1
|
Kumar M, Devi WM, Choudhury TG, Kamilya D, Monsang SJ, Irungbam S, Saha RK. Unraveling the Bioactivities and Immunomodulatory Potential of Postbiotics Derived from Bacillus subtilis and B. amyloliquefaciens for Aquaculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10528-z. [PMID: 40186049 DOI: 10.1007/s12602-025-10528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Postbiotics are molecules or soluble factors released as a result of a probiotic's metabolic activity. Their use in enhancing the growth, health, and disease resistance of aquatic animals has gained considerable attention in aquaculture. The present investigation was designed to assess the beneficial effects of postbiotic products derived from two probiotic strains, Bacillus subtilis and B. amyloliquefaciens. Postbiotics from B. subtilis exhibited significantly greater (p < 0.05) antibacterial activity against various pathogenic bacterial strains, more robust antagonistic growth kinetics, stronger anti-virulence potential, enhanced inhibition of biofilm formation, and increased antioxidant activity compared to those from B. amyloliquefaciens. Additionally, B. subtilis postbiotics triggered a significant (p < 0.05) cellular immune response, including higher myeloperoxidase activity, leucocyte proliferation, and production of nitric oxide and superoxide anions, along with a notable upregulation of immune-related gene expression (IL-1β, IL-10, IFN-γ, and TNF-α) in the head kidney leucocytes of Labeo rohita. A challenge test on L. rohita fingerlings confirmed the safety of B. subtilis postbiotics. These findings highlight the anti-pathogenic, immunostimulatory, and disease-resistant properties of B. subtilis postbiotics, suggesting their promising application in aquaculture.
Collapse
Affiliation(s)
- Monalisha Kumar
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Wangkheimayum Malemnganbi Devi
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Tanmoy Gon Choudhury
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India.
| | - Dibyendu Kamilya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Shongsir Joy Monsang
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Surajkumar Irungbam
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Ratan Kumar Saha
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
- Techno India University, Tripura, Agartala, 799004, Tripura, India
| |
Collapse
|
2
|
Tas GG, Sati L. Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 2024; 41:2585-2605. [PMID: 39172320 PMCID: PMC11535107 DOI: 10.1007/s10815-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Lactobacillus rhamnosus is a type of bacteria known as a probiotic and is often used to support the health of the digestive system and vaginal flora. This type of bacteria has an important role, showing positive effects on female reproductive biology, particularly by maintaining the balance of microorganisms in the vagina, reducing the risk of infection, and strengthening the immune system to support maternal health during pregnancy. There are also studies showing that these probiotics prevent maternal obesity and gestational diabetes. Consuming probiotics containing Lactobacillus rhamnosus strains may support the intestinal health of breastfeeding mothers, but they may also contribute to the health of offspring. Therefore, this review focuses on the current available data for examining the effects of Lactobacillus rhamnosus strains on female reproductive biology and offspring health. A systematic search was conducted in the PubMed and Web of Science databases from inception to May 2024. The search strategy was performed using keywords and MeSH (Medical Subject Headings) terms. Inconsistent ratings were resolved through discussion. This review is strengthened by multiple aspects of the methodological approach. The systematic search strategy, conducted by two independent reviewers, enabled the identification and evaluation of all relevant literature. Although there is a limited number of studies with high heterogeneity, current literature highlights the important contribution of Lactobacillus rhamnosus probiotics in enhancing female reproductive health and fertility. Furthermore, the probiotic bacteria in breast milk may also support the intestinal health of newborn, strengthen the immune system, and protect them against diseases at later ages.
Collapse
Affiliation(s)
- Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Prajapati N, Patel J, Singh S, Yadav VK, Joshi C, Patani A, Prajapati D, Sahoo DK, Patel A. Postbiotic production: harnessing the power of microbial metabolites for health applications. Front Microbiol 2023; 14:1306192. [PMID: 38169918 PMCID: PMC10758465 DOI: 10.3389/fmicb.2023.1306192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Postbiotics, which are bioactive substances derived from the metabolic processes of beneficial microbes, have received considerable attention in the field of microbiome science in recent years, presenting a promising path for exploration and innovation. This comprehensive analysis looks into the multidimensional terrain of postbiotic production, including an extensive examination of diverse postbiotic classes, revealing their sophisticated mechanisms of action and highlighting future applications that might significantly affect human health. The authors thoroughly investigate the various mechanisms that support postbiotic production, ranging from conventional fermentation procedures to cutting-edge enzyme conversion and synthetic biology approaches. The review, as an acknowledgment of the field's developing nature, not only highlights current achievements but also navigates through the problems inherent in postbiotic production. In order to successfully include postbiotics in therapeutic interventions and the production of functional food ingredients, emphasis is given to critical elements, including improving yields, bolstering stability, and assuring safety. The knowledge presented herein sheds light on the expanding field of postbiotics and their potential to revolutionize the development of novel therapeutics and functional food ingredients.
