1
|
Kim MJ, Kim SY, Kim JD, Park M, Kim YH, Kim KW, Sohn MH. Release of sputum neutrophil granules is associated with pulmonary function and disease severity in childhood asthma. BMC Pulm Med 2024; 24:532. [PMID: 39448961 PMCID: PMC11515414 DOI: 10.1186/s12890-024-03340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Myeloperoxidase (MPO) and human neutrophil lipocalin or neutrophil gelatinase-associated lipocalin (HNL/NGAL) are stored in neutrophil granulocytes and secreted upon activation of the cells. They have been proposed to reflect the degree of inflammation in the airways. However, their role as potential markers of disease severity in childhood asthma remains unknown. This study investigated the relationship between the expression of MPO and HNL/NGAL and childhood asthma. METHODS A total of 83 pediatric patients with asthma and 59 controls were enrolled. Using enzyme-linked immunosorbent assays, the human MPO and HNL/NGAL levels were measured in sputum supernatants. Assessments including spirometry, methacholine challenge test, and atopy test were conducted. RESULTS No difference in sputum neutrophil counts was observed between pediatric patients with asthma and controls. However, sputum MPO and HNL/NGAL levels were significantly higher in patients with asthma than in controls (p = 0.021 and p < 0.001, respectively), especially in patients with moderate-to-severe persistent asthma. In patients with asthma, sputum MPO and HNL/NGAL levels showed a positive correlation with sputum neutrophil counts (MPO, r = 0.433, p < 0.001; HNL/NGAL, r = 0.584, p < 0.001) and with each other (r = 0.628, p < 0.001). Moreover, sputum HNL/NGAL level demonstrated better ability to accurately reflect current pulmonary function, airway inflammation, and limitations than MPO level in this study. CONCLUSIONS Sputum MPO and HNL/NGAL levels, which reflect neutrophil activation in airways, were increased in pediatric patients with asthma. Moreover, sputum MPO and HNL/NGAL may serve as appropriate assessment indicators of asthma severity in pediatric patients.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin- si, Gyeonggi-do, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jong Deok Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Mireu Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
2
|
Wang ZZ, Li H, Maskey AR, Srivastava K, Liu C, Yang N, Xie T, Fu Z, Li J, Liu X, Sampson HA, Li XM. The Efficacy & Molecular Mechanisms of a Terpenoid Compound Ganoderic Acid C1 on Corticosteroid-Resistant Neutrophilic Airway Inflammation: In vivo and in vitro Validation. J Inflamm Res 2024; 17:2547-2561. [PMID: 38686360 PMCID: PMC11057679 DOI: 10.2147/jir.s433430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, People’s Republic of China
| | - Hang Li
- Central Lab, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People’s Republic of China
| | - Anish R Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- General Nutraceutical Technology, Elmsford, NY, USA
| | - Changda Liu
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Yang
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- General Nutraceutical Technology, Elmsford, NY, USA
| | - Taoyun Xie
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ziyi Fu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Junxiong Li
- Guangdong Province Hospital of Integrated Chinese and Western Medicine, Foshan, Guangdong, People’s Republic of China
| | - Xiaohong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Hugh A Sampson
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Westchester Medical Center New York Medical College, Valhalla, NY, USA
| |
Collapse
|
3
|
Al-Ahmad M, Ali A, Maher A. Factors influencing poor response to type 2 targeted therapies in severe asthma: a retrospective cohort study. BMC Pulm Med 2023; 23:490. [PMID: 38053108 DOI: 10.1186/s12890-023-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND A significant breakthrough has been made in treating severe asthma, with the recognition of various asthma phenotypes and an updated management guideline. Type 2 targeted therapies, such as benralizumab and omalizumab; have been identified as an effective treatment for severe asthma, improving patient response, lung function tests and asthma symptom control. This study aimed to evaluate factors contributing to poor response to therapy. METHODS A retrospective single-center cohort study of 162 patients with severe asthma who started biologic therapy; their data were retrieved from medical records for further analysis. Poor responders were patients remained clinically and functionally uncontrolled despite even after augmenting all treatment options. RESULTS Childhood-onset asthma, bronchiectasis, poor symptom control (ACT below 19), severe airway obstruction (< 60% predicted), and maintenance oral corticosteroid (mOCS) use were significantly associated with poor response to omalizumab and benralizumab; p = 0.0.4 and 0.01; 0.003 and 0.01; 0.01 and 0.001, 0.05 and 0.04; 0.006 and 0.02, respectively. However, chronic rhinosinusitis and IgE < 220kIU/L were associated with higher poor response rates to omalizumab (p = 0.01 and 0.04, respectively). At the same time, female patients and those with blood eosinophils level < 500 cells/mm3 had a higher poor response rate to benralizumab (p = 0.02 and 0.01, respectively). Ischemic heart disease (IHD), bronchiectasis, and continued use of OCS increased the likelihood of poor response to omalizumab by 21, 7, and 24 times (p = 0.004, 0.008, and 0.004, respectively). In contrast, the female gender, childhood-onset asthma and higher BMI increased the likelihood of poor response to benralizumab by 7, 7 and 2 times more, p = 0.03, 0.02 and 0.05, respectively. CONCLUSION Poor response to omalizumab treatment was independently associated with ischemic heart disease (IHD), bronchiectasis, and a history of maintenance oral corticosteroid (mOCS) use. Conversely, poor response to benralizumab therapy was independently linked to female gender, childhood-onset asthma and higher body mass index (BMI).
Collapse
Affiliation(s)
- Mona Al-Ahmad
- Microbiology Department, College of Medicine, Kuwait University, P.O. Box 24923, Kuwait City, 13110, Kuwait.
- Department of Allergy, Al-Rashed allergy center, Ministry of Health, Kuwait City, Kuwait.
| | - Asmaa Ali
- Department of Laboratory medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Allergy, Al-Rashed allergy center, Ministry of Health, Kuwait City, Kuwait
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
| | - Ahmed Maher
- Department of Allergy, Al-Rashed allergy center, Ministry of Health, Kuwait City, Kuwait
| |
Collapse
|
4
|
Espuela-Ortiz A, Martin-Gonzalez E, Poza-Guedes P, González-Pérez R, Herrera-Luis E. Genomics of Treatable Traits in Asthma. Genes (Basel) 2023; 14:1824. [PMID: 37761964 PMCID: PMC10531302 DOI: 10.3390/genes14091824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The astounding number of genetic variants revealed in the 15 years of genome-wide association studies of asthma has not kept pace with the goals of translational genomics. Moving asthma diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may provide insights into features that may be prevented or alleviated by therapeutical intervention. This review provides an overview of the different asthma endotypes and phenotypes and the genomic findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma genomic research for treatable traits has uncovered novel and previously reported asthma loci, primarily through studies in Europeans. Novel genomic findings for asthma phenotypes and related traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Miao Y, Wei L, Chen H, Zhang Z, Han L. The Effects of Nebulized Inhaled Triptolide on Airway Inflammation in a Mouse Model of Asthma. Can Respir J 2023; 2023:2983092. [PMID: 37645252 PMCID: PMC10462443 DOI: 10.1155/2023/2983092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/31/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Inhalation of nebulized TP has received little attention in the past. Here, we intend to investigate the effect of nebulized inhaled TP on airway inflammation in a mouse model of asthma. 29 SPF BALB/c mice were divided into four groups: blank control (Blk, n = 5), normal saline (NS, n = 8), dexamethasone (Dex, n = 8), and TP (n = 8). During the process of sensitization, mice in the three intervention groups were treated with nebulized NS, an injection of Dex, and nebulized triptolide, respectively. Then bronchoalveolar lavage fluid (BALF), peripheral blood, and lung tissue were collected. Relevant cytokines, transcriptional factors, and CD4+Th17+ T cell proportions were assessed and compared. IL-6, IL-17, IL-23, and TGF-β1 demonstrated a significant difference between groups in the following order: Dex < TP < NS (P ≤ 0.001), while IL-10 changed in the opposite direction (P < 0.001). At the transcriptional level in lung tissue, the Ct value of IL-17 in the Dex group was significantly higher than in the NS and TP groups (P < 0.001). Meanwhile, it was higher in the TP group than in the NS group (P < 0.001). The Ct value of RORγt demonstrated a significant difference among three groups in the following order: Dex > TP > NS (P < 0.001). An opposite trend of FoxP3 Ct value was revealed in the order: NS > TP > Dex. The proportion of CD4+Th17+ cells was 9.53 ± 2.74% in the NS group, 4.23 ± 2.26% in the Dex group, and 6.76 ± 2.99% in the TP group, which shows significant differences between the NS and Dex (P < 0.001) or NS and TP groups (P < 0.05). Inhalation of nebulized triptolide can play a role in suppressing airway inflammation with inflammatory cytokines and transcriptional factors reduced and CD4+Th17+ T cells dampened, also in a manner less than injected dexamethasone.
