1
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Gambichler T, Schrama D, Käpynen R, Weyer-Fahlbusch SS, Becker JC, Susok L, Kreppel F, Abu Rached N. Current Progress in Vaccines against Merkel Cell Carcinoma: A Narrative Review and Update. Vaccines (Basel) 2024; 12:533. [PMID: 38793784 PMCID: PMC11125734 DOI: 10.3390/vaccines12050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Merkel cell carcinoma is a rare, aggressive skin cancer that mainly occurs in elderly and immunocompromised patients. Due to the success of immune checkpoint inhibition in MCC, the importance of immunotherapy and vaccines in MCC has increased in recent years. In this article, we aim to present the current progress and perspectives in the development of vaccines for this disease. Here, we summarize and discuss the current literature and ongoing clinical trials investigating vaccines against MCC. We identified 10 articles through a PubMed search investigating a vaccine against MCC. From the international clinical trial database Clinical.Trials.gov, we identified nine studies on vaccines for the management of MCC, of which seven are actively recruiting. Most of the identified studies investigating a vaccine against MCC are preclinical or phase 1/2 trials. The vaccine principles mainly included DNA- and (synthetic) peptide-based vaccines, but RNA-based vaccines, oncolytic viruses, and the combination of vaccines and immunotherapy are also under investigation for the treatment of MCC. Although the management of MCC is changing, when compared to times before the approval of immune checkpoint inhibitors, it will still take some time before the first MCC vaccine is ready for approval.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
- Department of Dermatology and Phlebology, Christian Hospital Unna, 59423 Unna, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Riina Käpynen
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| | - Sera S. Weyer-Fahlbusch
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Department of Dermatology, University Duisburg-Essen, 45122 Essen, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laura Susok
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany;
| | - Nessr Abu Rached
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| |
Collapse
|
3
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Joshi TP, Farr MA, Hsiou DA, Nugent S, Fathy RA, Lewis DJ. Therapeutic targets for vaccination in polyomavirus-driven Merkel cell carcinoma. Dermatol Ther 2022; 35:e15580. [PMID: 35560970 DOI: 10.1111/dth.15580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Tejas P Joshi
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Morgan A Farr
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Hsiou
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shannon Nugent
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ramie A Fathy
- School of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Lewis
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Koch EAT, Schaft N, Kummer M, Berking C, Schuler G, Hasumi K, Dörrie J, Schuler-Thurner B. A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKβ-Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Front Immunol 2022; 13:785231. [PMID: 35185883 PMCID: PMC8854646 DOI: 10.3389/fimmu.2022.785231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
Abstract
Uveal melanoma (UM) is an orphan disease with a mortality of 80% within one year upon the development of metastatic disease. UM does hardly respond to chemotherapy and kinase inhibitors and is largely resistant to checkpoint inhibition. Hence, further therapy approaches are urgently needed. To improve clinical outcome, we designed a trial employing the 3rd generation personalized IKKβ-matured RNA-transfected dendritic cell (DC) vaccine which primes T cells and in addition activates NK cells. This ongoing phase I trial [NCT04335890 (www.clinicaltrials.gov), Eudract: 2018-004390-28 (www.clinicaltrialsregister.eu)] investigates patients with treatment-naive metastatic UM. Monocytes are isolated by leukapheresis, differentiated to immature DCs, matured with a cytokine cocktail, and activated via the NF-κB pathway by electroporation with RNA encoding a constitutively active mutant of IKKβ. Three types of antigen-RNA are co-electroporated: i) amplified mRNA of the tumor representing the whole transcriptome, ii) RNA encoding driver mutations identified by exome sequencing, and iii) overexpressed non-mutated tumor antigens detected by transcriptome sequencing. This highly personalized DC vaccine is applied by 9 intravenous infusions in a staggered schedule over one year. Parallel to the vaccination, standard therapy, usually an immune checkpoint blockade (ICB) as mono (anti-PD-1) or combined (anti-CTLA4 and anti-PD-1) regimen is initiated. The coordinated vaccine-induced immune response encompassing tumor-specific T cells and innate NK cells should synergize with ICB, perhaps resulting in measurable clinical responses in this resistant tumor entity. Primary outcome measures of this trial are safety, tolerability and toxicity; secondary outcome measures comprise overall survival and induction of antigen-specific T cells.
Collapse
Affiliation(s)
- Elias A. T. Koch
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- *Correspondence: Niels Schaft,
| | - Mirko Kummer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | | | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
7
|
Bosch NC, Martin LM, Voskens CJ, Berking C, Seliger B, Schuler G, Schaft N, Dörrie J. A Chimeric IL-15/IL-15Rα Molecule Expressed on NFκB-Activated Dendritic Cells Supports Their Capability to Activate Natural Killer Cells. Int J Mol Sci 2021; 22:ijms221910227. [PMID: 34638566 PMCID: PMC8508776 DOI: 10.3390/ijms221910227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.
