1
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Sun F, Cheng L, Guo L, Su S, Li Y, Yan J. Activin A promotes human trophoblast invasion by upregulating integrin β3 via ALK4-SMAD4 signaling. Placenta 2022; 129:62-69. [PMID: 36244196 DOI: 10.1016/j.placenta.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Activin A has been widely regarded as an important promoter of trophoblast invasion during the first trimester of pregnancy. However, whether integrin β3 is involved in activin A-upregulated trophoblast invasion and the underlying molecular mechanisms remain largely unknown. METHODS We utilized immortalized (HTR8/SVneo) and primary human extravillous trophoblast (EVT) cells, as well as first-trimester chorionic villous explants as study models to investigate the function and underlying molecular mechanisms of integrin β3 in activin A-promoted human trophoblast invasion. RESULTS We found that activin A increased integrin β3 mRNA and protein levels in both HTR8/SVneo and primary EVT cells, and knockdown of integrin β3 significantly decreased basal and activin A-upregulated trophoblast invasion. Moreover, SB431542 (a specific inhibitor of TGF-β type Ι receptor kinase) abolished activin A-upregulated integrin β3 expression and SMAD2/3 phosphorylation. In addition, siRNA-mediated knockdown of ALK4 or SMAD4 both abolished activin A-upregulated integrin β3 expression in HTR8/SVneo cells, while knockdown of ALK4 or SMAD4 attenuated activin A-upregulated integrin β3 expression in primary EVTs. DISCUSSION Our findings reveal the mediation role of integrin β3 in activin A-upregulated human trophoblast invasion and that activin An upregulates integrin β3 expression in an ALK4-SMAD4 signaling-dependent manner.
Collapse
Affiliation(s)
- Fengxuan Sun
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Cheng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shizhen Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China.
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Miller EC, Wilczek A, Bello NA, Tom S, Wapner R, Suh Y. Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Res Rev 2022; 73:101535. [PMID: 34871806 PMCID: PMC8827396 DOI: 10.1016/j.arr.2021.101535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Women live longer than men but experience greater disability and a longer period of illness as they age. Despite clear sex differences in aging, the impact of pregnancy and its complications, such as preeclampsia, on aging is an underexplored area of geroscience. This review summarizes our current knowledge about the complex links between pregnancy and age-related diseases, including evidence from epidemiology, clinical research, and genetics. We discuss the relationship between normal and pathological pregnancy and maternal aging, using preeclampsia as a primary example. We review the results of human genetics studies of preeclampsia, including genome wide association studies (GWAS), and attempted to catalog genes involved in preeclampsia as a gateway to mechanisms underlying an increased risk of later life cardio- and neuro- vascular events. Lastly, we discuss challenges in interpreting the GWAS of preeclampsia and provide a functional genomics framework for future research needed to fully realize the promise of GWAS in identifying targets for geroprotective prevention and therapeutics against preeclampsia.
Collapse
Affiliation(s)
- Eliza C. Miller
- Department of Neurology, Division of Stroke and Cerebrovascular Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley Wilczek
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie A. Bello
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Tom
- Department of Neurology, Division of Neurology Clinical Outcomes Research and Population Science and the Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Association between ACVR2A gene polymorphisms and risk of hypertensive disorders of pregnancy in the northern Chinese population. Placenta 2020; 90:1-8. [DOI: 10.1016/j.placenta.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
|
5
|
Brown JL. Update on Comparative Biology of Elephants: Factors Affecting Reproduction, Health and Welfare. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:243-273. [PMID: 31471800 DOI: 10.1007/978-3-030-23633-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Asian (Elephas maximus) and African (Loxodonta africana) elephants serve as important keystone, umbrella and flagship species. Despite that, population numbers are declining, due mainly to poaching and habitat destruction. Understanding reproductive mechanisms is vital to effective management, particularly insurance populations in captivity, and to that end, long-term biological databases are key to understanding how intrinsic and extrinsic factors affect reproductive function at individual and population levels. Through decades of hormonal and ultrasonographic monitoring, many unique aspects of zoo elephant reproduction have been identified, including differences in luteal steroidogenic activity, follicular maturation, pituitary gonadotropin secretion, fetal development and reproductive tract anatomy. Reproductive problems also hamper captive propagation efforts, particularly those related to abnormal or lack of ovarian cyclicity. Recent large-scale, multi-institutional studies and use of epidemiological approaches have identified factors important for good welfare and reproduction, which include enrichment, feeding diversity, good elephant-keeper relations, social compatibility, exercise, and not being obese. There are notable differences in reproductive mechanisms between Asian and African elephants, as well as the factors that influence reproduction and welfare, suggesting species-targeted management approaches are needed to maximize fitness. In the first edition, we discussed reproductive function in male and female elephants. Since then, a number of significant advances have been made primarily in female elephants, which will be the focus of this updated review.