Collapse
Affiliation(s)
- Yafang Miao
- PCCM, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Li Wei
- PCCM, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Hao Chen
- PCCM, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zeming Zhang
- PCCM, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Li Han
- PCCM, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
6
|
Feng Y, Liu X, Wang Y, Du R, Mao H. Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma. Chin Med J (Engl) 2023:00029330-990000000-00572. [PMID: 37185590 DOI: 10.1097/cm9.0000000000002456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Collapse
Affiliation(s)
- Yinhe Feng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yubin Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Portel L, Fabry-Vendrand C, Texier N, Schwartz D, Capdepon A, Thabut G, Debieuvre D. Characteristics of Severe Non-Eosinophilic Asthma: Analysis of Data from 1075 Patients Included in the FASE-CPHG Study. J Asthma Allergy 2023; 16:9-21. [PMID: 36628339 PMCID: PMC9826639 DOI: 10.2147/jaa.s375325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose Data on severe non-eosinophilic asthma are scarce. Moreover, as compared with eosinophilic asthma, non-eosinophilic asthma less frequently benefits from the latest therapeutic advances. This study aimed to highlight differences between non-eosinophilic and eosinophilic asthma as they may help the development of new therapeutic agents. Patients and Methods Data from 1075 adult patients with severe asthma (GINA treatment: 4/5) collected during the cross-sectional non-interventional FASE-CPHG study were analyzed. Two groups of patients (EOS-/EOS+) were constituted based on blood eosinophil counts (cutoff value: 300 G/l). Characteristics of EOS- (N = 500) and EOS+ (N = 575) patients were described; EOS- patients were also described according to their allergic profile based on skin allergy or allergen-specific immunoglobulin E (IgE) assays (cutoff value: 150 IU/mL). Results Percentages of patients with obesity (29%), allergen sensitization (57%), or ≥2 annual exacerbations in the last 12 months (68%) were similar in both groups. As compared with EOS+ patients, EOS- patients less frequently reported chronic rhinitis (41.1% vs 50.5%, p < 0.01) or nasal polyposis (13.6% vs 27.5%, p < 0.01), and more frequently reported GERD (45.2% vs 37.1%, p < 0.01), anxiety (45.5% vs 38.1%, p = 0.01), or depression (18.3% vs 13.3%, p = 0.02). EOS- patients had lower serum total IgE levels (median: 158 vs 319 IU/mL, p < 0.01) and were less frequently treated with long-term oral corticosteroid therapy (16.0% vs 23.7%; p < 0.01). Their asthma was more frequently uncontrolled (48% vs 40%, p < 0.01). Similar results were found with a cutoff value for blood eosinophil counts at 150 G/l. EOS- patients with allergic profile less frequently reported high serum IgE levels (35.6% vs 57.9%, p < 0.01). EOS- and EOS+ patients treated with long-term oral corticosteroids had similar profiles. Conclusion In our patients with severe asthma, EOS- asthma was approximately as frequent as EOS+ asthma; EOS- asthma was frequently poorly controlled or uncontrolled, confirming the need for a better management. Allergy did not appear to worsen clinical profile.
Collapse
Affiliation(s)
- Laurent Portel
- Service de Pneumologie, Centre Hospitalier Robert Boulin, Libourne, France,Correspondence: Laurent Portel, Service de Pneumologie, Centre Hospitalier Robert Boulin, 112 Avenue de la Marne, BP 199, Libourne, 33505, France, Tel +33 557 553 560, Fax +33 557 553 431, Email
| | | | | | | | | | | | - Didier Debieuvre
- Service de Pneumologie, Hôpital Émile Muller, Groupe Hospitalier de la Région Mulhouse Sud-Alsace (GHRMSA), Mulhouse, France
| |
Collapse
|
8
|
Wang M, Tang K, Gao P, Lu Y, Wang S, Wu X, Zhao J, Xie J. Club cell 10-kDa protein (CC10) as a surrogate for identifying type 2 asthma phenotypes. J Asthma 2023; 60:203-211. [PMID: 35168451 DOI: 10.1080/02770903.2022.2040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Club cell 10-kDa protein (CC10) is a documented biomarker for airway obstructive diseases. Primarily produced by nonciliated club cells in the distal airway and in nasal epithelial cells, CC10 suppresses Th2 cell differentiation and Th2 cytokine production. In this study, we aimed to determine whether CC10 can also be used as an alternative biomarker for identifying Type 2 (T2) asthma. 74 patients with asthma, and 24 healthy controls were enrolled in the study. T2-high asthma was defined as elevation in two or more biomarkers, such as sputum eosinophilia ≥ 3%, high blood eosinophils ≥ 300/µL, or high FeNO ≥ 30 ppb. T2-low asthma was defined as no elevation in biomarkers. Enzyme-linked immunosorbent assay (ELISA) was used to assess the CC10 levels in plasma. The plasma CC10 level in patients with T2-high asthma was lower than that of patients with T2-low asthma and healthy controls (P < 0.05). To distinguish between T2-high and T2-low phenotype in patients with asthma, a receiver-operating characteristic (ROC) analysis was performed. It showed a sensitivity of 58.1% and specificity of 78.0% when using 22.74 ng/ml of plasma CC10. Correlation analysis indicated that the plasma CC10 level was inversely correlated with sputum eosinophil, blood eosinophil, and FeNO, and positively correlated with log PD20. However, no correlation with sputum neutrophil percentages, macrophage percentages, IgE, or lung function was found. Plasma CC10 is potentially useful in predicting T2-high and T2-low asthma. Lower plasma CC10 was associated with enhanced airway hyperresponsiveness, and Type 2 inflammation.
Collapse
Affiliation(s)
- Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO.1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhang R, Liu H, Dai D, Ding X, Wang D, Wang Y, Shi X, Zhang S, Duan X, Wang H, Luo Y, Liu S, Han B, Zhang X, Fang Y, Yang J, Xu W, Sun T. Adjunctive sepsis therapy with aminophylline (STAP): a randomized controlled trial. Chin Med J (Engl) 2022; 135:2843-2850. [PMID: 36728571 PMCID: PMC9944697 DOI: 10.1097/cm9.0000000000002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sepsis is a serious disease caused by infection. Aminophylline has anti-asthma and anti-inflammatory effects. We aimed to explore the safety and effect of aminophylline in sepsis. METHODS We conducted a clinical randomized controlled trial involving 100 patients diagnosed with sepsis within 48 h after intensive care unit (ICU) admission in two sites. All patients were randomized in a 1:1 ratio to receive standard therapy with or without aminophylline. The primary clinical outcome was all-cause mortality at 28 days. RESULTS From September 27, 2018 to February 12, 2020, we screened 277 septic patients and eventually enrolled 100 patients, with 50 assigned to the aminophylline group and 50 to the usual-care group. At 28 days, 7 of 50 patients (14.0%) in the aminophylline group had died, compared with 16 of 50 (32.0%) in the usual-care group ( P = 0.032). Cox regression showed that the aminophylline group had a lower hazard of death (hazard ratio = 0.312, 95% confidence interval: 0.129-0.753). Compared with the usual-care group, patients in the aminophylline group had a longer survival time ( P = 0.039 by the log-rank test). The effects of aminophylline on vasopressor dose, oxygenation index, and sequential organ failure assessment score were time-dependent with treatment. There were no significant differences in total hospitalization days, ICU hospitalization days, and rates of serious adverse events (all P > 0.05). No adverse events were observed in the trial. CONCLUSIONS Aminophylline as an adjunct therapy could significantly reduce the risk of death and prolong the survival time of patients with sepsis. TRIAL REGISTRATION ChiCTR.org.cn, ChiCTR1800019173.
Collapse
Affiliation(s)
- Ruifang Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Huan Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Dongmei Dai
- Department of Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Yan Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Xuexiu Shi
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Shuguang Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Haixu Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Yonggang Luo
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Bing Han
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Yu Fang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| | - Jing Yang
- Precision Medicine Monitoring Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wangbin Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan 450052, China
| |
Collapse
|
10
|
Facciolongo N, Bonacini M, Galeone C, Ruggiero P, Menzella F, Ghidoni G, Piro R, Scelfo C, Catellani C, Zerbini A, Croci S. Bronchial thermoplasty in severe asthma: a real-world study on efficacy and gene profiling. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:39. [PMID: 35534846 PMCID: PMC9087992 DOI: 10.1186/s13223-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022]
Abstract
Background Bronchial thermoplasty (BT) is an effective treatment in severe asthma. How to select patients who more likely benefit from BT is an unmet clinical need. Moreover, mechanisms of BT efficacy are still largely unknown. We sought to determine BT efficacy and to identify potential mechanisms of response. Methods This retrospective cohort study evaluated clinical outcomes in 27 patients with severe asthma: 13 with T2-high and 14 with T2-low endotype. Expression levels of 20 genes were compared by real-time PCR in bronchial biopsies performed at the third BT session versus baseline. Clinical response was measured based on Asthma Control Questionnaire (ACQ) score < 1.5, asthma exacerbations < 2, oral corticosteroids reduction of at least 50% at 12 months post-BT. Patients were classified as responders when they had at least 2 of 3 outcome measures. Results 81% of patients were defined as responders. BT induced a reduction in alpha smooth muscle actin (ACTA2) and an increase in CD68, fibroblast activation protein-alpha (FAP), alpha-1 and alpha-2 type I collagen (COL1A1, COL1A2) gene expression in the majority of patients. A higher reduction in ubiquitin carboxy-terminal-hydrolase L1 (PGP9.5) mRNA correlated with a better response based on Asthma Quality of Life Questionnaire (AQLQ). Lower changes in CD68 and FAP mRNAs correlated with a better response based on ACQ. Lower levels of occludin (OCLN), CD68, connective tissue growth factor (CTGF), higher levels of secretory leukocyte protease inhibitor (SLPI) and lower changes in CD68 and CTGF mRNAs were observed in patients who had less than 2 exacerbations post-BT. Lower levels of COL1A2 at baseline were observed in patients who had ACQ < 1.5 at 12 months post-BT. Conclusions BT is effective irrespective of the asthma endotypes and seems associated with airway remodelling. Quantification of OCLN, CD68, CTGF, SLPI, COL1A2 mRNAs could be useful to identify patients with better results. Trial registration: The study protocol was approved by the Local Ethics Committee (Azienda USL-IRCCS of Reggio Emilia—Comitato Etico Area Vasta Nord of Emilia Romagna; protocol number: 2019/0014076) and all the patients provided written informed consent before participating in the study. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00680-4.
