1
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2025; 69:261-278. [PMID: 38579985 PMCID: PMC11954836 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Chaki T, Horiguchi Y, Tachibana S, Sato S, Hirahata T, Nishihara N, Kii N, Yoshikawa Y, Hayamizu K, Yamakage M. Gut Microbiota Influences Developmental Anesthetic Neurotoxicity in Neonatal Rats. Anesth Analg 2025:00000539-990000000-01140. [PMID: 39899452 DOI: 10.1213/ane.0000000000007410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
BACKGROUND Anesthetic exposure during childhood is significantly associated with impairment of neurodevelopmental outcomes; however, the causal relationship and detailed mechanism of developmental anesthetic neurotoxicity remain unclear. Gut microbiota produces various metabolites and influences the brain function and development of the host. This relationship is referred to as the gut-brain axis. Gut microbiota may influence developmental anesthetic neurotoxicity caused by sevoflurane exposure. This study investigated the effect of changes in the composition of gut microbiota after fecal microbiota transplantation on spatial learning disability caused by developmental anesthetic neurotoxicity in neonatal rats. METHODS Neonatal rats were allocated into the Control (n = 10) and Sevo (n = 10) groups in Experiment 1 and the Sevo (n = 20) and Sevo+FMT (n = 20) groups in Experiment 2, according to the randomly allocated mothers' group. The rats in Sevo and Sevo+FMT groups were exposed to 2.1% sevoflurane for 2 hours on postnatal days 7 to 13. Neonatal rats in the Sevo+FMT group received fecal microbiota transplantation immediately after sevoflurane exposure on postnatal days 7 to 13. The samples for fecal microbiota transplantation were obtained from nonanesthetized healthy adult rats. Behavioral tests, including Open field, Y-maze, Morris water maze, and reversal Morris water maze tests, were performed to evaluate spatial learning ability on postnatal days 26 to 39. RESULTS Experiment 1 revealed that sevoflurane exposure significantly altered the gut microbiota composition. The relative abundance of Roseburia (effect value: 1.01) and Bacteroides genus (effect value: 1.03) increased significantly after sevoflurane exposure, whereas that of Lactobacillus (effect value: -1.20) decreased significantly. Experiment 2 revealed that fecal microbiota transplantation improved latency to target (mean ± SEM; Sevo group: 9.7 ± 8.2 seconds vs, Sevo+FMT group: 2.7 ± 2.4 seconds, d=1.16, 95% confidence interval: -12.7 to -1.3 seconds, P = .019) and target zone crossing times (Sevo group: 2.4 ± 1.6 vs, Sevo+FMT group: 5.4 ± 1.4, d=1.99, 95% confidence interval: 2.0-5.0, P < .001) in the reversal Morris water maze test. Microbiota analysis revealed that the α-diversity of gut microbiota increased after fecal microbiota transplantation. Similarly, the relative abundance of the Firmicutes phylum (effect value: 1.44), Ruminococcus genus (effect value: 1.69), and butyrate-producing bacteria increased after fecal microbiota transplantation. Furthermore, fecal microbiota transplantation increased the fecal concentration of butyrate and induced histone acetylation and the mRNA expression of brain-derived neurotrophic factor in the hippocampus, thereby suppressing neuroinflammation and neuronal apoptosis. CONCLUSIONS The alternation of gut microbiota after fecal microbiota transplantation influenced spatial learning ability in neonatal rats with developmental anesthetic neurotoxicity. Modulation of the gut microbiota may be an effective prophylaxis for developmental anesthetic neurotoxicity in children.