Collapse
Affiliation(s)
- Janine L Brown
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA.
| |
Collapse
|
6
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
7
|
Domínguez-Soto Á, Simón-Fuentes M, de Las Casas-Engel M, Cuevas VD, López-Bravo M, Domínguez-Andrés J, Saz-Leal P, Sancho D, Ardavín C, Ochoa-Grullón J, Sánchez-Ramón S, Vega MA, Corbí AL. IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:41-52. [PMID: 29743313 DOI: 10.4049/jimmunol.1701093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/18/2018] [Indexed: 01/25/2023]
Abstract
IVIg is an approved therapy for immunodeficiency and for several autoimmune and inflammatory diseases. However, the molecular basis for the IVIg anti-inflammatory activity remains to be fully explained and cannot be extrapolated from studies on animal models of disease. We now report that IVIg impairs the generation of human monocyte-derived anti-inflammatory macrophages by inducing JNK activation and activin A production and limits proinflammatory macrophage differentiation by inhibiting GM-CSF-driven STAT5 activation. In vivo, IVIg provokes a rapid increase in peripheral blood activin A, CCL2, and IL-6 levels, an effect that can be recapitulated in vitro on human monocytes. On differentiating monocytes, IVIg promotes the acquisition of altered transcriptional and cytokine profiles, reduces TLR expression and signaling, and upregulates negative regulators of TLR-initiated intracellular signaling. In line with these effects, in vivo IVIg infusion induces a state tolerant toward subsequent stimuli that results in reduced inflammatory cytokine production after LPS challenge in human peripheral blood and significant protection from LPS-induced death in mice. Therefore, IVIg conditions human macrophages toward the acquisition of a state of cross-tolerance against inflammatory stimuli, an effect that correlates with the net anti-inflammatory action of IVIg in vivo.
Collapse
Affiliation(s)
- Ángeles Domínguez-Soto
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain;
| | - Miriam Simón-Fuentes
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Mateo de Las Casas-Engel
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Víctor D Cuevas
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Jorge Domínguez-Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Paula Saz-Leal
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and
| | - David Sancho
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Juliana Ochoa-Grullón
- Departamento de Inmunología Clínica, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Departamento de Inmunología Clínica, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Miguel A Vega
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Angel L Corbí
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Swegen A, Grupen CG, Gibb Z, Baker MA, Ruijter‐Villani M, Smith ND, Stout TAE, Aitken RJ. From Peptide Masses to Pregnancy Maintenance: A Comprehensive Proteomic Analysis of The Early Equine Embryo Secretome, Blastocoel Fluid, and Capsule. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/19/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Aleona Swegen
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Christopher G. Grupen
- Faculty of Veterinary Science School of Life and Environmental Sciences University of Sydney Camden NSW Australia
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Marta Ruijter‐Villani
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility University of Newcastle Callaghan NSW Australia
| | - Tom A. E. Stout
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - R. John Aitken
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| |
Collapse
|
9
|
Su S, Parris AB, Grossman G, Mohler JL, Wang Z, Wilson EM. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer. Prostate 2017; 77:505-516. [PMID: 27976415 DOI: 10.1002/pros.23288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). METHODS Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. RESULTS Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. CONCLUSION AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to promote growth and progression of CRPC. Prostate 77:505-516, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shifeng Su
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Amanda B Parris
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Gail Grossman
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - James L Mohler
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
- Department of Urology, University of North Carolina, Chapel Hill, North Carolina
- Department of Urology, University at Buffalo, State University of New York, Buffalo, New York
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Fung RSK, Jin B, He M, Yuen KWY, Wong AOL. Grass Carp Follisatin: Molecular Cloning, Functional Characterization, Dopamine D1 Regulation at Pituitary Level, and Implication in Growth Hormone Regulation. Front Endocrinol (Lausanne) 2017; 8:211. [PMID: 28883808 PMCID: PMC5574371 DOI: 10.3389/fendo.2017.00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022] Open
Abstract
Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH) was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin's action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA) or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system via autocrine/paracrine mechanisms.