Collapse
Affiliation(s)
- Nicola Facciolongo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Carla Galeone
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Patrizia Ruggiero
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Menzella
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy. .,Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS, 42123, Reggio Emilia, Italy.
| | - Giulia Ghidoni
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Piro
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Scelfo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Catellani
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
11
|
Wang E, Wechsler ME. A rational approach to compare and select biologic therapeutics in asthma. Ann Allergy Asthma Immunol 2022; 128:379-389. [PMID: 35093555 DOI: 10.1016/j.anai.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To review key literature on asthma biologic therapeutics-currently available and under investigation-to inform a rational approach to select biologics for the management of people with severe asthma by precision medicine. DATA SOURCES We used the PubMed database to review literature on biologic therapeutics in asthma. STUDY SELECTIONS We included published randomized control trials and real-world studies on biologic therapeutics, available in English, through September 2021. RESULTS Increased understanding of asthma endotypes and the roles of various inflammatory mechanisms has led to therapeutic agents that inhibit specific cytokines or immune pathways. Currently available biologic therapeutics target type 2-high asthma. Grouped by mechanisms of action, there are the following 3 types: (1) anti-immunoglobulin E, (2) anti-interleukin (IL)-5 or IL-5 receptor, and (3) anti-IL-4 receptor α. There are also various potential future biologic therapeutics currently under investigation. Although there remains a paucity of data regarding prospective direct head-to-head comparisons of biologic therapeutics in asthma, there are some retrospective and indirect comparison data available. CONCLUSION Precision medicine guides selection of biologic therapeutics along with shared decision-making. Biomarkers, although not comprehensive, allow approximations of likely mechanisms. Use of biomarkers, to include historical levels and trends, in addition to consideration of key clinical characteristics and comorbidities can greatly help guide biologic selection. Efficacy, safety, potential adverse effects, indications for other key comorbidities, and logistics should also be considered.
Collapse
Affiliation(s)
- Eileen Wang
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Michael E Wechsler
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
12
|
Busse WW, Melén E, Menzies-Gow AN. Holy Grail: the journey towards disease modification in asthma. Eur Respir Rev 2022; 31:31/163/210183. [PMID: 35197266 PMCID: PMC9488532 DOI: 10.1183/16000617.0183-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
At present, there is no cure for asthma, and treatment typically involves therapies that prevent or reduce asthma symptoms, without modifying the underlying disease. A “disease-modifying” treatment can be classed as able to address the pathogenesis of a disease, preventing progression or leading to a long-term reduction in symptoms. Such therapies have been investigated and approved in other indications, e.g. rheumatoid arthritis and immunoglobulin E-mediated allergic disease. Asthma's heterogeneous nature has made the discovery of similar therapies in asthma more difficult, although novel therapies (e.g. biologics) may have the potential to exhibit disease-modifying properties. To investigate the disease-modifying potential of a treatment, study design considerations can be made, including: appropriate end-point selection, length of trial, age of study population (key differences between adults/children in physiology, pathology and drug metabolism) and comorbidities in the patient population. Potential future focus areas for disease-modifying treatments in asthma include early assessments (e.g. to detect patterns of remodelling) and interventions for patients genetically susceptible to asthma, interventions to prevent virally induced asthma and therapies to promote a healthy microbiome. This review explores the pathophysiology of asthma, the disease-modifying potential of current asthma therapies and the direction future research may take to achieve full disease remission or prevention. Asthma is a complex, heterogeneous disease, which currently has no cure; this review explores the disease-modifying potential of asthma therapies and the direction future research may take to achieve disease remission or prevention.https://bit.ly/31AxYou
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | | |
Collapse
|
13
|
Whitehead GS, Thomas SY, Nakano K, Royer DJ, Burke CG, Nakano H, Cook DN. A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells. JCI Insight 2022; 7:150251. [PMID: 35191395 PMCID: PMC8876454 DOI: 10.1172/jci.insight.150251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The intensity and longevity of inflammatory responses to inhaled allergens is determined largely by the balance between effector and regulatory immune responses, but the mechanisms that determine the relative magnitudes of these opposing forces remain poorly understood. We have found that the type of adjuvant used during allergic sensitization has a profound effect on both the nature and longevity of the pulmonary inflammation triggered by subsequent reexposure to that same provoking allergen. TLR ligand adjuvants and house dust extracts primed immune responses characterized by a mixed neutrophilic and eosinophilic inflammation that was suppressed by multiple daily allergen challenges. During TLR ligand–mediated allergic sensitization, mice displayed transient airway neutrophilia, which triggered the release of TGF-β into the airway. This neutrophil-dependent production of TGF-β during sensitization had a delayed, suppressive effect on eosinophilic responses to subsequent allergen challenge. Neutrophil depletion during sensitization did not affect numbers of Foxp3+ Tregs but increased proportions of Gata3+CD4+ T cells, which, upon their transfer to recipient mice, triggered stronger eosinophilic inflammation. Thus, a neutrophil/TGF-β axis acts during TLR-mediated allergic sensitization to fine-tune the phenotype of developing allergen-specific CD4+ T cells and limit their pathogenicity, suggesting a novel immunotherapeutic approach to control eosinophilia in asthma.
Collapse
|
14
|
Bich TCT, Quoc QL, Choi Y, Yang EM, Trinh HKT, Shin YS, Park HS. Serum Amyloid A1: A Biomarker for Neutrophilic Airway Inflammation in Adult Asthmatic Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:40-58. [PMID: 34983106 PMCID: PMC8724823 DOI: 10.4168/aair.2022.14.1.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Purpose We evaluated the role of serum amyloid A1 (SAA1) in the pathogenesis of airway inflammation according to the phenotype of asthma. Methods One hundred twenty-two asthmatic patients and 60 healthy control subjects (HCs) were enrolled to measure SAA1 levels. The production of SAA1 from airway epithelial cells (AECs) and its effects on macrophages and neutrophils were investigated in vitro and in vivo. Results The SAA1 levels were significantly higher in sera of asthmatic patients than in those of HCs (P = 0.014); among asthmatics, patients with neutrophilic asthma (NA) showed significantly higher SAA1 levels than those with non-NA (P < 0.001). In vitro, polyinosinic:polycytidylic acid (Poly I-C) treatment markedly enhanced the production of SAA1 from AECs, which was further augmented by neutrophils; SAA1 could induce the production of interleukin (IL)-6, IL-8, and S100 calcium-binding protein A9 from AECs. Additionally, SAA1 activated neutrophils and macrophages isolated from peripheral blood of asthmatics, releasing neutrophil extracellular traps (NETs) and secreting proinflammatory cytokines presenting M1 phenotype, respectively. In ovalbumin-induced asthma mice, Poly I-C treatment significantly increased SAA1 levels as well as IL-17A/interferon-gamma/IL-33 levels in bronchoalveolar lavage fluid (BALF), leading to airway hyperresponsiveness and inflammation. The highest levels of SAA1 and neutrophilia were noted in the BALF and sera of the NA mouse model, followed by the mixed granulocytic asthma (MA) model. Especially, SAA1 induced IL-17/retinoic acid receptor-related orphan receptor γt expression from activated CD4+ T lymphocytes in asthmatic mice. Conclusions The results show that SAA1 could induce neutrophilic airway inflammation by activating neutrophils along with NET formation, M1 macrophages, and Th2/Th17 predominant cells, contributing to the phenotype of NA or MA.
Collapse
Affiliation(s)
- Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
15
|
Rybka-Fraczek A, Dabrowska M, Grabczak EM, Bialek-Gosk K, Klimowicz K, Truba O, Nejman-Gryz P, Paplinska-Goryca M, Krenke R. Inflammatory Phenotypes of Cough Variant Asthma as Response Predictors to Anti-Asthmatic Therapy. J Inflamm Res 2022; 15:595-602. [PMID: 35115807 PMCID: PMC8801361 DOI: 10.2147/jir.s343411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background Eosinophilic inflammatory phenotype was thought to be the most common phenotype of cough variant asthma (CVA), nevertheless other phenotypes were also reported. Purpose The study aimed to analyze the inflammatory phenotypes of CVA in relation to treatment response to the stepwise anti-asthmatic treatment. Patients and Methods The study included 45 patients with chronic cough (CC) and suspicion of CVA (normal chest X-ray, presence of bronchial hyperresponsiveness and no history of wheezing or dyspnea) in whom induced sputum was successfully collected. Based on the cellular composition of the sputum, patients were divided into major inflammatory phenotypes: eosinophilic, neutrophilic, paucigranulocytic or mixed granulocytic. A stepwise treatment, including inhaled corticosteroids with long-acting β2-agonist, montelukast and short-term therapy with prednisone was initiated. Good treatment response was defined as the reduction in cough severity at least 20 mm from the baseline in visual analogue scale and improvement in cough-related quality of life assessed by the Leicester cough questionnaire at least 1.3 points after any of three steps. Results Finally, 40/45 (88.9%) patients improved after therapy. Eosinophilic asthma was found in 13/40 (32.5%) patients, neutrophilic in 6/40 (15.0%) and paucigranulocytic pattern in 21/40 (52.5%) patients. No one demonstrated a mixed granulocytic phenotype. The response to the treatment was similar in all groups. However, the reduction in cough severity was inversely related to the percentage of sputum neutrophils (r = −0.44, P = 0.003). We showed that the percentage of neutrophils in sputum >46% may be considered as a predictor of poor response to anti-asthmatic therapy. Conclusion The diversity of inflammatory phenotypes with paucigranulocytic preponderance was found in subjects with CVA. The response to anti-asthmatic treatment in patients with CVA was not related to the inflammatory phenotype. High neutrophil count in sputum may predict poor response to anti-asthmatic therapy in patients with CC and bronchial hyperresponsiveness.