Collapse
Affiliation(s)
- Tomohiro Chaki
- From the Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Suresh SB, Malireddi A, Abera M, Noor K, Ansar M, Boddeti S, Nath TS. Gut Microbiome and Its Role in Parkinson's Disease. Cureus 2024; 16:e73150. [PMID: 39651029 PMCID: PMC11624045 DOI: 10.7759/cureus.73150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Parkinson's disease (PD) afflicted more than 8.5 million people globally in 2019, as the prevalence of the condition more than doubled during the preceding 25 years. Both non-motor symptoms, such as mood disorders and cognitive impairment, and motor symptoms, such as tremors and rigidity, are indicative of this progressive neurodegenerative disease. Recent data indicates a significant role for the gut microbiome in PD pathogenesis and progression, emphasizing the microbiota-gut-brain axis. In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement, this systematic review summarizes our current knowledge about the function of the gut microbiome in PD, highlighting recurrent microbial alterations and assessing microbiome-based treatment strategies. The review revealed several consistent patterns in the gut microbiota of PD patients, including reduced microbial diversity and specific taxonomic alterations, including a drop in Firmicutes abundance and an increase in Proteobacteria abundance. Functional changes in the gut microbiome, such as altered short-chain fatty acid (SCFA) production and tryptophan metabolism, were also noted. These microbial changes were observed even in early-stage and drug-naïve PD patients, suggesting they are not merely a consequence of disease progression or medication use. The review highlighted potential mechanisms linking gut microbiome alterations to PD, including increased intestinal permeability, neuroinflammation, and modulation of alpha-synuclein aggregation. Probiotics, prebiotics, and fecal microbiota transplantation are a few interventions that try to modify the gut microbiome and might be possible to halt the advancement of PD and enhance patients' quality of life with the condition. Future research should focus on establishing causality through large-scale longitudinal studies, standardizing microbiome analysis methods, and exploring personalized microbiome-based therapies.
Collapse
Affiliation(s)
- Suchith B Suresh
- Internal Medicine, Montefiore St. Luke's Cornwall, Newburgh, USA
| | | | - Mahlet Abera
- Internal Medicine, Saint Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | - Khutaija Noor
- Foundation of Clinical Research, Harvard Medical School, Boston, USA
- Neuropsychiatry, PsychCare Consultants Research, St. Louis, USA
- Internal Medicine, Shadan Institute of Medical Sciences, Hyderabad, IND
| | - Mehwish Ansar
- General Surgery, Wirral University Teaching Hospital, Wirral, GBR
| | - Sruthi Boddeti
- Internal Medicine, Tirumala Jyoti Hospital, Anakapalle, IND
| | | |
Collapse
|
4
|
Li S, Zhao L, Xiao J, Guo Y, Fu R, Zhang Y, Xu S. The gut microbiome: an important role in neurodegenerative diseases and their therapeutic advances. Mol Cell Biochem 2024; 479:2217-2243. [PMID: 37787835 DOI: 10.1007/s11010-023-04853-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
There are complex interactions between the gut and the brain. With increasing research on the relationship between gut microbiota and brain function, accumulated clinical and preclinical evidence suggests that gut microbiota is intimately involved in the pathogenesis of neurodegenerative diseases (NDs). Increasingly studies are beginning to focus on the association between gut microbiota and central nervous system (CNS) degenerative pathologies to find potential therapies for these refractory diseases. In this review, we summarize the changes in the gut microbiota in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis and contribute to our understanding of the function of the gut microbiota in NDs and its possible involvement in the pathogenesis. We subsequently discuss therapeutic approaches targeting gut microbial abnormalities in these diseases, including antibiotics, diet, probiotics, and fecal microbiota transplantation (FMT). Furthermore, we summarize some completed and ongoing clinical trials of interventions with gut microbes for NDs, which may provide new ideas for studying NDs.
Collapse
Affiliation(s)
- Songlin Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jie Xiao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
5
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
6
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
7
|
Lu Y, Gao X, Mohammed SAD, Wang T, Fu J, Wang Y, Nan Y, Lu F, Liu S. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117182. [PMID: 37714224 DOI: 10.1016/j.jep.2023.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a rapidly progressing neurological disorder. Currently, Medication for PD has numerous limitations. Baichanting Compound (BCT) is a Chinese herbal prescription, a Combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, that was developed to treat PD and holds a national patent (ZL, 201110260536.3). AIM OF THE STUDY To clarify the therapeutic effect of BCT on PD and explore its possible mechanism based on metabolomics and metagenomics. MATERIALS AND METHODS C57BL/6 mice were used as a control group, and α-syn transgenic C57BL/6 mice were randomly assigned to the PD (without treatment) or BCT (with BCT treatment) group. UPLC-MS was performed to detect dopamine levels in brain tissue, while ELISA was used to determine inflammatory factors such as IL-1β, IL-6, TNF-α, IFN-γ and NO, and oxidative stress indicators such as malondialdehyde, superoxide dismutase and glutathione peroxidase enzyme activity. Fecal metabolomics was used to detect fecal metabolic profiles, screen differential