Collapse
Affiliation(s)
- Naomi C. Bosch
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (N.C.B.); (B.S.)
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
| | - Lena-Marie Martin
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Caroline J. Voskens
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (N.C.B.); (B.S.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Correspondence: ; Tel.: +49-9131-8531127
| |
Collapse
|
8
|
Krump NA, You J. From Merkel Cell Polyomavirus Infection to Merkel Cell Carcinoma Oncogenesis. Front Microbiol 2021; 12:739695. [PMID: 34566942 PMCID: PMC8457551 DOI: 10.3389/fmicb.2021.739695] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host responses that normally control MCPyV infection could inform prophylactic measures in at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with vulnerabilities that-if better characterized-could yield targeted intervention solutions for metastatic MCC cases. In this review, we discuss recent developments in elucidating the interplay between host cells and MCPyV within the context of viral infection and MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV infection in aging and chronically UV-damaged skin causes unbridled viral replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. Int J Mol Sci 2021; 22:ijms22168679. [PMID: 34445385 PMCID: PMC8395396 DOI: 10.3390/ijms22168679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.
Collapse
|
10
|
Zwijnenburg EM, Lubeek SF, Werner JE, Amir AL, Weijs WL, Takes RP, Pegge SA, van Herpen CM, Adema GJ, Kaanders JHAM. Merkel Cell Carcinoma: New Trends. Cancers (Basel) 2021; 13:cancers13071614. [PMID: 33807446 PMCID: PMC8036880 DOI: 10.3390/cancers13071614] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In this review, we discuss a rare skin cancer that occurs mostly in elderly people called “Merkel cell carcinoma” (MCC). The incidence is increasing due to ageing of the population, increased sun exposure, and the use of medication that inhibits the immune system. Unlike most other skin cancers, MCC grows rapidly and forms metastases easily. We discuss the biology and treatment of MCC. Management should be by an experienced and multidisciplinary team, and treatment must start quickly. The standard practice of MCC treatment is surgery followed by radiotherapy. However, because it concerns an elderly and often frail population, (extensive) surgery may not always be feasible due to the associated morbidity. In those situations, radiotherapy alone is a good alternative. An important new development is immunotherapy that can cause long-lasting responses in a significant proportion of the patients with recurrent or metastatic MCC. Abstract Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor of the skin mainly seen in the elderly. Its incidence is rising due to ageing of the population, increased sun exposure, and the use of immunosuppressive medication. Additionally, with the availability of specific immunohistochemical markers, MCC is easier to recognize. Typically, these tumors are rapidly progressive and behave aggressively, emphasizing the need for early detection and prompt diagnostic work-up and start of treatment. In this review, the tumor biology and immunology, current diagnostic and treatment modalities, as well as new and combined therapies for MCC, are discussed. MCC is a very immunogenic tumor which offers good prospects for immunotherapy. Given its rarity, the aggressiveness, and the frail patient population it concerns, MCC should be managed in close collaboration with an experienced multidisciplinary team.
Collapse
Affiliation(s)
- Ellen M. Zwijnenburg
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
| | - Satish F.K. Lubeek
- Department of Dermatology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | | | - Avital L. Amir
- Department of Pathology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Willem L.J. Weijs
- Department of Maxillofacial Surgery, Radboudumc 6525 GA Nijmegen, The Netherlands;
| | - Robert P. Takes
- Department of Head and Neck Surgery, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Sjoert A.H. Pegge
- Department of Radiology and Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | | | - Gosse J. Adema
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
| | - Johannes H. A. M. Kaanders
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
- Correspondence: ; Tel.: +31-629-501-943
| |
Collapse
|
11
|
Lai X, Dreyer FS, Cantone M, Eberhardt M, Gerer KF, Jaitly T, Uebe S, Lischer C, Ekici A, Wittmann J, Jäck HM, Schaft N, Dörrie J, Vera J. Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics 2021; 11:1412-1428. [PMID: 33391542 PMCID: PMC7738891 DOI: 10.7150/thno.53092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Florian S. Dreyer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Kerstin F. Gerer
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Tanushree Jaitly
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Steffen Uebe
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christopher Lischer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Arif Ekici
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Jan Dörrie
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Davies SI, Barrett J, Wong S, Chang MJ, Muranski PJ, Brownell I. Robust Production of Merkel Cell Polyomavirus Oncogene Specific T Cells From Healthy Donors for Adoptive Transfer. Front Immunol 2020; 11:592721. [PMID: 33362774 PMCID: PMC7756016 DOI: 10.3389/fimmu.2020.592721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Virus positive Merkel cell carcinoma (VP-MCC) is an aggressive but immunogenic skin malignancy driven by Merkel cell polyomavirus (MCPyV) T antigen (TAg). Since adoptive T cell transfer (ACT) can be effective against virus-driven malignancies, we set out to develop a methodology for generating MCPyV TAg specific T cells. MCPyV is a common, asymptomatic infection and virus-exposed healthy donors represent a potential source of MCPyV TAg specific T cells for ACT. Virus specific T cells were generated using monocyte-derived dendritic cells (moDCs) pulsed with MCPyV TAg peptide libraries and co-cultured with autologous T cells in supplemented with pro-inflammatory and homeostatic cytokines for 14 days. Specific reactivity was observed predominantly within the CD4+ T cell compartment in the cultures generated from 21/46 random healthy donors. Notably, responses were more often seen in donors aged 50 years and older. TAg specific CD4+ T cells specifically secreted Th1 cytokines and upregulated CD137 upon challenge with MCPyV TAg peptide libraries and autologous transduced antigen presenting cells. Expanded T cells from healthy donors recognized epitopes of both TAg splice variants found in VP-MCC tumors, and minimally expressed exhaustion markers. Our data show that MCPyV specific T cells can be expanded from healthy donors using methods appropriate for the manufacture of clinical grade ACT products.