Collapse
Affiliation(s)
- Aleksandra Rybka-Fraczek
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Dabrowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
- Correspondence: Marta Dabrowska, Tel +48 22 599 2599, Fax +48 22 599 1069, Email
| | - Elzbieta M Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Bialek-Gosk
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Klimowicz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Olga Truba
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
17
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
18
|
Song J, Yao L, Shi J, Li J, Xu C. Protective effects of N-acetylcysteine on a chemical-induced murine model of asthma. J Asthma 2021; 58:1208-1215. [PMID: 32546031 DOI: 10.1080/02770903.2020.1781166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Oxidative stress is involved in the pathophysiology of inflammatory airway diseases, including asthma. In this study, we elucidated the possible protective effects of the antioxidant N-acetylcysteine (NAC) on a toluene diisocyanate (TDI)-induced murine asthma model. METHODS Male BALB/c mice were sensitized and challenged with TDI to generate a chemical-induced asthma model. NAC was given intraperitoneally to mice immediately after each TDI challenge. Airway reactivity to methacholine and bronchoalveolar lavage fluid was analyzed. Lungs were examined by histology. RESULTS NAC treatment dramatically reduced the increased airway hyperresponsiveness, inflammatory infiltration, and goblet cell metaplasia in TDI-exposed mice. Numbers of total cells, neutrophils, and eosinophils in the bronchoalveolar lavage fluid of TDI-challenged mice were significantly higher than vehicle control, but the administration of NAC decreased these inflammatory cell counts. TDI exposure led to significantly increased levels of interleukin 4 (IL-4) and IL-5, which were also suppressed by NAC. In addition, diminished lung reduced oxidized glutathione ratio and superoxide dismutase activity were observed after TDI challenge, and these changes were attenuated by NAC. CONCLUSION NAC treatment has beneficial effects in TDI-induced asthma.
Collapse
Affiliation(s)
- Jiafu Song
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Lihong Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Shi
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Jiashu Li
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Caiyun Xu
- Department of Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| |
Collapse
|
19
|
Identifying Subtypes of Paucigranulocytic Asthma: Now There Are 3. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2356-2357. [PMID: 34112478 DOI: 10.1016/j.jaip.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
|
20
|
Abstract
PURPOSE OF REVIEW Severe asthma remains a debilitating disease and a challenge for the clinicians. Novel therapies have been introduced and have greatly improved asthma control and more are under development or in clinical studies. These include anti-IL5/IL5R, anti-IL4/IL4R, anti IL13, anti- thymic stromal lymphopoietin (TSLP) and more, and severe asthma is currently managed in personalized medicine approach. However, there is still an unmet need to discover new, clinically available biomarkers and targeted therapies for a large group of severe asthma patients, particularly those with T2-low asthma. In this review, we briefly present the phenotypes and endotypes of severe asthma, the omics technologies in asthma as well as current and future treatments for both T2-high and T2-low asthma. RECENT FINDINGS In this review, we are going to present the effectiveness and safety of anti-IL5 therapies, the clinical trials for dupilumab and tezepelumab and the most significant molecules and biological agents used in trials as possible treatments forT2-low asthma. SUMMARY Novel anti-IL5 agents have changed the management of T2-high asthma resulting in improved disease control, QoL and lung function and importantly, fewer exacerbations. Nevertheless, there is still the need to find new treatments, particularly for T2-low asthma, which remains a challenge.
Collapse
|
21
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
22
|
Virus-Induced Asthma Exacerbations: SIRT1 Targeted Approach. J Clin Med 2020; 9:jcm9082623. [PMID: 32823491 PMCID: PMC7464235 DOI: 10.3390/jcm9082623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma has increased worldwide. Asthma exacerbations triggered by upper respiratory tract viral infections remain a major clinical problem and account for hospital admissions and time lost from work. Virus-induced asthma exacerbations cause airway inflammation, resulting in worsening asthma and deterioration in the patients’ quality of life, which may require systemic corticosteroid therapy. Despite recent advances in understanding the cellular and molecular mechanisms underlying asthma exacerbations, current therapeutic modalities are inadequate for complete prevention and treatment of these episodes. The pathological role of cellular senescence, especially that involving the silent information regulator 2 homolog sirtuin (SIRT) protein family, has recently been demonstrated in stable and exacerbated chronic respiratory disease states. This review discusses the role of SIRT1 in the pathogenesis of bronchial asthma. It also discusses the role of SIRT1 in inflammatory cells that play an important role in virus-induced asthma exacerbations. Recent studies have hypothesized that SIRT1 is one of major contributors to cellular senescence. SIRT1 levels decrease in Th2 and non-Th2-related airway inflammation, indicating the role of SIRT1 in several endotypes and phenotypes of asthma. Moreover, several models have demonstrated relationships between viral infection and SIRT1. Therefore, targeting SIRT1 is a novel strategy that may be effective for treating virus-induced asthma exacerbations in the future.
Collapse
|
23
|
Koesoemoprodjo W, Maranatha D. Level of serum IL-33 and emphysema paraseptal in clove cigarette smoker with spontaneous pneumothorax: A case report. Respir Med Case Rep 2020; 30:101133. [PMID: 32577372 PMCID: PMC7300223 DOI: 10.1016/j.rmcr.2020.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
A young male clove cigarette smoker experienced spontaneous pneumothorax and later paraseptal emphysema was detected on high-resolution computed tomography (HRCT) scan without respiratory symptoms. Smoking is a known risk factor for emphysema. Paraseptal emphysema is a type of emphysema that rarely causes respiratory symptoms, nevertheless, usually accompanied by spontaneous pneumothorax. Interleukin 33 (IL-33) is an alarmin cytokine that belongs to the IL-1 family. The effects of IL-33 depend on its structure. In its mature form, it is a cytokine alarmin that binds to ST2 (suppression of tumorigenicity) receptors on the surface of macrophages and innate immune cells to drive Th1/Th2 immune responses, causing oxidative stress, and increased IL-33 production causes polarization of alveolar macrophages to an M2 phenotype. In this study, long-term exposure to clove cigarette smoke caused an increased serum level of IL-33 (43.72 pg/mL) and paucigranulocytic airway inflammation. In paucigranulocytic inflammation, IL-33 is involved in lung parenchymal damage presumably through oxidative stress, activation of alveolar macrophage and increased MMP12 secretion, resulting in alveolar destruction and airspace enlargement.
Collapse
Affiliation(s)
| | - Daniel Maranatha
- Corresponding author. Department of Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Airlangga University, Dr.Soetomo General Hospital Jl. Prof.Dr.Moestopo 6-8 Surabaya, 60182, Indonesia.
| |
Collapse
|
24
|
Hvidtfeldt M, Sverrild A, Backer V, Porsbjerg C. Airway hyperresponsiveness to mannitol improves in both type 2 high and type 2 low asthma after specialist management. J Asthma 2020; 58:1221-1228. [PMID: 32519918 DOI: 10.1080/02770903.2020.1780255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Type 2 low (T2-low) asthma is reported to respond less to anti-inflammatory treatment compared with Type 2 high (T2-high) asthma. Airway hyperresponsiveness (AHR) to mannitol, a marker of airway mast cell activation, may be indicative of response to treatment in patients with T2-low disease. We investigated whether AHR to mannitol improves in patients with T2-low asthma after specialist management. METHODS Patients with asthma or suspected asthma, referred to our specialist outpatient clinic, were enrolled consecutively and assessed with FeNO, asthma control, blood eosinophils, mannitol and methacholine tests and induced sputum. T2-low asthma was defined in patients with FeNO < 25ppb and sputum eosinophils < 3% and blood eosinophils < 300µl-1 at inclusion. Patients with asthma and AHR to mannitol (PD15 ≤ 635 mg) were followed and reassessed after 12 months of specialist management. RESULTS Thirty-two patients (Females: 56%, age: 22 years (15-59)) were followed. Fourteen (44%) with T2-high and 18 (56%) with T2-low asthma. Baseline AHR to mannitol was comparable: Gmean PD15: 150 mg (95% CI 61-368) and 214 mg (95% CI 106-432) for T2-high and T2-low asthma respectively (P = 0.51). Both groups improved equally: Gmean PD15: 488 mg (95% CI 311-767) and 507 mg (95% CI 345-746); corresponding to a doubling-dose of: 3.00 (95% CI 1.58-5.74, P = 0.003) and 2.28 (95% CI 1.47-3.53, P = 0.001) respectively. There were no concomitant improvements in AHR to methacholine. CONCLUSION Patients with asthma and AHR to mannitol improve similarly in responsiveness to mannitol after 12 months of specialist management regardless of Type 2 inflammatory biomarker levels. Mechanisms driving AHR in T2-low asthma need to be further elucidated.