metabolic markers, and predict metabolic pathways by KEGG enrichment analysis. Metagenomics was used to determine the intestinal microbial composition, and KO enrichment analysis was performed to predict the potential function of different gut microbiota. Finally, Spearman correlation analysis was used to find the possible relationships among intestinal flora, metabolic markers, inflammatory factors, oxidative stress and dopamine levels. RESULTS BCT increased the superoxide dismutase activity of α-Syn transgenic C57BL/6 mice (P < 0.01), decreased the levels of TNF-α, IFN-γ, IL-1β, IL-6, NO and malondialdehyde (P < 0.01, 0.05), and increased the release of dopamine (P < 0.01). Metabolomics results show that BCT could regulate Acetatifactor, Marvinbryantia, Faecalitalea, Anaeromassilibacillus, Anaerobium, Pseudobutyrivibrio and Lachnotalea and Acetatifactor_muris, Marvinbryantia_formatexigens, Lachnotalea_sp_AF33_28, Faecalitalea_sp_Marseille_P3755 and Anaerobium_acetethylicum, Gemmiger_sp_An120 abundance to restore intestinal flora function, and reverse fecal metabolism trend, restoring the content of α-D-glucose, cytidine, L-glutamate, L-glutamine, N-acetyl-L-glutamate, raffinose and uracil. In addition, it regulates arginine biosynthesis, D-glutamine and D-glutamate, pyrimidine, galactose and alanine, aspartate and glutamate metabolic pathways. CONCLUSION BCT may regulate the composition of the gut microbiota to reverse fecal metabolism in PD mice to protect the substantia nigra and striatum from oxidative stress and inflammatory factors and ultimately play an anti-PD role.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shadi A D Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; School of Pharmacy, Lebanese International University, Sana'a, 18644, Yemen
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
8
|
Li L, Kang Y. The Gut Microbiome and Autoimmune Hepatitis: Implications for Early Diagnostic Biomarkers and Novel Therapies. Mol Nutr Food Res 2023; 67:e2300043. [PMID: 37350378 DOI: 10.1002/mnfr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic liver disease that may last for decades and eventually develop into cirrhosis and liver failure. In recent years, people have paid more attention to the microbiome-gut-liver axis, which provides guidance for all to explore the role of microbiome in the occurrence and development of liver diseases. In this review, the possible mechanism of intestinal microbes promoting the occurrence of AIH, mainly expounding the key ways such as bacterial ecological imbalance, intestinal leakage, and molecular simulation between microbes and autoantigens is summarized. In addition, this paper also discusses that intestinal microbiome has great potential as a biomarker for early diagnosis of AIH, and intestinal microbiome is also a candidate target for prevention and treatment of AIH. Finally, the study summarizes and prospects the targeted therapy of intestinal microorganisms to prevent the occurrence and development of AIH.
Collapse
Affiliation(s)
- Liping Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
9
|
Nie S, Ge Y. The link between the gut microbiome, inflammation, and Parkinson's disease. Appl Microbiol Biotechnol 2023; 107:6737-6749. [PMID: 37736791 DOI: 10.1007/s00253-023-12789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
As our society ages, the growing number of people with Parkinson's disease (PD) puts tremendous pressure on our society. Currently, there is no effective treatment for PD, so there is an urgent need to find new treatment options. In recent years, increasing studies have shown a strong link between gut microbes and PD. In this review, recent advances in research on gut microbes in PD patients were summarized. Increased potential pro-inflammatory microbes and decreased potential anti-inflammatory microbes are prominent features of gut microbiota in PD patients. These changes may lead to an increase in pro-inflammatory substances (such as lipopolysaccharide and H2S) and a decrease in anti-inflammatory substances (such as short-chain fatty acids) to promote inflammation in the gut. This gut microbiota-mediated inflammation will lead to pathological α-synuclein accumulation in the gut, and the inflammation and α-synuclein can spread to the brain via the microbiota-gut-brain axis, thereby promoting neuroinflammation, apoptosis of dopaminergic neurons, and ultimately the development of PD. This review also showed that therapies based on gut microbiota may have a bright future for PD. However, more research and new approaches are still needed to clarify the causal relationship between gut microbes and PD and to determine whether therapies based on gut microbiota are effective in PD patients. KEY POINTS: • There is a strong association between gut microbes and PD. • Inflammation mediated by gut microbes may promote the development of PD. • Therapies based on the gut microbiome provide a promising strategy for PD prevention.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
11
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
12
|