Collapse
Affiliation(s)
- Roger S. K. Fung
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Bai Jin
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Karen W. Y. Yuen
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
11
|
Silveira CO, Rezende CP, Ferreira MC, Del Puerto HL, Reis FM. Implantation Failure Is Associated With Increased α-Inhibin and β-Glycan Gene Expression in Secretory Phase Endometrium: Nested Case–Control Study of Infertile Women Undergoing IVF/Fresh Embryo Transfer. Reprod Sci 2016; 24:720-725. [DOI: 10.1177/1933719116667490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Camila O. Silveira
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina P. Rezende
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Márcia C. Ferreira
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L. Del Puerto
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando M. Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Bernstein LR, Mackenzie ACL, Lee SJ, Chaffin CL, Merchenthaler I. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice. Endocrinology 2016; 157:1234-47. [PMID: 26713784 PMCID: PMC4769367 DOI: 10.1210/en.2015-1702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.), Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), and Anatomy and Neurobiology (I.M.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Molecular Biology and Genetics (S.-J.L.) and Gynecology and Obstetrics, Johns Hopkins University School of Medicine (L.R.B.), Baltimore, Maryland 21205; and Department of Veterinary Integrative Biosciences (L.R.B.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843
| | - Amelia C L Mackenzie
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.), Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), and Anatomy and Neurobiology (I.M.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Molecular Biology and Genetics (S.-J.L.) and Gynecology and Obstetrics, Johns Hopkins University School of Medicine (L.R.B.), Baltimore, Maryland 21205; and Department of Veterinary Integrative Biosciences (L.R.B.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843
| | - Se-Jin Lee
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.), Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), and Anatomy and Neurobiology (I.M.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Molecular Biology and Genetics (S.-J.L.) and Gynecology and Obstetrics, Johns Hopkins University School of Medicine (L.R.B.), Baltimore, Maryland 21205; and Department of Veterinary Integrative Biosciences (L.R.B.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843
| | - Charles L Chaffin
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.), Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), and Anatomy and Neurobiology (I.M.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Molecular Biology and Genetics (S.-J.L.) and Gynecology and Obstetrics, Johns Hopkins University School of Medicine (L.R.B.), Baltimore, Maryland 21205; and Department of Veterinary Integrative Biosciences (L.R.B.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843
| | - István Merchenthaler
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.), Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), and Anatomy and Neurobiology (I.M.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Molecular Biology and Genetics (S.-J.L.) and Gynecology and Obstetrics, Johns Hopkins University School of Medicine (L.R.B.), Baltimore, Maryland 21205; and Department of Veterinary Integrative Biosciences (L.R.B.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843
| |
Collapse
|
13
|
Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins. Biosci Rep 2016; 36:e00297. [PMID: 26759384 PMCID: PMC4759609 DOI: 10.1042/bsr20150220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
We report the largest scale MS based proteome of human fallopian tube (hFT). Ribosome, cytoskeleton, and vesicle associated proteins showed high abundance in hFT. Extraordinary high coverage of MSCs associated proteins in the hFT proteome. The object of this research was to report a draft proteome of human fallopian tube (hFT) comprises 5416 identified proteins, which could be considered as a physiological reference to complement Human Proteome Draft. The proteomic raw data and metadata were stored in an integrated proteome resources centre iProX (IPX00034300). This hFT proteome contains many hFT markers newly identified by mass spectrum. This hFT proteome comprises 660 high-, 3605 medium- and 1181 low-abundant proteins. Ribosome, cytoskeleton, vesicle and protein folding associated proteins showed obvious tendency to be higher abundance in hFT. The extraordinary high coverage of mesenchymal stem cells (MSCs)-associated proteins were identified in this hFT proteome, which highly supported that hFT should contain a plenty of MSCs.