Collapse
Affiliation(s)
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Vibeke Backer
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in our understanding how environmental adjuvants promote the development of asthma. RECENT FINDINGS Asthma is a heterogeneous set of lung pathologies with overlapping features. Human studies and animal models suggest that exposure to different environmental adjuvants activate distinct immune pathways, which in turn give rise to distinct forms, or endotypes, of allergic asthma. Depending on their concentrations, inhaled TLR ligands can activate either type 2 inflammation, or Th17 differentiation, along with regulatory responses that function to attenuate inflammation. By contrast, a different category of environmental adjuvants, proteases, activate distinct immune pathways and prime predominantly type 2 immune responses. Asthma is not a single disease, but rather a group of pathologies with overlapping features. Different endotypes of asthma likely arise from perturbations of distinct immunologic pathways during allergic sensitization.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
26
|
Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response? ERJ Open Res 2020; 6:00364-2019. [PMID: 32494573 PMCID: PMC7248344 DOI: 10.1183/23120541.00364-2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
While there now exist effective treatments for type 2 high, eosinophilic asthma, there are no specific therapies for 40–50% of people with asthma with other phenotypes, which result from poorly understood underlying pathological mechanisms. One such pathology is neutrophilic inflammation, which has been associated with interleukin (IL)-17 family cytokines. Human genetic studies identified IL-17 polymorphisms associated with asthma; in murine models of allergic airways disease, IL-17A contributes to airway hyperresponsiveness, and in humans, elevated airway IL-17A levels are repeatedly observed in severe asthma. However, the directionality of this association is unknown, and the assumption that IL-17 cytokines drive disease pathology remains speculative. Here, we explore the evidence underlying the relationship between IL-17 and asthma, we review lessons learned from investigating IL-17 in other inflammatory diseases, and discuss the possibility that IL-17 may even be protective in asthma rather than pathogenic. We also critically examine the newly proposed paradigm of a reciprocal relationship between type 2 and type 17 airways inflammation. In summary, we suggest an association between IL-17 and asthma, but research is needed examining the diverse functions of these cytokines, their longitudinal stability, their response to clinical interventions, and for mechanistic studies determining whether they are protective or pathogenic. IL-17 cytokines have been implicated in neutrophilic asthma by genetic, murine and human data. Here, previous studies are critiqued and the assumption their dominant role is pathogenic rather than protective of airway epithelial barrier integrity is challenged.http://bit.ly/3axB4Zs
Collapse
Affiliation(s)
- Gareth M Hynes
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020; 75:311-325. [PMID: 31309578 DOI: 10.1111/all.13985] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Non-T2 asthma is traditionally defined as asthma without features of T2 asthma. The definition is arbitrary and is generally based on the presence of neutrophils in sputum, or the absence (or normal levels) of eosinophils or other T2 markers in sputum (paucigranulocytic), airway biopsies or in blood. This definition may be imprecise as we gain more knowledge from applying transcriptomics and proteomics to blood and airway samples. The prevalence of non-T2 asthma is also difficult to estimate as most studies are cross-sectional and influenced by concomitant treatment with glucocorticosteroids, and by the presence of recognized or unrecognized airway infections. No specific therapies have shown any clinical benefits in patients with asthma that is associated with a non-T2 inflammatory process. It remains to be seen if such an endotype truly exists and to identify treatments to target that endotype. Meanwhile, identifying intense airway neutrophilia as an indicator of airway infection and airway hyperresponsiveness as an indicator of smooth muscle dysfunction, and treating them appropriately, and not increasing glucocorticosteroids in patients who do not have obvious T2 inflammation, seem reasonable.
Collapse
Affiliation(s)
- Eric Sze
- New Territories West Cluster Tuen Mun Hospital Tuen Mun Hong Kong
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Anurag Bhalla
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Parameswaran Nair
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| |
Collapse
|
28
|
Castro M, Rabe KF, Corren J, Pavord ID, Katelaris CH, Tohda Y, Zhang B, Rice MS, Maroni J, Rowe P, Pirozzi G, Amin N, Ruddy M, Akinlade B, Graham NMH, Teper A. Dupilumab improves lung function in patients with uncontrolled, moderate-to-severe asthma. ERJ Open Res 2020; 6:00204-2019. [PMID: 32010719 PMCID: PMC6983496 DOI: 10.1183/23120541.00204-2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
Background Dupilumab, a fully human monoclonal antibody, blocks the shared receptor component for interleukin-4 and interleukin-13, key drivers of type 2 inflammation. In the phase 3 LIBERTY ASTHMA QUEST trial (NCT02414854) in patients with uncontrolled, moderate-to-severe asthma, add-on dupilumab 200 mg or 300 mg every 2 weeks reduced exacerbations and improved forced expiratory volume in 1 s (FEV1) and quality of life over 52 weeks. This analysis evaluates dupilimab's effect on lung function in the overall population, and subgroups with baseline elevated type 2 inflammatory biomarkers. Methods Patients were randomised to 52 weeks of subcutaneous dupilumab 200 mg every 2 weeks, 300 mg every 2 weeks, or matched-volume placebos. Lung function outcomes were analysed in the overall population, in patients with ≥150 eosinophils·µL−1, ≥300 eosinophils·µL−1, ≥25 ppb fractional exhaled nitric oxide (FeNO), and both ≥150 eosinophils·µL−1 and ≥25 ppb FeNO, at baseline. Results Dupilumab treatment (200 mg and 300 mg every 2 weeks) resulted in significant improvements versus placebo after 52 weeks in pre-bronchodilator FEV1 (0.20 and 0.13 L, respectively, versus placebo) and post-bronchodilator FEV1 (0.19 and 0.13 L, respectively), forced vital capacity (FVC) (0.20 and 0.14 L, respectively), forced expiratory flow (0.19 and 0.13 L·s−1, respectively) and pre-bronchodilator FEV1/FVC ratio (1.75% and 1.61%, respectively) in the overall population (p<0.001). Difference versus placebo in post-bronchodilator FEV1 slope of change (weeks 4–52) was significant (0.04 L·year−1; p<0.05). Greater improvements were achieved in patients with elevated baseline blood eosinophil and/or FeNO levels for most outcomes. Conclusions Dupilumab improves lung function outcomes, including large and small airway measurements and fixed airway obstruction, in patients with uncontrolled, moderate-to-severe asthma; particularly in patients with elevated biomarkers of type 2 inflammation. Dupilumab is a fully human monoclonal antibody that blocks the shared receptor component for interleukin-4 and interleukin-13, key drivers of type 2 inflammation, improving lung function outcomes in patients with uncontrolled, moderate-to-severe asthmahttp://bit.ly/2OhKMpi
Collapse
Affiliation(s)
- Mario Castro
- Washington University School of Medicine, St Louis, MO, USA
| | - Klaus F Rabe
- LungenClinic Grosshansdorf and Christian Albrechts University, members of the German Center for Lung Research (DZL), Kiel, Germany
| | - Jonathan Corren
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ian D Pavord
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Constance H Katelaris
- Campbelltown Hospital, Campbelltown, NSW, Australia.,Western Sydney University, Sydney, NSW, Australia
| | - Yuji Tohda
- Dept of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | | | | | - Jaman Maroni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | - Nikhil Amin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Siddiqui S, Denlinger LC, Fowler SJ, Akuthota P, Shaw DE, Heaney LG, Brown L, Castro M, Winders TA, Kraft M, Wagers S, Peters MC, Pavord ID, Walker S, Jarjour NN. Unmet Needs in Severe Asthma Subtyping and Precision Medicine Trials. Bridging Clinical and Patient Perspectives. Am J Respir Crit Care Med 2020; 199:823-829. [PMID: 30726120 DOI: 10.1164/rccm.201809-1817pp] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Salman Siddiqui
- 1 National Institute for Health Research (NIHR) Respiratory Biomedical Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Loren C Denlinger
- 2 Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen J Fowler
- 3 Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Centre, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - Praveen Akuthota
- 4 Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Dominick E Shaw
- 5 NIHR Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Liam G Heaney
- 6 Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Louise Brown
- 7 Medical Research Council Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, London, United Kingdom
| | - Mario Castro
- 8 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tonya A Winders
- 9 Allergy and Asthma Network, Global Allergy and Asthma Patient Platform, Vienna, Austria
| | - Monica Kraft
- 10 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Michael C Peters
- 12 Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Ian D Pavord
- 13 Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Samantha Walker
- 14 Asthma UK and Edinburgh University, Edinburgh, United Kingdom
| | - Nizar N Jarjour
- 2 Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
30
|
Bagnasco D, Passalacqua G, Caminati M, Heffler E, Menzella F, De Ferrari L, Riccio AM, Folli C, Canonica GW. Evolving phenotypes to endotypes: is precision medicine achievable in asthma? Expert Rev Respir Med 2020; 14:163-172. [PMID: 31899999 DOI: 10.1080/17476348.2020.1703675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: The development of biologic molecules led to a drastic change in the therapeutic approach to asthma. With the prospect of acting on different pathophysiological mechanisms of the disease, the idea of precision medicine was developed, in which a single molecule is able to modify a specific triggering mechanism. Thus, it seemed limiting to stop at the distinction of patients phenotypes and the concept of endotypes became more relevant in the therapeutic approach.Areas covered: This review deepened the topic of precision medicine through the transition from phenotyping to endotyping. We performed a review of the literature, preferring articles quoted in Medline and published in journals with an impact factor. Results showed that it is fundamental to take into consideration the role of biomarkers and the related therapies currently available for precision medicine.Expert opinion: The possible overlap of patients in different phenotypes requires a more precise classification, which considers endotypization. With the development of biological drugs able to modify and modulate some pathophysiological mechanisms of the disease, the theoretical concept of endotyping becomes practical, allowing the clinician to choose the specific mechanism to 'attack' in order to control the disease.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Reggio Emilia, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Chiara Folli
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
31
|
Althoff M, Holguin F. Contemporary management techniques of asthma in obese patients. Expert Rev Respir Med 2019; 14:249-257. [PMID: 31852311 DOI: 10.1080/17476348.2020.1706486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Obesity-associated asthma represents a heterogeneous group of clinical phenotypes, including an adult-onset phenotype. These patients often have difficult to control symptoms and often are less likely to respond to conventional asthma therapies.Areas covered: This review covers the effects of lifestyle interventions, including diet and weight loss, effect asthma outcomes and how obesity-associated asthma responds to conventional approaches to asthma management.Expert opinion: Management of obesity-associated asthma should include lifestyle modifications aimed at weight reduction, management of other co-morbidities, and limiting systemic steroids. As many of these patients have non-Th2 asthma, long-acting muscarinic antagonists and macrolides may be potentially helpful. Medications to treat metabolic syndrome.