Xu X, Lubomski M, Holmes AJ, Sue CM, Davis RL, Muller S, Yang JYH. NEMoE: a nutrition aware regularized mixture of experts model to identify heterogeneous diet-microbiome-host health interactions. MICROBIOME 2023; 11:51. [PMID: 36918961 PMCID: PMC10015776 DOI: 10.1186/s40168-023-01475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Unrevealing the interplay between diet, the microbiome, and the health state could enable the design of personalized intervention strategies and improve the health and well-being of individuals. A common approach to this is to divide the study population into smaller cohorts based on dietary preferences in the hope of identifying specific microbial signatures. However, classification of patients based solely on diet is unlikely to reflect the microbiome-host health relationship or the taxonomic microbiome makeup. RESULTS We present a novel approach, the Nutrition-Ecotype Mixture of Experts (NEMoE) model, for establishing associations between gut microbiota and health state that accounts for diet-specific cohort variability using a regularized mixture of experts model framework with an integrated parameter sharing strategy to ensure data-driven diet-cohort identification consistency across taxonomic levels. The success of our approach was demonstrated through a series of simulation studies, in which NEMoE showed robustness with regard to parameter selection and varying degrees of data heterogeneity. Further application to real-world microbiome data from a Parkinson's disease cohort revealed that NEMoE is capable of not only improving predictive performance for Parkinson's Disease but also for identifying diet-specific microbial signatures of disease. CONCLUSION In summary, NEMoE can be used to uncover diet-specific relationships between nutritional-ecotype and patient health and to contextualize precision nutrition for different diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiangnan Xu
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
- The University of Notre Dame Australia, School of Medicine, Sydney, NSW, Australia
| | - Andrew J Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Samuel Muller
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong, SAR, China.
| |
Collapse
|
13
|
Tiwari P, Dwivedi R, Bansal M, Tripathi M, Dada R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. J Clin Med 2023; 12:1650. [PMID: 36836185 PMCID: PMC9965848 DOI: 10.3390/jcm12041650] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In humans, the gut microbiota (GM) are known to play a significant role in the metabolism of nutrients and drugs, immunomodulation, and pathogen defense by inhabiting the gastrointestinal tract (GIT). The role of the GM in the gut-brain axis (GBA) has been documented for different regulatory mechanisms and associated pathways and it shows different behaviors with individualized bacteria. In addition, the GM are known as susceptibility factor for neurological disorders in the central nervous system (CNS), regulating disease progression and being amenable to intervention. Bidirectional transmission between the brain and the GM occurs in the GBA, implying that it performs a significant role in neurocrine, endocrine, and immune-mediated signaling pathways. The GM regulates multiple neurological disorders by supplementing them with prebiotics, probiotics, postbiotics, synbiotics, fecal transplantations, and/or antibiotics. A well-balanced diet is critically important for establishing healthy GM, which can alter the enteric nervous system (ENS) and regulate multiple neurological disorders. Here, we have discussed the function of the GM in the GBA from the gut to the brain and the brain to the gut, the pathways associated with neurology that interacts with the GM, and the various neurological disorders associated with the GM. Furthermore, we have highlighted the recent advances and future prospects of the GBA, which may require addressing research concerns about GM and associated neurological disorders.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manisha Bansal
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
14
|
Luo Y, Wang J, Wang C, Wang D, Li C, Zhang B, Zhong X, Chen L, Li H, Su H, Zheng Q, Zhu D, Tang H, Guo L. The fecal arsenic excretion, tissue arsenic accumulation, and metabolomics analysis in sub-chronic arsenic-exposed mice after in situ arsenic-induced fecal microbiota transplantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158583. [PMID: 36084774 DOI: 10.1016/j.scitotenv.2022.158583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Arsenic can be specifically enriched by rice, and the health hazards caused by high arsenic rice are gradually attracting attention. This study aimed to explore the potential of microbial detoxification via gut microbiome in the treatment of sub-chronic arsenic poisoning. We first exposed mice to high-dose arsenic feed (30 mg/kg, rice arsenic composition) for 60 days to promote arsenic-induced microbes in situ in the gastrointestinal tract, then transplanted their fecal microbiota (FMT) into another batch of healthy recipient mice, and dynamically monitored the microbial colonization by 16S rRNA sequencing and ITS sequencing. The results showed that in situ arsenic-induced fecal microbiome can stably colonized and interact with indigenous microbes in the recipient mice in two weeks, and established a more stable network of gut microbiome. Then, the recipient mice continued to receive high-dose arsenic exposure for 52 days. After above sub-chronic arsenic exposure, compared with the non-FMT group, fecal arsenic excretion, liver and plasma arsenic accumulation were significantly lower (P < 0.05), and that in kidney, hair, and thighbone present no significant differences. Metabolomics of feces- plasma-brain axis were also disturbed, some up-regulated metabolites in feces, plasma, and cerebral cortex may play positive roles for the host. Therefore, microbial detoxification has potential in the treatment of sub-chronic arsenic poisoning. However, gut flora is an extremely complex community with different microorganisms have different arsenic metabolizing abilities, and various microbial metabolites. Coupled with the matrix effects, these factors will have various effects on the efflux and accumulation of arsenic. The definite effects (detoxification or non-detoxification) could be not assured based on the current study, and more systematic and rigorous studies are needed in the future.