Collapse
|
14
|
Coutinho LM, Vieira EL, Dela Cruz C, Casalechi M, Teixeira AL, Del Puerto HL, Reis FM. Apoptosis modulation by activin A and follistatin in human endometrial stromal cells. Gynecol Endocrinol 2016; 32:161-5. [PMID: 26494397 DOI: 10.3109/09513590.2015.1103222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activin A is a growth factor that stimulates decidualization and is abundantly expressed in endometrial proliferative disorders. Nevertheless, whether it directly affects endometrial cell survival is still unknown. This study investigated the effects of activin A on total death and apoptosis rates and on tumor necrosis factor (TNF) release by human endometrial stromal cells (HESC). We performed a controlled prospective in vitro study using primary HESC cultures obtained from healthy reproductive age women (n = 11). Cells were treated with medium alone (control) or activin A (25 ng/mL) or activin A (25 ng/mL) and its antagonist follistatin (250 ng/mL). Apoptosis and total cell death were measured by flow cytometry, while TNF concentrations in culture media were quantified by ELISA. Activin A decreased the percentage of apoptotic/dead cells from 31% to 22% (p < 0.05, paired t-test) and reduced TNF levels in culture medium by 14%, but there was no linear correlation between TNF release and apoptotic rates. Both effects of activin A were reversed by follistatin. These findings indicate that activin A promotes HESC survival, possibly by a TNF-independent pathway. This mechanism may be critical to the actions of activin A upon stromal cell growth and differentiation in physiology and disease.
Collapse
Affiliation(s)
- Larissa M Coutinho
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Erica L Vieira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cynthia Dela Cruz
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Maíra Casalechi
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Antonio L Teixeira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Helen L Del Puerto
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Fernando M Reis
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| |
Collapse
|
15
|
Sharkey DJ, Schjenken JE, Mottershead DG, Robertson SA. Seminal fluid factors regulate activin A and follistatin synthesis in female cervical epithelial cells. Mol Cell Endocrinol 2015; 417:178-90. [PMID: 26415587 DOI: 10.1016/j.mce.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Seminal fluid induces pro-inflammatory cytokines and elicits an inflammation-like response in the cervix. Here, Affymetrix microarray and qPCR was utilised to identify activin A (INHBA) and its inhibitor follistatin (FST) amongst the cytokines induced by seminal plasma in Ect1 ectocervical epithelial cells, and a similar response was confirmed in primary ectocervical epithelial cells. TGFB is abundant in seminal plasma and all three TGFB isoforms induced INHBA in Ect1 and primary cells, and neutralisation of TGFB in seminal plasma suppressed the INHBA response. Bacterial lipopolysaccharide in seminal plasma also elicited INHBA, but potently suppressed FST production. There was moderate reciprocal inhibition between FST and INHBA, and cross-attenuating effects were seen. These data identify TGFB and potentially LPS as factors mediating seminal plasma-induced INHBA synthesis in cervical cells. INHBA and FST induced by seminal fluid in cervical tissues may thus contribute to regulation of the post-coital response in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David G Mottershead
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
16
|
Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res 2015; 8:51. [PMID: 26232057 PMCID: PMC4522283 DOI: 10.1186/s13048-015-0162-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/23/2015] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNA molecules approximately 22 nucleotides in length. miRNAs are involved in the post-transcriptional regulation of various important cellular physiological and pathological processes, including cell proliferation, differentiation, apoptosis, and hormone biosynthesis and secretion. Ovarian follicles are the key functional units of female reproduction, and the development of these follicles is a complex and precise process accompanied by oocyte maturation as well as surrounding granulosa cell proliferation and differentiation. Numerous miRNAs expressed in the ovary regulate ovarian follicle growth, atresia, ovulation and steroidogenesis and play an important role in ovarian disorders. This review considers recent advances in the identification of miRNAs involved in the regulation of ovarian function as well as the possible influence of miRNAs on ovarian-derived disorders, such as ovarian cancer, polycystic ovarian syndrome and premature ovarian failure. An improved understanding of the regulation of ovarian function by miRNAs may shed light on new strategies for ovarian biology and ovarian disorders.
Collapse
Affiliation(s)
- Ying Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.,Department of Reproduction Regulation, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Ying Liu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
17
|
Ferreira LC, Gomes CEM, Araújo ACP, Bezerra PF, Duggal P, Jeronimo SMB. Association between ACVR2A and early-onset preeclampsia: replication study in a Northeastern Brazilian population. Placenta 2014; 36:186-90. [PMID: 25499008 DOI: 10.1016/j.placenta.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Preeclampsia is a complex and heterogeneous disease with increased risk of maternal mortality, especially for earlier gestational onset. There is a great inconsistency regarding the genetics of preeclampsia across the literature. The gene Activin A receptor, type IIA (ACVR2A), was reported as associated to preeclampsia in Australian/New Zealand and Norwegian populations. The goal of this study was to validate this genetic association in a Brazilian population. METHODS We performed a case-control study using 693 controls and 613 cases (443 preeclampsia, 64 eclampsia and 106 HELLP syndrome), from a Northeastern Brazilian population. Five single nucleotide polymorphisms (SNPs) in ACVR2A were tested for association through multiple logistic regression models. RESULTS There was no statistical association with preeclampsia (per se), eclampsia or HELLP. However, by grouping preeclampsia in accordance to the gestational age at delivery, SNPs rs1424954 (OR = 1.86; 95% CI, 1.25-2.78; p = 0.002) and rs1014064 (OR = 1.77; 95% CI, 1.21-2.60; p = 0.004) were significantly associated with early onset preeclampsia (gestational age ≤ 34 weeks). The risk haplotype had a frequency of 0.468 in early preeclampsia compared to 0.316 in controls (p = 0.0008 and permuted p = 0.002). DISCUSSION Activin A receptors are important in decidualization, trophoblast invasion and placentation processes during pregnancy. The gene ACVR2A was associated with the more severe early onset preeclampsia. This finding supports the hypothesis of different pathogenic mechanisms contributing to the early- and late-onset preeclampsia.
