networks revealed that securinine might treat SMA through TNF, JAK-STAT, Ras, and PI3K-Akt pathways. Securinine had a favorable binding affinity with HDAC1, HSP90AB, JAK2, PRMT5, PTGS2, and TERT. Securinine rescued viability suppression, mitochondria damage, and SMN loss in the SMA cell model. Furthermore, securinine increased HDAC1 and PRMT5 expression, decreased PTGS2 expression, suppressed the JAK2-STAT3 pathway, and promoted the PI3K-Akt pathway. CONCLUSION Securinine might alleviate SMA by elevating HDAC1 and PRMT5 expression and reducing PTGS2 via JAK2-STAT3 suppression and PI3K-Akt activation.
Collapse
Affiliation(s)
- Yinhong Zhang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing He
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lifeng Xiang
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- NHC Key Laboratory of Periconception Health Birth in Western China, Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xinhua Tang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shiyu Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Aoyu Li
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Chaoyan Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Li Li
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Baosheng Zhu
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
8
|
Song JG, Liu L. Naringenin alleviates bone cancer pain in rats via down-regulating spinal P2X7R /PI3K/AKT signaling: involving suppression in spinal inflammation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00156-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Xu M, Fei Y, He Q, Fu J, Zhu J, Tao J, Ni C, Xu C, Zhou Q, Yao M, Ni H. Electroacupuncture Attenuates Cancer-Induced Bone Pain via NF-κB/CXCL12 Signaling in Midbrain Periaqueductal Gray. ACS Chem Neurosci 2021; 12:3323-3334. [PMID: 34460214 DOI: 10.1021/acschemneuro.1c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Electroacupuncture (EA) is effective in various chronic pains. NF-κB and CXCL12 modulate the formation of chronic pain. Herein, we hypothesized that EA alleviates cancer-induced bone pain (CIBP) through NF-κB/CXCL12 axis in midbrain periaqueductal gray (PAG), which participates in "top-down" pain modulatory circuits. In order to filter the optimum EA frequency for CIBP treatment, 2, 100, or 2/100 Hz EA was set up. In addition, ipsilateral, contralateral, and bilateral EA groups were established to affirm the optimal EA scheme. Bilateral 2/100 Hz EA was considered as the optimal therapeutic scheme and was applied in a subsequent experiment. Western blotting along with immunofluorescence illustrated that CIBP induces a rapid and substantial increase in CXCL12 protein level and NF-κB phosphorylation in vlPAG from day 6 to day 12. Anti-CXCL12 neutralizing antibody and pAAV-U6-shRNA(CXCL12)-CMV-EGFP-WPRE in vlPAG remarkably improved the mechanical pain threshold of the hind paw in CIBP model relative to the control. EA inhibited the upregulation of pNF-κB and CXCL12 in vlPAG of CIBP. The recombinant CXCL12 and pAAV-CMV-CXCL12-EF1a-EGFP-3Xflag-WPRE reversed the abirritation of EA in the CIBP rat model. NF-κB phosphorylation mediated-CXCL12 expression contributed to CIBP allodynia, whereas EA suppressed NF-κB phosphorylation in CIBP. According to the above evidence, we conclude that bilateral 2/100 Hz EA is an optimal therapeutic scheme for CIBP. The abirritation mechanism of EA might reduce the expression of CXCL12 by inhibiting the activation of NF-κB, which might lead to the restraint of descending facilitation of CIBP.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Yong Fei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jiachun Tao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| |
Collapse
|
10
|
Rosiglitazone Alleviates Mechanical Allodynia of Rats with Bone Cancer Pain through the Activation of PPAR- γ to Inhibit the NF- κB/NLRP3 Inflammatory Axis in Spinal Cord Neurons. PPAR Res 2021; 2021:6086265. [PMID: 34484316 PMCID: PMC8413064 DOI: 10.1155/2021/6086265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
Bone cancer pain (BCP) is a serious clinical problem that affects the quality of life of cancer patients. However, the current treatment methods for this condition are still unsatisfactory. This study investigated whether intrathecal injection of rosiglitazone modulates the noxious behaviors associated with BCP, and the possible mechanisms related to this effect were explored. We found that rosiglitazone treatment relieved bone cancer-induced mechanical hyperalgesia in a dose-dependent manner, promoted the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in spinal cord neurons, and inhibited the activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammatory axis induced by BCP. However, concurrent administration of the PPAR-γ antagonist GW9662 reversed these effects. The results show that rosiglitazone inhibits the NF-κB/NLRP3 inflammation axis by activating PPAR-γ in spinal neurons, thereby alleviating BCP. Therefore, the PPAR-γ/NF-κB/NLRP3 signaling pathway may be a potential target for the treatment of BCP in the future.