Collapse
Affiliation(s)
- Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dajian Zhu
- Department of Surgery, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan 528399, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
15
|
Yang J, Deng Y, Cai Y, Liu Y, Peng L, Luo Z, Li D. Mapping trends and hotspot regarding gastrointestinal microbiome and neuroscience: A bibliometric analysis of global research (2002-2022). Front Neurosci 2022; 16:1048565. [PMID: 36466165 PMCID: PMC9714683 DOI: 10.3389/fnins.2022.1048565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Scholars have long understood that gastrointestinal microorganisms are intimately related to human disorders. The literature on research involving the gut microbiome and neuroscience is emerging. This study exposed the connections between gut microbiota and neuroscience methodically and intuitively using bibliometrics and visualization. This study's objectives were to summarize the knowledge structure and identify emerging trends and potential hotspots in this field. MATERIALS AND METHODS On October 18, 2022, a literature search was conducted utilizing the Web of Science Core Collection (WoSCC) database for studies on gut microbiota and neuroscience studies from 2002 to 2022 (August 20, 2022). VOSviewer and CiteSpace V software was used to conduct the bibliometrics and visualization analysis. RESULTS From 2002 to 2022 (August 20, 2022), 2,275 publications in the WoSCC database satisfied the criteria. The annual volume of publications has rapidly emerged in recent years (2016-2022). The most productive nation (n = 732, 32.18%) and the hub of inter-country cooperation (links: 38) were the United States. University College Cork had the most research papers published in this area, followed by McMaster University and Harvard Medical School. Cryan JF, Dinan TG, and Clarke G were key researchers with considerable academic influence. The journals with the most publications are "Neurogastroenterology and Motility" and "Brain Behavior and Immunity." The most cited article and co-cited reference was Cryan JF's 2012 article on the impact of gut microbiota on the brain and behavior. The current research hotspot includes gastrointestinal microbiome, inflammation, gut-brain axis, Parkinson's disease (PD), and Alzheimer's disease (AD). The research focus would be on the "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases." Burst detection analysis showed that schizophrenia, pathology, and psychiatric disorder may continue to be the research frontiers. CONCLUSION Research on "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases" will continue to be the hotspot. Schizophrenia and psychiatric disorder will be the key research diseases in the field of gut microbiota and neuroscience, and pathology is the key research content, which is worthy of scholars' attention.
Collapse
Affiliation(s)
- Jingjing Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhe Cai
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yixuan Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Lanyu Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dingxiang Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Kang Y, Cai Y, Yang Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer 2022; 11:113-125. [PMID: 35634424 PMCID: PMC9109080 DOI: 10.1159/000521358] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the third place among all causes inducing cancer-associated mortality, worldwide. HCC nearly exclusively occurs in cases suffering from chronic liver disease (CLD), which results from the vicious cycle of liver damage, inflammation, and regeneration possibly lasting for dozens of years. Recently, more and more investigation on microbiome-gut-liver axis enhances our understanding toward how gut microbiota promotes liver disease and even HCC development. In this review, we summarize the mechanisms underlying the effect of gut microbiota on promoting HCC occurrence, with the focus on key pathways such as bacterial dysbiosis, leaky gut, bacterial metabolites, and microorganism-related molecular patterns, which promote liver inflammation, genotoxicity, and fibrosis that finally lead to cancer occurrence. Furthermore, we discuss gut microbiota's important potential to be the early diagnostic biomarker for HCC. Gut microbiota may be the candidate targets to simultaneously prevent CLD and HCC occurrence among advanced liver disease cases. We outlook the gut microbiota-targeting treatments in detail to prevent CLD and HCC progression.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yue Cai
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
17
|
Kang Y, Kang X, Cai Y. The gut microbiome as a target for adjuvant therapy in insomnia disorder. Clin Res Hepatol Gastroenterol 2022; 46:101834. [PMID: 34800683 DOI: 10.1016/j.clinre.2021.101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Insomnia is a type of sleep disorder which has negative impacts on the quality of life, mood, cognitive function and health of humans. The etiology of insomnia may be related to many factors such as genetics, biochemistry, neuroendocrine, immune, and psychosocial factors. However, the detailed pathological aspects of insomnia remain unclear. Recent investigation of the microbiome-gut-brain axis enhances our understanding of the role of the gut microbiota in brain-related diseases. Gut microbiome has been shown to be associated with insomnia. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the recent literature as an aid to better understanding how the alteration of gut microbiota composition contributes to insomnia while evaluating and prospecting the therapeutic effect of modulating gut microbiota in the treatment of insomnia based on previous publications.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