Collapse
Affiliation(s)
- L C Ferreira
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
| | - C E M Gomes
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - A C P Araújo
- Department of Obstetrics and Gynecology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - P F Bezerra
- Maternidade Escola Januário Cicco, Federal University of Rio Grande do Norte, Natal, Brazil
| | - P Duggal
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - S M B Jeronimo
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Science and Technology of Tropical Diseases (INCT-DT), Brazil.
| |
Collapse
|
18
|
Chen F, Ren P, Feng Y, Liu H, Sun Y, Liu Z, Ge J, Cui X. Follistatin is a novel biomarker for lung adenocarcinoma in humans. PLoS One 2014; 9:e111398. [PMID: 25347573 PMCID: PMC4210220 DOI: 10.1371/journal.pone.0111398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
Background Follistatin (FST), a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear. Methods and Results The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80), which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40) using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis. Conclusions These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Ren
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Haiyan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (CX); (GJ)
| | - Xueling Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (CX); (GJ)
| |
Collapse
|
19
|
Governini L, Carrarelli P, Rocha ALL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 2014; 21:1249-55. [PMID: 24520083 DOI: 10.1177/1933719114522549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study investigated expression and protein localization of FOXL2 messenger RNA (mRNA) in endometrium of healthy women and in patients with endometriosis during endometrial cycle. In endometriotic lesions, FOXL2 mRNA and protein were evaluated and a possible correlation with activin A mRNA expression changes was also studied. Endometrium was collected from healthy women (n = 52) and from women with endometriosis (n = 31) by hysteroscopy; endometriotic tissues were collected by laparoscopy (n = 38). FOXL2 gene expression analysis in endometrium of healthy women showed a significant expression and no significant changes in mRNA levels between proliferative and secretory phases; a similar pattern was observed in endometrium of patients with endometriosis. Immunohistochemical evaluation showed that FOXL2 protein localized in stromal and glandular cells and colocalized with SUMO-1. FOXL2 mRNA expression was 3-fold higher in endometriosis than in healthy endometrium (P < .01) and a positive correlation between FOXL2 and activin A mRNA was found (P < .05) in endometriosis. In conclusion, FOXL2 mRNA expression and its protein localization do not change during endometrial cycle in eutopic endometrium from healthy individuals or patients with endometriosis; the hyperexpression of FOXL2 in endometriotic lesions suggests an involvement of this transcriptional regulator, probably associated with activin A expression and related to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ana Luiza Lunardi Rocha
- Department of Obstetrics and Gynaecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, CHU Cochin, Paris, France
| | - Louise M Bilezikjian
- The Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Comparative reproductive biology of elephants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:135-69. [PMID: 25091910 DOI: 10.1007/978-1-4939-0820-2_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ability to serially collect blood samples and conduct ultrasound examinations in Asian and African elephants has provided unique opportunities to study the biology of these endangered species. As a result, many unique aspects of elephant reproduction have been identified. For females, there are interesting differences in luteal steroidogenic activity, follicular maturation, pituitary gonadotropin secretion, fetal development and reproductive tract anatomy, while males exhibit the unique phenomenon of musth and an unusual reproductive anatomy (internal testes, ampullary semen storage). However, problems associated with uterine and ovarian pathologies hamper captive propagation efforts. Older, nulliparous cows are particularly susceptible, leading to speculation that continuous ovarian cyclicity of non-bred females in zoos is having a negative and cumulative effect on reproductive health. There are notable species differences in reproductive mechanisms as well (e.g., ovarian acyclicity, prolactin secretion, sperm cryosensitivity), implying that species-specific approaches to management and application of assisted reproductive techniques are needed for maximal reproductive efficiency and enhancement of genetic management.