Collapse
Affiliation(s)
- Nidhi Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Jinil Patel
- Department of Microbiology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
- Department of Biotechnology, School of Energy and Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Chinmayi Joshi
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Ye W, Chen Z, He Z, Gong H, Zhang J, Sun J, Yuan S, Deng J, Liu Y, Zeng A. Lactobacillus plantarum-Derived Postbiotics Ameliorate Acute Alcohol-Induced Liver Injury by Protecting Cells from Oxidative Damage, Improving Lipid Metabolism, and Regulating Intestinal Microbiota. Nutrients 2023; 15:nu15040845. [PMID: 36839205 PMCID: PMC9965849 DOI: 10.3390/nu15040845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Here, the aim was to evaluate the protective effect of Lactobacillus plantarum-derived postbiotics, i.e., LP-cs, on acute alcoholic liver injury (ALI). After preincubation with LP-cs, HL7702 human hepatocytes were treated with alcohol, and then the cell survival rate was measured. C57BL/6 male mice were presupplemented with or without LP-cs and LP-cs-loaded calcium alginate hydrogel (LP-cs-Gel) for 3 weeks and given 50% alcohol gavage to establish the mouse model of ALI, LP-cs presupplementation, and LP-cs-Gel presupplementation. The histomorphology of the liver and intestines; the levels of serum AST, ALT, lipid, and SOD activity; liver transcriptomics; and the metagenome of intestinal microbiota were detected in all mouse models. In vitro, LP-cs significantly increased the survival rate of alcohol-treated cells. In vivo, presupplementation with LP-cs and LP-cs-Gel restored the levels of serum AST, ALT, and SOD activity, as well as TC and TG, after acute alcohol intake. In the LP-cs-presupplemented mice, the genes involved in fatty acid metabolic processes were upregulated and the genes involved in steroid biosynthesis were downregulated significantly as compared with the ALI mice. LP-cs significantly increased the abundance of intestinal microbiota, especially Akkermansia muciniphila. In conclusion, LP-cs ameliorates ALI by protecting hepatocytes against oxidative damage, thereby, improving lipid metabolism and regulating the intestinal microbiota. The effect of LP-cs-Gel is similar to that of LP-cs.
Collapse
Affiliation(s)
- Wei Ye
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zengqiang Chen
- Healthcare Center of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuoqi He
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Haochen Gong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaju Sun
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shanshan Yuan
- Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Deng
- Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Yanlong Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Aibing Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
5
|
Probiotics and Postbiotics as the Functional Food Components Affecting the Immune Response. Microorganisms 2022; 11:microorganisms11010104. [PMID: 36677396 PMCID: PMC9862734 DOI: 10.3390/microorganisms11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The food market is one of the most innovative segments of the world economy. Recently, among consumers there is a forming trend of a healthier lifestyle and interest in functional foods. Products with positive health properties are a good source of nutrients for consumers' nutritional needs and reduce the risk of metabolic diseases such as diabetes, atherosclerosis, or obesity. They also seem to boost the immune system. One of the types of functional food is "probiotic products", which contain viable microorganisms with beneficial health properties. However, due to some technical difficulties in their development and marketing, a new alternative has started to be sought. Many scientific studies also point to the possibility of positive effects on human health, the so-called "postbiotics", the characteristic metabolites of the microbiome. Both immunobiotics and post-immunobiotics are the food components that affect the immune response in two ways: as inhibition (suppressing allergies and inflammation) or as an enhancement (providing host defenses against infection). This work's aim was to conduct a literature review of the possibilities of using probiotics and postbiotics as the functional food components affecting the immune response, with an emphasis on the most recently published works.