Collapse
Affiliation(s)
- Meghan Althoff
- Pulmonary Sciences and Critical Care, University of Colorado, Denver, CO, USA
| | - Fernando Holguin
- Pulmonary Sciences and Critical Care, University of Colorado, Denver, CO, USA
| |
Collapse
|
32
|
Thakur VR, Khuman V, Beladiya JV, Chaudagar KK, Mehta AA. An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon 2019; 5:e02864. [PMID: 31768443 PMCID: PMC6872797 DOI: 10.1016/j.heliyon.2019.e02864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Asthma is chronic and multi-factorial inflammatory disease hence single allergen induced asthma in an animal is not identical to clinical asthma. Therefore, we developed a novel experimental model of asthma in rats using ovalbumin (OVA) and lipopolysaccharide (LPS) allergens. Rats were divided into four groups; normal (NC), OVA, LPS, and OVA-LPS treated. Rats were sensitized with OVA (100 μg/kg, adsorbed in 100 mg/mL aluminum hydroxide, i.p.), LPS (10 μg/kg, i.p.) and both (OVA-LPS) on 7th, 14th, 21st days and was followed by challenge with OVA (1%w/v), LPS (1%w/v), OVA (0.5%w/v) and LPS (0.5%w/v) for 30 min thrice/week for three weeks in the OVA, LPS and OVA-LPS groups, respectively. On 41 day, lung function parameters (respiration rate, tidal volume, and airflow rate), total and differential leukocytes count in the blood as well as BALf and inflammatory cytokines (IL-4, IL-5, and IL-13) in serum were measured. Histology of lungs was performed. The results suggested that the tidal volume and airflow rate were significantly decreased while respiration rate, total and differential leukocytes count in blood as well as BALf and serum cytokines level were significantly increased in the OVA-LPS as compared to NC, OVA, and LPS. In conclusion, the combination of OVA and LPS induced phenotypes of severe asthma with eosinophilic, neutrophilic and lymphocytic inflammation.
Collapse
Affiliation(s)
- Vandana R Thakur
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Vikas Khuman
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Kiranj K Chaudagar
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Anita A Mehta
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
33
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
34
|
Aguilar D, Lemonnier N, Koppelman GH, Melén E, Oliva B, Pinart M, Guerra S, Bousquet J, Anto JM. Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS One 2019; 14:e0224448. [PMID: 31693680 PMCID: PMC6834334 DOI: 10.1371/journal.pone.0224448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The mechanisms explaining multimorbidity between asthma, dermatitis and rhinitis (allergic multimorbidity) are not well known. We investigated these mechanisms and their specificity in distinct cell types by means of an interactome-based analysis of expression data. METHODS Genes associated to the diseases were identified using data mining approaches, and their multimorbidity mechanisms in distinct cell types were characterized by means of an in silico analysis of the topology of the human interactome. RESULTS We characterized specific pathomechanisms for multimorbidities between asthma, dermatitis and rhinitis for distinct emergent non-eosinophilic cell types. We observed differential roles for cytokine signaling, TLR-mediated signaling and metabolic pathways for multimorbidities across distinct cell types. Furthermore, we also identified individual genes potentially associated to multimorbidity mechanisms. CONCLUSIONS Our results support the existence of differentiated multimorbidity mechanisms between asthma, dermatitis and rhinitis at cell type level, as well as mechanisms common to distinct cell types. These results will help understanding the biology underlying allergic multimorbidity, assisting in the design of new clinical studies.
Collapse
MESH Headings
- Asthma/epidemiology
- Asthma/genetics
- Asthma/immunology
- Blood Cells/immunology
- Blood Cells/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Datasets as Topic
- Dermatitis, Allergic Contact/epidemiology
- Dermatitis, Allergic Contact/genetics
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Gene Expression Profiling
- Humans
- Immunity, Cellular/genetics
- Multimorbidity
- Protein Interaction Maps/genetics
- Protein Interaction Maps/immunology
- Rhinitis, Allergic/epidemiology
- Rhinitis, Allergic/genetics
- Rhinitis, Allergic/immunology
Collapse
Affiliation(s)
- Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Barcelona, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- 6AM Data Mining, Barcelona, Spain
| | - Nathanael Lemonnier
- Institute for Advanced Biosciences, Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes, Site Santé, Allée des Alpes, La Tronche, France
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mariona Pinart
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Stefano Guerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jean Bousquet
- Hopital Arnaud de Villeneuve University Hospital, Montpellier, France
- Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany
| | - Josep M. Anto
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| |
Collapse
|
35
|
Bjermer L, Abbott-Banner K, Newman K. Efficacy and safety of a first-in-class inhaled PDE3/4 inhibitor (ensifentrine) vs salbutamol in asthma. Pulm Pharmacol Ther 2019; 58:101814. [PMID: 31202957 DOI: 10.1016/j.pupt.2019.101814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This study aimed to investigate the dose-response and pharmacology of a range of single doses of nebulised ensifentrine (RPL554), an inhaled dual phosphodiesterase (PDE) 3/4 inhibitor in patients with asthma. METHODS In this randomised, placebo-controlled, double-blind crossover study, patients received single nebulised doses of ensifentrine 0.4, 1.5, 6 and 24 mg, salbutamol 2.5 and 7.5 mg, and placebo. Eligible patients were adults with asthma, pre-bronchodilator forced expiratory volume in 1 s (FEV1) 60-90% predicted and ≥1.5 L, with post-salbutamol FEV1 increase ≥15%. The co-primary objectives were peak and average FEV1 over 12 h for ensifentrine vs placebo and salbutamol. Secondary endpoints included: peak and average systolic and diastolic blood pressure, pulse rate and ECG heart rate; and safety and tolerability (adverse events [AEs], and serum potassium). ClinicalTrials.gov: NCT02427165. RESULTS A total of 29 patients were randomised, with 25 (89%) completing the study. For the two co-primary endpoints there was a clear ensifentrine dose-response relationship, with all treatments superior to placebo (p < 0.001). There was no relationship between the ensifentrine dose and AE incidence or blood pressure. Ensifentrine 0.4, 1.5 and 6 mg had significantly lower effects than both salbutamol doses on pulse and heart rates. Ensifentrine did not impact potassium, whereas there was a was a dose-related reduction for salbutamol. Inhalation of ensifentrine resulted in a dose-related increase in plasma exposure. CONCLUSIONS Single-dose ensifentrine demonstrated dose-dependent bronchodilation, and was as effective as a therapeutic dose of nebulised salbutamol. All ensifentrine doses were similarly well tolerated, and did not show the characteristic β2-agonist systemic adverse effects.
Collapse
Affiliation(s)
- Leif Bjermer
- Dept of Respiratory Medicine & Allergology, Skane University Hospital, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
36
|
Nishio T, Wakahara K, Suzuki Y, Nishio N, Majima S, Nakamura S, Teranishi M, Nakatochi M, Sone M, Hasegawa Y. Mixed cell type in airway inflammation is the dominant phenotype in asthma patients with severe chronic rhinosinusitis. Allergol Int 2019; 68:515-520. [PMID: 31257167 DOI: 10.1016/j.alit.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/25/2019] [Accepted: 05/11/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Asthma often coexists with chronic rhinosinusitis (CRS). Recent studies revealed that sinus inflammation in asthmatic patients was related to eosinophilic inflammation. However, the relationship between the severity of CRS and four different sputum inflammatory phenotypes as defined by the proportion of eosinophils and neutrophils is unknown. The aim of this study was to examine the impact of the severity of CRS on lower airway and systemic inflammation in asthmatic patients. METHODS We enrolled 57 adult asthmatic patients who underwent sinus computed tomography (CT). The severity of CRS was evaluated by the Lund-Mackay score (LMS). The induced sputum inflammatory phenotype was defined by eosinophils (≥/<2%) and neutrophils (≥/<60%). Peripheral blood mononuclear cells (PBMC) were collected to examine cytokine productions. RESULTS The median LMS of subjects was 6 (interquartile range, 0-11.5). The sputum inflammatory cell phenotype was categorized as paucicellular (n = 14), neutrophilic (n = 11), eosinophilic (n = 20), or mixed (n = 12). LMS was positively correlated with the percentage of blood eosinophils, sputum eosinophils, and mean fluorescence intensity (MFI) of IL-5 on CD4+ T cells. In the severe CRS group (LMS, 12-24), the number of mixed cellular phenotypes was higher than that in the group without CRS (LMS, 0-4) and mild-to-moderate CRS group (LMS, 5-11). CONCLUSIONS In asthmatic patients with severe CRS, the proportion of the mixed cellular inflammatory phenotype was increased as well as eosinophilic inflammation.