Collapse
|
11
|
Fu J, Ni C, Ni H, Xu L, He Q, Pan H, Huang D, Sun Y, Luo G, Liu M, Yao M. Spinal Nrf2 translocation may inhibit neuronal NF-κB activation and alleviate allodynia in a rat model of bone cancer pain. J Neurochem 2021; 158:1110-1130. [PMID: 34254317 PMCID: PMC9292887 DOI: 10.1111/jnc.15468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Hua‐Dong Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Long‐Sheng Xu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiu‐Li He
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Huan Pan
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dong‐Dong Huang
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yan‐Bao Sun
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ge Luo
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming‐Juan Liu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming Yao
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
12
|
Fu J, Xu M, Xu L, Ni H, Zhao B, Ni C, Huang M, Zhu J, Luo G, Yao M. Sulforaphane alleviates hyperalgesia and enhances analgesic potency of morphine in rats with cancer-induced bone pain. Eur J Pharmacol 2021; 909:174412. [PMID: 34375671 DOI: 10.1016/j.ejphar.2021.174412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 01/15/2023]
Abstract
Due to the efficacy and tolerability of the available drugs, the current treatment for cancer-induced bone pain (CIBP) is not considered ideal, and new drugs are required for better treatment results. This study investigated whether intrathecal injection of sulforaphane (SFN) can modulates the noxious behavior associated with CIBP and enhances the analgesic effects of morphine and the possible mechanisms related to these effects were investigated. Walker256 breast cancer cells were injected into the bone marrow cavity of rats to establish the CIBP model. When CIBP rats began to exhibit painful behavior (CIBP 6 days), SFN was injected intrathecally for 7 days. The results showed that SFN alleviated the painful behavioral hypersensitivity caused by cancer, accompanied by nuclear factor, erythroid 2 like 2 (Nrf2), Haem oxygenase 1 (HO-1) activation, nuclear factor kappa B (NF-κB) inhibition and inflammation-related factors (tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) reduction. In addition, SFN treatment inhibited the proliferation of Walker 256 cells in a dose-dependent manner, promoted mu-opioid receptor (MOR) expression in SH-SY5Y cells and enhanced the antihyperalgesic effects of morphine on CIBP rats by restoring the downregulation of MOR expression in the spinal cord. Interestingly, the antihyperalgesic effects of SFN were partially blocked by opioid receptor antagonists. This study showed that SFN combined with morphine might be a new way to treat CIBP.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Mingde Huang
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Ge Luo
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University & The First Hospital of Jiaxing, Jiaxing, China.
| |
Collapse
|
13
|
MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis. Chin Med J (Engl) 2021; 133:2177-2185. [PMID: 32826607 PMCID: PMC7508434 DOI: 10.1097/cm9.0000000000001022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Supplemental Digital Content is available in the text Background Developing effective spinal cord repair strategies for spinal cord injury (SCI) is of great importance. Emerging evidence suggests that microRNAs (miRNAs) are closely linked to SCI recovery. This study aimed to investigate the function of miR-34c in the neuronal recovery in rats with SCI. Methods A rat model with SCI was established. Differentially expressed miRNAs were identified by a microarray analysis. MiR-34c expression in rats was measured by reverse transcription quantitative polymerase chain reaction. Altered expression of miR-34c or C-X-C motif ligand 14 (CXCL14) was introduced in SCI rats to measure their roles in neuronal recovery. Western blot analysis was performed to determine the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription-3 (STAT3). Neuronal apoptosis in rat spinal cord tissues was detected. The concentrations of SCI recovery-related proteins thyrotropin releasing hormone (TRH), prostacyclin (PGI2), and ganglioside (GM) were evaluated by enzyme-linked immunosorbent assay. Data were analyzed using a t-test with a one-way or two-way analysis of variance. Results Rats with SCI presented decreased grip strength (112.03 ± 10.64 vs. 17.32 ± 1.49 g, P < 0.01), decreased miR-34c expression (7 days: 3.78 ± 0.44 vs. 0.95 ± 0.10, P < 0.05), and increased CXCL14 expression (7 days: 0.61 ± 0.06 vs. 2.91 ± 0.27, P < 0.01). MiR-34c was found to directly bind to CXCL14. Overexpression of miR-34c increased grip strength (11.23 ± 1.08 vs. 31.26 ± 2.99 g, P < 0.01) and reduced neuronal apoptosis in spinal cord tissues (53.61% ± 6.07% vs. 24.59% ± 3.32%, P < 0.01), and silencing of CXCL14 also increased the grip strength (12.76 ± 1.13 vs. 29.77 ± 2.75 g, P < 0.01) and reduced apoptosis in spinal cord tissues (55.74% ± 6.24% vs. 26.75% ± 2.84%, P < 0.01). In addition, miR-34c upregulation or CXCL14 downregulation increased the concentrations of TRH, PGI2, and GM, and reduced phosphorylation of JAK2 and STAT3 in rats with SCI (all P < 0.01). Conclusion The study provided evidence that miR-34c could promote neuronal recovery in rats with SCI through inhibiting CXCL14 expression and inactivating the JAK2/STAT3 pathway. This study may offer new insights into SCI treatment.
Collapse
|
14
|
Feng JH, Sim SM, Park JS, Hong JS, Suh HW. The changes of nociception and the signal molecules expression in the dorsal root ganglia and the spinal cord after cold water swimming stress in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:207-216. [PMID: 33859061 PMCID: PMC8050611 DOI: 10.4196/kjpp.2021.25.3.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tail-flick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Su-Min Sim
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jung-Seok Park
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Jae-Seung Hong
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Hong-Won Suh
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
15
|
Emerging Molecular Targets for the Management of Cancer Pain. Neurosci Bull 2020; 36:1225-1228. [PMID: 32514879 DOI: 10.1007/s12264-020-00526-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
|