Collapse
|
6
|
Petrova MI, Reid G, Ter Haar JA. Lacticaseibacillus rhamnosus GR-1, a.k.a. Lactobacillus rhamnosus GR-1: Past and Future Perspectives. Trends Microbiol 2021; 29:747-761. [PMID: 33865678 DOI: 10.1016/j.tim.2021.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Lacticaseibacillus rhamnosus GR-1 (LGR-1) (previously classified as Lactobacillus rhamnosus GR-1) is the most researched probiotic strain for women's health. Its various urogenital health effects, including a reduction in the recurrence of bacterial vaginosis and urinary-tract infection, are well documented. The strain has also been safely used by HIV-positive subjects, a portion of whom have reported reduced diarrhea and increased CD4 counts. Unlike most probiotic strains used for urogenital health, LGR-1 has been extensively studied for its properties, including its genomic and metabolic traits and its surface properties. This review aims to highlight the totality of research performed with LGR-1, to act as a rigorous scientific benchmark for probiotic microbes, especially for application to women's health.
Collapse
Affiliation(s)
- Mariya I Petrova
- Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria.
| | - Gregor Reid
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada; Department of Microbiology and Immunology, The University of Western Ontario, London, Canada; Department of Surgery, The University of Western Ontario, London, Canada
| | | |
Collapse
|
7
|
Rasool A, Alvarado-Flores F, O'Tierney-Ginn P. Placental Impact of Dietary Supplements: More Than Micronutrients. Clin Ther 2020; 43:226-245. [PMID: 33358257 DOI: 10.1016/j.clinthera.2020.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Maternal nutrition is a key modifier of fetal growth and development. However, many maternal diets in the United States do not meet nutritional recommendations. Dietary supplementation is therefore necessary to meet nutritional goals. The effects of many supplements on placental development and function are poorly understood. In this review, we address the therapeutic potential of maternal dietary supplementation on placental development and function in both healthy and complicated pregnancies. METHODS This is a narrative review of original research articles published between February 1970 and July 2020 on dietary supplements consumed during pregnancy and placental outcomes (including nutrient uptake, metabolism and delivery, as well as growth and efficiency). Impacts of placental changes on fetal outcomes were also reviewed. Both human and animal studies were included. FINDINGS We found evidence of a potential therapeutic benefit of several supplements on maternal and fetal outcomes via their placental impacts. Our review supports a role for probiotics as a placental therapeutic, with effects that include improved inflammation and lipid metabolism, which may prevent preterm birth and poor placental efficiency. Supplementation with omega-3 fatty acids (as found in fish oil) during pregnancy tempers the negative effects of maternal obesity but may have little placental impact in healthy lean women. The beneficial effects of choline supplementation on maternal health and fetal growth are largely attributable to its placental impacts. l-arginine supplementation has a potent provascularization effect on the placenta, which may underlie its fetal growth-promoting properties. IMPLICATIONS The placenta is exquisitely sensitive to dietary supplements. Pregnant women should consult their health care practitioner before continuing or initiating use of a dietary supplement. Because little is known about impacts of many supplements on placental and long-term offspring health, more research is required before robust clinical recommendations can be made.
Collapse
Affiliation(s)
- Aisha Rasool
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
8
|
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 2020; 19:168. [PMID: 32819443 PMCID: PMC7441679 DOI: 10.1186/s12934-020-01426-w] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the functional foods field because they impart an array of health-promoting properties. Although, these terms are not well defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)". However, in many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of paraprobiotic and postbiotic compounds and their potential health benefits.
Collapse
Affiliation(s)
- Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Microbiology and Immunology, Wake Forest School of Medicine, Biotech Place, Room 2E-034, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
9
|
Mechanistic insights into the action of probiotics against bacterial vaginosis and its mediated preterm birth: An overview. Microb Pathog 2020; 141:104029. [PMID: 32014462 DOI: 10.1016/j.micpath.2020.104029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
The human body is a reservoir of numerous micro-creatures; whose role is substantial and indispensable in the overall development of human beings. The advances in omic approaches have offered powerful means to decipher the core microbiome and metabolome diversities in a specific organ system. The establishment of lactobacilli in the female reproductive tract is thought to be a paramount prerequisite that maintains homeostatic conditions for a sustainable and healthy pregnancy. Nevertheless, a plethora of such Lactobacillus strains of vaginal source revealed probiotic phenotypes. The plummeting in the occurrence of lactobacilli in the vaginal ecosystem is associated with several adverse pregnancy outcomes (APOs). One such pathological condition is "Bacterial Vaginosis" (BV), a pathogen dominated gynecological threat. In this scenario, the ascending traffic of notorious Gram-negative/variable BV pathogens to the uterus is one of the proposed pathways that give rise to inflammation-related APOs like preterm birth. Since antibiotic resistance is aggravating among urogenital pathogens, the probiotics intervention remains one of the alternative biotherapeutic strategies to overcome BV and its associated APOs. Perhaps, the increased inclination towards the safer and natural biotherapeutic strategies rather than pharmaceutical drugs for maintaining gestational and reproductive health resulted in the use of probiotics in pregnancy diets. In this context, the current review is an attempt to highlight the microbiome and metabolites signatures of BV and non-BV vaginal ecosystem, inflammation or infection-related preterm birth, host-microbial interactions, role and effectiveness of probiotics to fight against aforesaid diseased conditions.