Collapse
|
21
|
Activin A and follistatin as biomarkers for ectopic pregnancy and missed abortion. DISEASE MARKERS 2013; 35:497-503. [PMID: 24222717 PMCID: PMC3814079 DOI: 10.1155/2013/969473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
Abstract
Activin A as a predictor of pregnancy failure has been the focus of heated debate, but the value of a combined activin A and follistatin (FS) measurement in serum to predict pregnancy failure has not been reported yet. We assessed whether a single serum measurement of the two physiological antagonists at 6–8 weeks gestation could differentiate ectopic pregnancies (EP) or missed abortions (MA) from healthy intrauterine pregnancies (IUP). activin A concentrations were significantly lower in women with EP (n = 30, median value of 264 pg/mL) and women with MA (n = 30, median value of 350 pg/mL) compared to IUP (n = 33, median value of 788 pg/mL); P < 0.001. At a threshold value of 505 pg/mL, activin A had 87.9% sensitivity and 100% specificity and negative predictive value of 0.974 for discriminating an ectopic pregnancy from viable pregnancies. FS was able to discriminate IUP from EP (ROC curve P < 0.001) as was their ratio (ROC curve P = 0.008), but was unable to discriminate a MA from an EP. In EP, activin A did not correlate with beta HCG levels. The present findings support the thesis that activin A or FS could be considered promising biomarkers for the discrimination between an IUP and a failed pregnancy (MA or EP).
Collapse
|
22
|
Verma SB, Wollina U. Herpes zoster in pregnancy leading to keloids and post herpetic neuralgia: A double whammy? Indian Dermatol Online J 2013; 4:158-9. [PMID: 23741683 PMCID: PMC3673390 DOI: 10.4103/2229-5178.110646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Abstract
A comprehensive review was performed to survey the role of angiogenesis in the pathogenesis of endometriosis. This is a multifactorial disease in which the development and maintenance of endometriotic implants depend on their invasive capacity and angiogenic potential. The peritoneal fluid of patients with endometriosis is a complex suspension carrying inflammatory cytokines, growth factors, steroid hormones, proangiogenic factors, macrophages, and endometrial and red blood cells. These cells and their signaling products concur to promote the spreading of new blood vessels at the endometriotic lesions and surroundings, which contributes to the endometriotic implant survival. Experimental studies of several antiangiogenic agents demonstrated the regression of endometriotic lesions by reducing their blood supply. Further studies are necessary before these novel agents can be introduced into clinical practice, in particular the establishment of the safety of anti-angiogenic medications in women who are seeking to become pregnant.
Collapse
|
24
|
Zhang H, Nagaoka K, Imakawa K, Nambo Y, Watanabe G, Taya K, Weng Q. Expression of inhibin/activin subunits in the equine uteri during the early pregnancy. Reprod Domest Anim 2012; 48:423-8. [PMID: 23043254 DOI: 10.1111/rda.12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
The establishment of equine pregnancy is a unique and long process during which a series of physical and possibly biochemical interactions are required between the conceptus and uterus. In this study, we investigated the expression pattern of inhibin/activin subunits in the uterus during early pregnancy. The uteri from four adult mares on cyclic day 13 or pregnancy day 25 were obtained. Immunohistochemical experiments suggested that inhibin/activin subunits were immunolocalized in the luminal and glandular epithelium on pregnancy day 25. In addition, the inhibin α and inhibin/activin βB subunits were not detected, and inhibin/activin βA subunit was detected, in the luminal and glandular epithelium on cyclic day 13. Real-time polymerase chain reaction and Western blotting results for the inhibin/activin subunits suggested a significant increase in the expression of inhibin/activin subunit βB and a significant decrease in the expression of inhibin/activin subunit βA on pregnancy day 25 compared with those on cyclic day 13. Enzyme-linked immunosorbent assays suggested a significant decrease in the concentration of activin A in endometrium extracts from cyclic day 13 to pregnancy day 25. These results suggest that inhibins or activins synthesized in the uterus, as endocrine factors and necessary nutriments, have different expression patterns and may play different, important roles during early embryonic development of the equine.