Collapse
Affiliation(s)
- Sarah I Davies
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Mark Jesse Chang
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Pawel J Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Columbia Center for Translational Immunology (CCTI), Cellular Immunotherapy Laboratory, Columbia University Medical Center, New York City, NY, United States
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
13
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
14
|
Jing L, Ott M, Church CD, Kulikauskas RM, Ibrani D, Iyer JG, Afanasiev OK, Colunga A, Cook MM, Xie H, Greninger AL, Paulson KG, Chapuis AG, Bhatia S, Nghiem P, Koelle DM. Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8 + T Cells within Polyomavirus-Driven Merkel Cell Carcinomas. Cancer Immunol Res 2020; 8:648-659. [PMID: 32179557 DOI: 10.1158/2326-6066.cir-19-0647] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag-specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1-8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70-110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag-expressing DCs was documented. Recovery of MCPyV oncoprotein-specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.
Collapse
Affiliation(s)
- Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Candice D Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Rima M Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Dafina Ibrani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Jayasri G Iyer
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Olga K Afanasiev
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Aric Colunga
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Maclean M Cook
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | | | - Kelly G Paulson
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Aude G Chapuis
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shailender Bhatia
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington. .,Department of Laboratory Medicine, University of Washington, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
15
|
Bosch NC, Voll RE, Voskens CJ, Gross S, Seliger B, Schuler G, Schaft N, Dörrie J. NF-κB activation triggers NK-cell stimulation by monocyte-derived dendritic cells. Ther Adv Med Oncol 2019; 11:1758835919891622. [PMID: 31853267 PMCID: PMC6909276 DOI: 10.1177/1758835919891622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background: In therapeutic cancer vaccination, monocyte-derived dendritic cells (moDCs) efficiently activate specific T-cell responses; however, optimizing the activation of innate immune cells could support and improve the antitumor effects. A major disadvantage of moDCs matured with the standard cytokine cocktail (consisting of IL-1β, IL-6, TNFα, and PGE2) is their inability to secrete IL-12p70. IL-12 prominently activates natural killer (NK) cells, which are crucial in innate antitumor immunity, as they act as helper cells for the induction of a cytotoxic T lymphocyte (CTL) response and are also able to directly kill the tumor. Methods: Previously we have shown that triggering the NF-κB pathway in moDCs by transfection of mRNA encoding constitutively active IKKβ (caIKKβ) led to IL-12p70 secretion and improved the dendritic cells’ capability to activate and expand CTLs with a memory-like phenotype. In this study, we examined whether such dendritic cells could activate autologous NK cells. Results: moDCs matured with the standard cytokine cocktail followed by transfection with the caIKKβ-RNA were able to activate autologous NK cells, detected by the upregulation of CD54, CD69, and CD25 on the NK cells, their ability to secrete IFNγ, and their high lytic activity. Moreover, the ability of NK-cell activation was not diminished by simultaneous T-cell activation. Conclusion: The capacity of caIKKβ-DCs to activate both the adaptive and innate immune response indicates an enhanced potential for clinical efficacy.