Collapse
|
37
|
Azim A, Barber C, Dennison P, Riley J, Howarth P. Exhaled volatile organic compounds in adult asthma: a systematic review. Eur Respir J 2019; 54:13993003.00056-2019. [PMID: 31273044 DOI: 10.1183/13993003.00056-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
The search for biomarkers that can guide precision medicine in asthma, particularly those that can be translated to the clinic, has seen recent interest in exhaled volatile organic compounds (VOCs). Given the number of studies reporting "breathomics" findings and its growing integration in clinical trials, we performed a systematic review of the literature to summarise current evidence and understanding of breathomics technology in asthma.A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed (CRD42017084145) of MEDLINE, Embase and the Cochrane databases to search for any reports that assessed exhaled VOCs in adult asthma patients, using the following terms (asthma AND (volatile organic compounds AND exhaled) OR breathomics).Two authors independently determined the eligibility of 2957 unique records, of which 66 underwent full-text review. Data extraction and risk of bias assessment was performed on the 22 studies deemed to fulfil the search criteria. The studies are described in terms of methodology and the evidence narratively summarised under the following clinical headings: diagnostics, phenotyping, treatment stratification, treatment monitoring and exacerbation prediction/assessment.Our review found that most studies were designed to assess diagnostic potential rather than focus on underlying biology or treatable traits. Results are generally limited by a lack of methodological standardisation and external validation and by insufficiently powered studies, but there is consistency across the literature that exhaled VOCs are sensitive to underlying inflammation. Modern studies are applying robust breath analysis workflows to large multi-centre study designs, which should unlock the full potential of measurement of exhaled volatile organic compounds in airways diseases such as asthma.
Collapse
Affiliation(s)
- Adnan Azim
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paddy Dennison
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - John Riley
- Galaxy Asthma, GSK, Medicines Research Centre, Stevenage, UK
| | - Peter Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
38
|
Cevaal PM, Bekker LG, Hermans S. TB-IRIS pathogenesis and new strategies for intervention: Insights from related inflammatory disorders. Tuberculosis (Edinb) 2019; 118:101863. [PMID: 31561185 DOI: 10.1016/j.tube.2019.101863] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
In almost one in five HIV/tuberculosis (TB) co-infected patients, initiation of antiretroviral therapy (ART) is complicated by TB immune reconstitution inflammatory syndrome (TB-IRIS). Corticosteroids have been suggested for treatment of severe cases, however no therapy is currently licensed for TB-IRIS. Hence, there is a strong need for more specific therapeutics, and therefore, a better understanding of TB-IRIS pathogenesis. Immune reconstitution following ART is a precariously balanced functional restoration of adaptive immunity. In those patients predisposed to disease, an incomplete activation of the innate immune system leads to a hyper-inflammatory response that comprises partially overlapping innate, adaptive and effector arms, eventually leading to clinical symptoms. Interestingly, many of these pathological mechanisms are shared by related inflammatory disorders. We here describe therapeutic strategies that originate from these other disciplines and discuss their potential application in TB-IRIS. These new avenues of interventions range from final-phase treatment of symptoms to early-phase prevention of disease onset. In conclusion, we propose a novel approach for the discovery and development of therapeutics, based on an updated model of TB-IRIS pathogenesis. Further experimental studies validating the causal relationships in the proposed model could greatly contribute to providing a solid immunological basis for future clinical trials on TB-IRIS therapeutics.
Collapse
Affiliation(s)
- Paula M Cevaal
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam Public Health Research Institute, Paasheuvelweg 25, 1105, BP Amsterdam, the Netherlands.
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Sabine Hermans
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam Public Health Research Institute, Paasheuvelweg 25, 1105, BP Amsterdam, the Netherlands; Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
39
|
Reply: The Western Diet: A Smoking Gun for Chronic Obstructive Pulmonary Disease and Asthma? Ann Am Thorac Soc 2019; 15:1241. [PMID: 30016172 DOI: 10.1513/annalsats.201807-451le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Whitehead GS, Kang HS, Thomas SY, Medvedev A, Karcz TP, Izumi G, Nakano K, Makarov SS, Nakano H, Jetten AM, Cook DN. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORγt inverse agonist. JCI Insight 2019; 5:125528. [PMID: 31184998 DOI: 10.1172/jci.insight.125528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Airway neutrophilia occurs in approximately 50% of patients with asthma and is associated with particularly severe disease. Unfortunately, this form of asthma is usually refractory to corticosteroid treatment, and there is an unmet need for new therapies. Pulmonary neutrophilic inflammation is associated with Th17 cells, whose differentiation is controlled by the nuclear receptor, RORγt. Here, we tested whether VTP-938, a selective inverse agonist of this receptor, can reduce disease parameters in animal models of neutrophilic asthma. When administered prior to allergic sensitization through the airway, the RORγt inverse agonist blunted allergen-specific Th17 cell development in lung-draining lymph nodes and attenuated allergen-induced production of IL-17. VTP-938 also reduced pulmonary production of IL-17 and airway neutrophilia when given during the allergen challenge of the model. Finally, in an environmentally relevant model of allergic responses to house dust extracts, VTP-938 suppressed production of IL-17 and neutrophilic inflammation, and also markedly diminished airway hyperresponsiveness. Together, these findings suggest that orally available inverse agonists of RORγt might provide an effective therapy to treat glucocorticoid-resistant neutrophilic asthma.
Collapse
Affiliation(s)
- Gregory S Whitehead
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Hong Soon Kang
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Seddon Y Thomas
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | - Tadeusz P Karcz
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Gentaro Izumi
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Keiko Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | - Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Anton M Jetten
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 2019; 197:22-37. [PMID: 28910134 DOI: 10.1164/rccm.201611-2232pp] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tara F Carr
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Amir A Zeki
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
| | - Monica Kraft
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
42
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
43
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung K, Diamant Z, Eguiluz-Gracia I, Knol E, Kolios AGA, Levi-Schaffer F, Nocentini G, Palomares O, Puzzovio PG, Redegeld F, van Esch BCAM, Stellato C. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper. Allergy 2019; 74:432-448. [PMID: 30353939 DOI: 10.1111/all.13642] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), together with their comorbidities, bear a significant burden on public health. Increased appreciation of molecular networks underlying inflammatory airway disease needs to be translated into new therapies for distinct phenotypes not controlled by current treatment regimens. On the other hand, development of new safe and effective therapies for such respiratory diseases is an arduous and expensive process. Antibody-based (biological) therapies are successful in treating certain respiratory conditions not controlled by standard therapies such as severe allergic and refractory eosinophilic severe asthma, while in other inflammatory respiratory diseases, such as COPD, biologicals are having a more limited impact. Small molecule drug (SMD)-based therapies represent an active field in pharmaceutical research and development. SMDs expand biologicals' therapeutic targets by reaching the intracellular compartment by delivery as either an oral or topically based formulation, offering both convenience and lower costs. Aim of this review was to compare and contrast the distinct pharmacological properties and clinical applications of SMDs- and antibody-based treatment strategies, their limitations and challenges, in order to highlight how they should be integrated for their optimal utilization and to fill the critical gaps in current treatment for these chronic inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Ian M. Adcock
- Molecular Cell Biology Group; National Heart & Lung Institute; Imperial College London; London UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Rodolfo Bianchini
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy Research; Allergy, Asthma and COPD Competence center; Lund University; Lund Sweden
| | - Gaetano Caramori
- Pulmonary Unit; Department of Biomedical Sciences; Dentistry, Morphological and Functional Imaging (BIOMORF); University of Messina; Messina Italy
| | - Luigi Cari
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute; Imperial College London; Royal Brompton & Harefield NHS Trust; London UK
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Department of Respiratory Medicine and Allergology; Institute for Clinical Science; Skane University Hospital; Lund Sweden
| | - Ibon Eguiluz-Gracia
- Allergy Unit and Research Laboratory; Regional University Hospital of Málaga and Biomedical Research Institute of Malaga (IBIMA); Málaga Spain
| | - Edward F. Knol
- Departments of Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Francesca Levi-Schaffer
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Giuseppe Nocentini
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Pier Giorgio Puzzovio
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Frank A. Redegeld
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Betty C. A. M. van Esch
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| |
Collapse
|
44
|
Just J, Deschildre A, Lejeune S, Amat F. New perspectives of childhood asthma treatment with biologics. Pediatr Allergy Immunol 2019; 30:159-171. [PMID: 30444939 DOI: 10.1111/pai.13007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023]
Abstract
Asthma is no longer considered as a single disease but rather as a syndrome corresponding to different entities and pathophysiologic pathways. A targeted strategy is part of personalized medicine which aims to better define each patient's phenotype and endotype so as to prescribe the most suitable treatment at an individual level. Omalizumab and, more recently, mepolizumab are the first biologics approved for children (6-18 years). Omalizumab is now widely used to treat severe allergic asthma in children and is highly effective for asthma exacerbations and asthma control with a good safety profile. Moreover, several other drugs-lebrikizumab, dupilumab, tezepelumab, mepolizumab, reslizumab, benralizumab-are used or are being studied in both teenagers and adults and could benefit younger children in the near future. We hypothesize that defining the asthma phenotype/endotype regarding the type and intensity of inflammation, association with allergic or non-allergic comorbidities, and airway remodeling should contribute to the choice of a specific biologic. Pediatric specificities have to be addressed and validated by studies in children. Long-term effectiveness and particularly the impact on the natural history of asthma should also be investigated. Severe asthma in children is a complex disease, and patients have to be referred to a specialized pediatric asthma center to confirm diagnosis and initiate the best treatment strategy which could include biologics while taking into account their high cost.