Collapse
Affiliation(s)
- H Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Balasubramaniam ES, Van Noorden S, El-Bahrawy M. The expression of interleukin (IL)-6, IL-8, and their receptors in fallopian tubes with ectopic tubal gestation. Fertil Steril 2012; 98:898-904. [DOI: 10.1016/j.fertnstert.2012.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/20/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
26
|
Yan G, Zhang L, Fang T, Zhang Q, Wu S, Jiang Y, Sun H, Hu Y. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 2012; 586:3263-70. [PMID: 22796494 DOI: 10.1016/j.febslet.2012.06.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are a class of 21- to 25-nucleotide non-coding RNAs, some of which are important gene regulators involved in folliculogenesis. In this study, we used CCK-8, real-time PCR and Western blot assays to demonstrate that miR-145 inhibits mouse granulosa cell (mGC) proliferation. Combined with the results of luciferase reporter assays that studied the 3'-untranslated region of ACVRIB mRNA, these assays identified ACVRIB as a direct target of miR-145. The ectopic expression of miR-145 reduced the levels of both ACVRIB mRNA and protein and also interfered with activin-induced Smad2 phosphorylation. Altogether, this study revealed that miR-145 suppresses mGC proliferation by targeting ACVRIB.
Collapse
Affiliation(s)
- Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rocha ALL, Carrarelli P, Novembri R, de Pascalis F, Luisi S, Reis FM, Petraglia F. Activin A stimulates interleukin 8 and vascular endothelial growth factor release from cultured human endometrial stromal cells: possible implications for the pathogenesis of endometriosis. Reprod Sci 2012; 19:832-8. [PMID: 22477338 DOI: 10.1177/1933719111434542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activin A is an endometrial secretory product involved in inflammation and angiogenesis. The present study aimed to evaluate the effect of activin A and its antagonist follistatin on interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF) expression and release from cultured human endometrial stromal cells (HESCs) from women with and without endometriosis. METHODS The HESCs were collected from women with endometriosis (n = 6) and controls (n = 6). Primary cultures were treated with activin A at different doses or activin A plus follistatin. The IL-6, IL-8, and VEGF messenger RNA expression was evaluated by real-time polymerase chain reaction and protein release was evaluated by enzyme-linked immunosorbent assay. RESULTS Unstimulated HESC from women with endometriosis secreted more IL-6 and IL-8 than controls. The addition of activin A increased IL-8 and VEGF secretion in HESC from controls and decreased IL-6 and IL-8 secretion in HESC from women with endometriosis. These effects were counteracted by follistatin. CONCLUSION Activin A regulates the expression and secretion of IL-8 and VEGF in cultured HESC, and this mechanism appears to be disrupted in eutopic endometrial cells from women affected by endometriosis.
Collapse
Affiliation(s)
- Ana Luiza L Rocha
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Lokki AI, Klemetti MM, Heino S, Hiltunen L, Heinonen S, Laivuori H. Association of the rs1424954 polymorphism of the ACVR2A gene with the risk of pre-eclampsia is not replicated in a Finnish study population. BMC Res Notes 2011; 4:545. [PMID: 22177086 PMCID: PMC3267796 DOI: 10.1186/1756-0500-4-545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre-eclampsia/eclampsia is a common vascular pregnancy disorder associated with high maternal and infant mortality and morbidity worldwide. The role of Activin A and more recently type 2 Activin A receptor (ACVR2A) in the pathogenesis of pre-eclampsia has been the subject of genetic and biochemical research with controversial results. FINDINGS We genotyped a candidate pre-eclampsia-associated single nucleotide polymorphism rs1424954 in ACVR2A in three independent study populations of Finnish pre-eclamptic (total N = 485) and non-pre-eclamptic (total N = 449) women using pre-designed TaqMan allele discrimination assay and polymerase chain reaction. The possible association of the alleles and genotypes of interest with pre-eclampsia was evaluated using the chi-square test and logistic regression analysis. We found no association of rs1424954 to pre-eclampsia in Finnish patients. CONCLUSIONS rs1424954 was not associated to pre-eclampsia in the Finnish study population. We hypothesise that while the gene associates to pre-eclampsia worldwide, the causative polymorphism in ACVR2A may be unique in genetically differing populations. Further research is needed to characterise the haplotype structure of ACVR2A in order for the causative genetic variant to be identified.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Department of Medical Genetics, Haartman Institute, University of Helsinki, P,O, Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
29
|
Galat A. Common structural traits for cystine knot domain of the TGFβ superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell Mol Life Sci 2011; 68:3437-51. [PMID: 21369710 PMCID: PMC11114550 DOI: 10.1007/s00018-011-0643-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/08/2011] [Accepted: 02/15/2011] [Indexed: 01/22/2023]
Abstract
The transforming growth factor-β (TGFβ) superfamily of proteins and their receptors are crucial developmental factors for all metazoan organisms. Cystine-knot (CK) motif is a spatial feature of the TGFβ superfamily of proteins whereas the extra-cellular domains (ectodomains) of their respective receptors form three-fingered protein domain (TFPD), both stabilized by tight cystine networks. Analyses of multiple sequence alignments of these two domains encoded in various genomes revealed that the cystines forming the CK and TFPD folds are conserved, whereas the remaining polypeptide patches are diversified. Orthologues of the human TGFβs and their respective receptors expressed in diverse vertebrates retain high sequence conservation. Examination of 3D structures of various TGFβ factors bound to their receptors have revealed that the CK and TFPD domains display several similar spatial traits suggesting that these two different protein folds might have been acquired from a common ancestor.