Collapse
Affiliation(s)
- Naomi C Bosch
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline J Voskens
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefanie Gross
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Research Campus, Hartmannstraße 14, Erlangen, 91052, Germany
| |
Collapse
|
16
|
Longino NV, Yang J, Iyer JG, Ibrani D, Chow IT, Laing KJ, Campbell VL, Paulson KG, Kulikauskas RM, Church CD, James EA, Nghiem P, Kwok WW, Koelle DM. Human CD4 + T Cells Specific for Merkel Cell Polyomavirus Localize to Merkel Cell Carcinomas and Target a Required Oncogenic Domain. Cancer Immunol Res 2019; 7:1727-1739. [PMID: 31405946 DOI: 10.1158/2326-6066.cir-19-0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/07/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
Although CD4+ T cells likely play key roles in antitumor immune responses, most immuno-oncology studies have been limited to CD8+ T-cell responses due to multiple technical barriers and a lack of shared antigens across patients. Merkel cell carcinoma (MCC) is an aggressive skin cancer caused by Merkel cell polyomavirus (MCPyV) oncoproteins in 80% of cases. Because MCPyV oncoproteins are shared across most patients with MCC, it is unusually feasible to identify, characterize, and potentially augment tumor-specific CD4+ T cells. Here, we report the identification of CD4+ T-cell responses against six MCPyV epitopes, one of which included a conserved, essential viral oncogenic domain that binds/disables the cellular retinoblastoma (Rb) tumor suppressor. We found that this epitope (WEDLT209-228) could be presented by three population-prevalent HLA class II alleles, making it a relevant target in 64% of virus-positive MCC patients. Cellular staining with a WEDLT209-228-HLA-DRB1*0401 tetramer indicated that specific CD4+ T cells were detectable in 78% (14 of 18) of evaluable MCC patients, were 250-fold enriched within MCC tumors relative to peripheral blood, and had diverse T-cell receptor sequences. We also identified a modification of this domain that still allowed recognition by these CD4+ T cells but disabled binding to the Rb tumor suppressor, a key step in the detoxification of a possible therapeutic vaccine. The use of these new tools for deeper study of MCPyV-specific CD4+ T cells may provide broader insight into cancer-specific CD4+ T-cell responses.
Collapse
Affiliation(s)
- Natalie V Longino
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| | - Junbao Yang
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Jayasri G Iyer
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Dafina Ibrani
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - I-Ting Chow
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington
| | - Victoria L Campbell
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington
| | - Kelly G Paulson
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Rima M Kulikauskas
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Candice D Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Eddie A James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington. .,Department of Pathology, University of Washington, Seattle, Washington
| | - William W Kwok
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - David M Koelle
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington.,Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
17
|
Kim E, Kang YG, Kim JH, Kim YJ, Lee TR, Lee J, Kim D, Cho JY. The Antioxidant and Anti-Inflammatory Activities of 8-Hydroxydaidzein (8-HD) in Activated Macrophage-Like RAW264.7 Cells. Int J Mol Sci 2018; 19:E1828. [PMID: 29933606 PMCID: PMC6073157 DOI: 10.3390/ijms19071828] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
8-Hydroxydaidzein (8-HD) is a daidzein metabolite isolated from soybeans. This compound has been studied for its anti-proliferation, depigmentation, and antioxidant activities. However, the anti-inflammatory activities of 8-HD are not well-understood. Through its antioxidant effects in ABTS and DPPH assays, 8-HD reduces the production of sodium nitroprusside (SNP)-induced radical oxygen species (ROS). By triggering various Toll-like receptors (TLRs), 8-HD suppresses the inflammatory mediator nitric oxide (NO) without cytotoxicity. We examined the regulatory mechanism of 8-HD in lipopolysaccharide (LPS)-induced conditions. We found that 8-HD diminishes inflammatory gene expression (e.g., inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α) by regulating the transcriptional activities of nuclear factor (NF)-κB and activator protein 1 (AP-1). To find the potential targets of 8-HD, signaling pathways were investigated by immunoblotting analyses. These analyses revealed that 8-HD inhibits the activation of TAK1 and that phosphorylated levels of downstream molecules decrease in sequence. Together, our results demonstrate the antioxidant and anti-inflammatory actions of 8-HD and suggest its potential use in cosmetics or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
18
|
Patel P, Galoian K. Molecular challenges of neuroendocrine tumors. Oncol Lett 2017; 15:2715-2725. [PMID: 29456718 DOI: 10.3892/ol.2017.7680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine tumors (NETs) are a very heterogeneous group that are thought to originate from the cells of the endocrine and nervous systems. These tumors develop in a number of organs, predominantly in the gastrointestinal and pulmonary systems. Clinical detection and diagnosis are reliable at the late stages when metastatic spread has occurred. However, traditional conventional therapies such as radiation and chemotherapy are not effective. In the majority of cases even surgical resection at that stage is unlikely to produce promising reusults. NETs present a serious clinical challenge, as the survival rates remain low, and as these rare tumors are very difficult to study, novel approaches and therapies are required. This review will highlight the important points of accumulated knowledge covering the molecular aspects of the role of neuroendocrine cells, hormonal peptides, the reasons for ectopic hormone production in NET, neuropeptides and epigenetic regulation as well as the other challenging questions that require further understanding.
Collapse
Affiliation(s)
- Parthik Patel
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karina Galoian
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|