18
|
Zapała B, Stefura T, Wójcik-Pędziwiatr M, Kabut R, Bałajewicz-Nowak M, Milewicz T, Dudek A, Stój A, Rudzińska-Bar M. Differences in the Composition of Gut Microbiota between Patients with Parkinson's Disease and Healthy Controls: A Cohort Study. J Clin Med 2021; 10:jcm10235698. [PMID: 34884399 PMCID: PMC8658639 DOI: 10.3390/jcm10235698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Gut microbiome and colonic inflammation can be associated with the predisposition and progression of Parkinson’s disease (PD). The presented study aimed to compare gastrointestinal microbiota composition between patients diagnosed with PD and treated only with Levodopa to healthy controls. In this prospective study, patients were recruited in 1 academic hospital from July 2019 to July 2020. The detailed demographic data and medical history were collected using a set of questionnaires. Fecal samples were obtained from all participants. Next-Generation Sequencing was used to assess the microbiota composition. The endpoint was the difference in composition of the gut microbiota. In this study, we enrolled 27 hospitalized PD patients with well-controlled symptoms. The control group included 44 healthy subjects matched for age. Among PD patients, our results presented a higher abundance of Bacteroides phylum, class Corynebacteria among phylum Actinobacteria, class Deltaproteobacteria among phylum Proteobacteria, and genera such as Butyricimonas, Robinsoniella, and Flavonifractor. The species Akkermansia muciniphila, Eubacterium biforme, and Parabacteroides merdae were identified as more common in the gut microbiota of PD patients. In conclusion, the patients diagnosed with PD have significantly different gut microbiota profiles in comparison with healthy controls.
Collapse
Affiliation(s)
- Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Correspondence:
| | - Tomasz Stefura
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Magdalena Wójcik-Pędziwiatr
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| | - Radosław Kabut
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland;
| | - Marta Bałajewicz-Nowak
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Tomasz Milewicz
- Department of Gynaecological Endocrinology and Gynaecology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Alicja Dudek
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Anastazja Stój
- Department of Hematology Diagnostics and Genetics, The University Hospital, 30-688 Krakow, Poland;
| | - Monika Rudzińska-Bar
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| |
Collapse
|
19
|
Jena R, Jain R, Muralidharan S, Yanamala VL, Zubair Z, Kantamaneni K, Jalla K, Renzu M, Alfonso M. Role of Gastrointestinal Dysbiosis and Fecal Transplantation in Parkinson's Disease. Cureus 2021; 13:e19035. [PMID: 34853754 PMCID: PMC8608042 DOI: 10.7759/cureus.19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a high rate of morbidity. It is associated with dopaminergic neuron loss and is fairly common in the elderly population. Recently, there has been a growing interest in the role of the gut microbiome in the pathogenesis of PD and thus studies addressing the methods to modulate the microbiota are becoming increasingly popular. Fecal microbiota transplant (FMT) is one of these methods and is effective in certain intestinal and extraintestinal conditions. This review aims to talk about gastrointestinal dysbiosis and how the reconstruction of this microbiome via FMT could potentially be used as a treatment modality in the future. We went through various studies and collected data relevant to our topic from the previous five years. The studies selected include reviews, observational studies, animal studies, case reports, and some grey literature. We concluded that although it has great potential as a therapeutic modality in the future, it is limited by several factors such as variability among the results of most clinical studies and the lack of large sample sizes. Therefore, there is a need for high-quality clinical trials with larger sample sizes to gather enough clinical evidence so that FMT can qualify as a widely recommended therapeutic measure.
Collapse
Affiliation(s)
- Rahul Jena
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ruchi Jain
- Diagnostic Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suchitra Muralidharan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Zainab Zubair
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ketan Kantamaneni
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Gannavaram, IND
| | - Krishi Jalla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahvish Renzu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Alfonso
- School of Medicine, Universidad del Rosario, Bogota, COL
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|