Collapse
Affiliation(s)
- A Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
30
|
Florio P, Reis FM, Battista R, Luisi S, Moncini I, Bocchi C, Severi FM, Petraglia F. Serum activin A levels are lower in tubal than intrauterine spontaneously conceived pregnancies. Gynecol Endocrinol 2011; 27:391-5. [PMID: 21204609 DOI: 10.3109/09513590.2010.495430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To measure serum activin A levels together with progesterone and hCG, in women with overt clinical signs and symptoms of ectopic pregnancy (EP) and, in gestational age-matched intrauterine pregnancy (IUP). DESIGN Retrospective case-control study. SETTING Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy. POPULATION The study group was composed by 30 women with an EP; the control group was composed by 30 women with a sonographic evidence of a single spontaneous IUP. METHODS Clinical examination; transvaginal ultrasound scan; hCG, progesterone and activin-A measurements; laparoscopy; uterine curettage; histological examination. MAIN OUTCOME MEASURE Pregnancy outcome; sensitivity and specificity of hCG, progesterone, and activin A for EP. RESULTS Serum hCG levels did not differ significantly between tubal EP and IUP, while P concentrations were significantly (P < 0.001) lower in tubal EP than IUP. Serum levels of activin A were significantly (P < 0.0001) lower in tubal EP than in IUP and, at the cutoff 0.43 ng/mL achieved a sensitivity of 96.7% and a specificity of 100% for EP. CONCLUSION Activin A secretion in EP is reduced and measurement of its serum levels may have the potential clinical advantage to signal the presence of EP.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mylonas I, Brüning A, Shabani N, Kunze S, Kupka MS. Evidence of inhibin/activin subunit betaC and betaE synthesis in normal human endometrial tissue. Reprod Biol Endocrinol 2010; 8:143. [PMID: 21092084 PMCID: PMC3002354 DOI: 10.1186/1477-7827-8-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inhibins are important regulators of the female reproductive system. Recently, two new inhibin subunits betaC and betaE have been described, although it is unclear if they are synthesized in normal human endometrium. METHODS Samples of human endometrium were obtained from 82 premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Endometrium samples were classified according to anamnestic and histological dating into proliferative (day 1-14, n = 46), early secretory (day 15-22, n = 18) and late secretory phase (day 23-28, n = 18). Immunohistochemical analyses were performed with specific antibodies against inhibin alpha (n = 81) as well as inhibin betaA (n = 82), betaB (n = 82), betaC (n = 74) and betaE (n = 76) subunits. RT-PCR was performed for all inhibin subunits. Correlation was assessed with the Spearman factor to assess the relationship of inhibin-subunits expression within the different endometrial samples. RESULTS The novel inhibin betaC and betaE subunits were found in normal human endometrium by immunohistochemical and molecular techniques. Inhibin alpha, betaA, betaB and betaE subunits showed a circadian expression pattern, being more abundant during the late secretory phase than during the proliferative phase. Additionally, a significant correlation between inhibin alpha and all inhibin beta subunits was observed. CONCLUSIONS The differential expression pattern of the betaC- and betaE-subunits in normal human endometrial tissue suggests that they function in endometrial maturation and blastocyst implantation. However, the precise role of these novel inhibin/activin subunits in human endometrium is unclear and warrants further investigation.
Collapse
Affiliation(s)
- Ioannis Mylonas
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Ansgar Brüning
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Naim Shabani
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
- Department of Obstetrics and Gynecology, Klinikum Neuperlach, Munich, Germany
| | - Susanne Kunze
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Markus S Kupka
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| |
Collapse
|