Collapse
|
10
|
Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses. Sci Rep 2019; 9:4698. [PMID: 30886179 PMCID: PMC6423128 DOI: 10.1038/s41598-019-41133-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
Preterm birth (PTB) is a multifactorial syndrome affecting millions of neonates worldwide. Intrauterine infection can induce PTB through the secretion of pro-inflammatory cytokines and untimely activation of uterine contractions. In pregnant mice, prophylactic administration of probiotic Lactobacillus rhamnosus GR-1 supernatant (GR1SN) prevented lipopolysaccharide (LPS)-induced PTB and reduced cytokine expression in the uterine muscle (myometrium). In this study we sought to delineate the mechanisms by which GR1SN suppressed cytokine secretion in the myometrium. We observed that L. rhamnosus GR-1 uniquely secretes heat-resistant but trypsin-sensitive factors, which significantly suppressed LPS-induced secretion of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 in the human myometrial cell line, hTERT-HM. This effect was unique to GR1SN and could not be replicated using supernatant derived from non-GR-1 commensal lactobacilli species: L. rhamnosus GG, L. lactis, L. casei, or L. reuteri RC-14. Furthermore, pre-incubation of hTERT-HM cells with low-dose Pam3CSK (a TLR1/2 synthetic agonist which mimics LPS action) prior to LPS administration also significantly decreased LPS-induced cytokine secretion. This study highlights the distinct capacity of protein-like moieties secreted by L. rhamnosus GR-1 to inhibit pro-inflammatory cytokine production by human myometrial cells, potentially through a TLR1/2-mediated mechanism.
Collapse
|
11
|
Two-step production of anti-inflammatory soluble factor by Lactobacillus reuteri CRL 1098. PLoS One 2018; 13:e0200426. [PMID: 29979794 PMCID: PMC6034873 DOI: 10.1371/journal.pone.0200426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 01/28/2023] Open
Abstract
We have demonstrated previously that a soluble factor (LrS) produced by Lactobacillus (L.) reuteri CRL 1098 modulates the inflammatory response triggered by lipopolysaccharide. In this study, the production of LrS by L. reuteri CRL 1098 was realized through two steps: i) bacterial biomass production, ii) LrS production, where the bacterial biomass was able to live but did not proliferate. Therefore, the simultaneous evaluation of the effect of different factors on the growth and LrS production was performed. Biomass production was found to be dependent mainly on culture medium, while LrS production with anti-inflammatory activity depended on culture conditions of the biomass such as pH, agitation and growth phase. The L. reuteri CRL 1098 biomass and LrS production in the optimized culture media designed for this work reduced the complete process cost by approximately 95%, respectively to laboratory scale cost.
Collapse
|
12
|
Milk Fermented by Specific Lactobacillus Strains Regulates the Serum Levels of IL-6, TNF-α and IL-10 Cytokines in a LPS-Stimulated Murine Model. Nutrients 2018; 10:nu10060691. [PMID: 29844254 PMCID: PMC6024734 DOI: 10.3390/nu10060691] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023] Open
Abstract
Studies report that metabolites, such as peptides, present in fermented milk with specific lactic acid bacteria, may regulate cytokine production and exert an anti-inflammatory effect. Hence, the cytokine regulatory effect of fermented milk by specific Lactobacillus strains was evaluated in a lipopolysaccharide (LPS)-stimulated murine model. From twelve strains, three (J20, J23 and J28) were selected for their high proteolytic and acidifying capacities in milk and used for the in vivo study. Three treatments (fermented milk, FM; pasteurized fermented milk, PFM; and its 0.05) reduced pro-inflammatory cytokine (IL-6 and TNF-α) concentrations and significantly increased anti-inflammatory (IL-10) cytokine concentrations in comparison to the control; also, pro-inflammatory cytokines were reduced for animals treated with PFM10 (p < 0.05). RP-HPLC-MS/MS analysis showed that water-soluble extracts (.
Collapse
|