Collapse
Affiliation(s)
- Jocelyne Just
- Department of Allergology-Centre de l'Asthme et des Allergies, Hôpital d'Enfants Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR-S 1136, Equipe EPAR, INSERM Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
| | - Antoine Deschildre
- CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Université Nord de France, Lille, France
| | - Stéphanie Lejeune
- CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Université Nord de France, Lille, France
| | - Flore Amat
- Department of Allergology-Centre de l'Asthme et des Allergies, Hôpital d'Enfants Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR-S 1136, Equipe EPAR, INSERM Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
| |
Collapse
|
45
|
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol 2019; 10:47. [PMID: 30804927 PMCID: PMC6370641 DOI: 10.3389/fimmu.2019.00047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.
Collapse
Affiliation(s)
- Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Anna Malmgren
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany.,LungenClinic, Großhansdorf, Germany
| |
Collapse
|
46
|
Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019; 20:11. [PMID: 30654796 PMCID: PMC6337809 DOI: 10.1186/s12931-019-0973-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5−/−) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5−/− mice to help understand its biological role in the lung, and especially in immune regulation. Methods Histological features of lungs were evaluated by Alcian blue and Masson’s trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5−/− mice. Acid–base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5−/− mice on gene expression in the lungs was analyzed by qPCR. Results Adgrf5−/− mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5−/− lungs as well as in lung ECs of Adgrf5−/− mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5−/− lungs. Conclusions Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis. Electronic supplementary material The online version of this article (10.1186/s12931-019-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumimasa Kubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Donna Maretta Ariestanti
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Souta Oki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Fukuzawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryotaro Demizu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rahmaningsih Mara Sabirin
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, JI.Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigehisa Hirose
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
47
|
Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018; 11:267-281. [PMID: 30464537 PMCID: PMC6211579 DOI: 10.2147/jaa.s153097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although non-eosinophilic asthma (NEA) is not the best known and most prevalent asthma phenotype, its importance cannot be underestimated. NEA is characterized by airway inflammation with the absence of eosinophils, subsequent to activation of non-predominant type 2 immunologic pathways. This phenotype, which possibly includes several not well-defined subphenotypes, is defined by an eosinophil count <2% in sputum. NEA has been associated with environmental and/or host factors, such as smoking cigarettes, pollution, work-related agents, infections, and obesity. These risk factors, alone or in conjunction, can activate specific cellular and molecular pathways leading to non-type 2 inflammation. The most relevant clinical trait of NEA is its poor response to standard asthma treatments, especially to inhaled corticosteroids, leading to a higher severity of disease and to difficult-to-control asthma. Indeed, NEA constitutes about 50% of severe asthma cases. Since most current and forthcoming biologic therapies specifically target type 2 asthma phenotypes, such as uncontrolled severe eosinophilic or allergic asthma, there is a dramatic lack of effective treatments for uncontrolled non-type 2 asthma. Research efforts are now focusing on elucidating the phenotypes underlying the non-type 2 asthma, and several studies are being conducted with new drugs and biologics aiming to develop effective strategies for this type of asthma, and various immunologic pathways are being scrutinized to optimize efficacy and to abolish possible adverse effects.
Collapse
Affiliation(s)
| | | | - Javier Domínguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| |
Collapse
|
48
|
Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F. Serum Metabolomics Analysis of Asthma in Different Inflammatory Phenotypes: A Cross-Sectional Study in Northeast China. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2860521. [PMID: 30345296 PMCID: PMC6174811 DOI: 10.1155/2018/2860521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Asthma as a chronic heterogeneous disease seriously affects the quality of life. Incorrect identification for its clinical phenotypes lead to a huge waste of medical resources. Metabolomic technique as a novel approach to explore the pathogenesis of diseases have not been used to study asthma based on their clear defined inflammatory phenotypes. This study is aimed to distinguish the divergent metabolic profile in different asthma phenotypes and clarify the pathogenesis of them. METHODS Participants including eosinophilic asthmatics (EA, n=13), noneosinophilic asthmatics (NEA, n=16), and healthy controls (HC, n=15) were enrolled. A global profile of untargeted serum metabolomics was identified with Ultra Performance Liquid Chromatography-Mass Spectrometry technique. RESULTS Multivariate analysis was performed and showed a clear distinction between EA, NEA, and HC. A total of 18 different metabolites were recognized between the three groups based on OPLS-DA model and involved in 10 perturbed metabolic pathways. Glycerophospholipid metabolism, retinol metabolism, and sphingolipid metabolism were identified as the most significant changed three pathways (impact > 0.1 and -log(P) > 4) between the phenotypes. CONCLUSIONS We showed that the different inflammatory phenotypes of asthma involve the immune regulation, energy, and nutrients metabolism. The clarified metabolic profile contributes to understanding the pathophysiology of asthma phenotypes and optimizing the therapeutic strategy against asthma heterogeneity.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weijie Zhang
- Third Department of Respiratory Disease, Jilin Provincial People's Hospital, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
49
|
Towards precision medicine in severe asthma: Treatment algorithms based on treatable traits. Respir Med 2018; 142:15-22. [PMID: 30170796 DOI: 10.1016/j.rmed.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/23/2022]
Abstract
Asthma is a common disease, and although its clinical manifestations may be similar among patients, recent research discoveries have shown that it consists of several distinct clinical clusters or phenotypes, each with different underlying molecular pathways yielding different treatment responses. Based on these observations, an alternative approach - known as 'precision medicine' - has been proposed for the management of patients with severe asthma. Precision medicine advocates identification of treatable traits, linking them to therapeutic approaches targeting genetic, immunological, environmental, and/or lifestyle factors in individual patients. The main "goal" of this personalised approach is to enable choosing a treatment which will be more likely to produce a beneficial response in the individual patient rather than a 'one size fits all' approach. The aim of the present review is to discuss different ways of phenotyping asthma and to provide a rationale for treatment algorithms based on principles of precision medicine.
Collapse
|
50
|
Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, Florido F, Lahoz C, Cárdaba B. Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples. Front Immunol 2018; 9:1416. [PMID: 29977241 PMCID: PMC6021512 DOI: 10.3389/fimmu.2018.01416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Asthma is a complex and heterogeneous respiratory disorder characterized by chronic airway inflammation. It has generally been associated with allergic mechanisms related to type 2 airway inflammation. Nevertheless, between 10 and 33% of asthmatic individuals have nonallergic asthma (NA). Several targeted treatments are in clinical development for patients with Th2 immune response, but few biomarkers are been defined for low or non-Th2-mediated inflammation asthma. We have recently defined by gene expression a set of genes as potential biomarkers of NA, mainly associated with disease severity: IL10, MSR1, PHLDA1, SERPINB2, CHI3L1, IL8, and PI3. Here, we analyzed their protein expression and specificity using sera and isolated peripheral blood mononuclear cells (PBMCs). First, protein quantification was carried out using ELISA (in sera) or Western blot (proteins extracted from PBMCs by Trizol procedure), depending on the biomarker in 30 healthy controls (C) subjects and 30 NA patients. A receiver operating characteristic curve analysis was performed by using the R program to study the specificity and sensitivity of the candidate biomarkers at a gene- and protein expression level. Four kinds of comparisons were performed: total NA group vs C group, severe NA patients vs C, moderate-mild NA patients vs C, and severe NA patients vs moderate-mild NA patients. We found that all the single genes showed good sensitivity vs specificity for some phenotypic discrimination, with CHI3L1 and PI3 exhibiting the best results for C vs NA: CHI3L1 area under the curve (AUC) (CI 95%): 0.95 (0.84-1.00) and PI3 AUC: 0.99 (0.98-1.00); C vs severe NA: PI3 AUC: 1 (0.99-1.00); and C vs moderate-mild NA: CHI3L1 AUC: 1 (0.99-1.00) and PI3 AUC: 0.99 (0.96-1.00). However, the results for discriminating asthma disease and severity with protein expression were better when two or three biomarkers were combined. In conclusion, individual genes and combinations of proteins have been evaluated as reliable biomarkers for classifying NA subjects and their severity. These new panels could be good diagnostic tests.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Calzada
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain
| | - César Picado
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Service of Pneumology, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joaquín Quiralte
- Allergy Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Fernando Florido
- Allergy Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|