1
|
Powell TR, Shah EB, Khalifa A, Orozco-Sevilla V, Tolpin DA. Anesthetic Management for Proximal Aortic Repair. Semin Cardiothorac Vasc Anesth 2025; 29:8-36. [PMID: 39891577 PMCID: PMC11872057 DOI: 10.1177/10892532251318061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Surgical repair of the proximal aorta is a complex endeavor, requiring cardiopulmonary bypass (CPB) and often the use of hypothermic circulatory arrest (HCA). In addition to the normal considerations for patients undergoing cardiopulmonary bypass, additional challenges include cerebral and end-organ protection during periods of circulatory arrest. This review aims to provide an up-to-date, evidence-based review on anesthetic management for proximal aortic repair.
Collapse
Affiliation(s)
- Thomas R. Powell
- Division of Cardiovascular Anesthesiology, Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
- The Texas Heart Institute, Houston, TX, USA
| | - Emily B. Shah
- Division of Cardiac Anesthesia, Department of Anesthesiology, Houston Methodist Hospital, Houston, TX, USA
| | - Ali Khalifa
- Division of Cardiovascular Anesthesiology, Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
- The Texas Heart Institute, Houston, TX, USA
| | - Vicente Orozco-Sevilla
- The Texas Heart Institute, Houston, TX, USA
- Division of Cardiac Anesthesia, Department of Anesthesiology, Houston Methodist Hospital, Houston, TX, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Daniel A. Tolpin
- Division of Cardiovascular Anesthesiology, Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
- The Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
2
|
Tavassoli N, Ghahremani A, Namakin K, Naserghandi A, Miri SR, Abdolahad M. Intra Operative Mild Cooling of Large Tumors Reduces Their Invasive and Metastatic Functions While Increasing Their Resistance to Apoptosis. Ther Hypothermia Temp Manag 2024; 14:290-298. [PMID: 38079194 PMCID: PMC11665270 DOI: 10.1089/ther.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Cancer treatment often involves excisional surgery, but this approach may leave behind minimal residual disease, leading to tumor regrowth. Proinflammatory cytokines and their role in altering residual cancerous cells postsurgery have garnered attention. The study examines how mild intraoperative cooling affects cancer cells and their gene expression. It aims to discover strategies for reducing tumor growth after surgery. Nine cases of solid tumor were included in the study, nine samples were cooled with the Peltier-Seebeck device down to12°C, and cooled and noncooled regions of tumors were analyzed using reverse transcription-polymerase chain reaction. Key transcriptomes, including neural-cadherin, cadherins (CDH), 70-kDa Heat Shock Protein (HSP70), hypoxia-inducible factor (HIF), Y-Box-binding protein 1 (YB-1), matrix metalloproteinase 9 (MMP9), and matrix metalloproteinase 2 (MMP2), were measured to assess the impact of mild hypothermia on cancer cell metabolism and cold shock responses. Analysis of cooled and noncooled regions revealed reduced MMP2/9 levels in cooled regions in five out of seven cases, indicating potential suppression of tumor invasion and metastasis. CDH-1 expression was detected in five cases, with decreased levels observed in cooled regions in most cases, suggesting a role in tumor aggressiveness. YB-1 expression was increased in six out of eight samples, possibly correlating with local recurrence and reduced overall survival times. N-Cad expression was increased in all five samples where it was detected, indicating its potential involvement in tumor cell motility and invasion. HSPs showed a mild increase in four out of five cases following cooling, potentially contributing to tumor cell resistance to cooling-induced apoptosis. Intraoperative mild cooling resulted in the downregulation of key proteins playing a role in invasion and metastasis. However, Elevated YB-1 and N-Cad expression limits cooling's universal application. Further research is necessary to comprehend cooling-related transcriptome changes and their impact on patient outcomes.
Collapse
Affiliation(s)
- Noureddin Tavassoli
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghahremani
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Kosar Namakin
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alvand Naserghandi
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Burrows DJ, McGown A, Abduljabbar O, Castelli LM, Shaw PJ, Hautbergue GM, Ramesh TM. RAN Translation of C9orf72-Related Dipeptide Repeat Proteins in Zebrafish Recapitulates Hallmarks of Amyotrophic Lateral Sclerosis and Identifies Hypothermia as a Therapeutic Strategy. Ann Neurol 2024; 96:1058-1069. [PMID: 39215697 DOI: 10.1002/ana.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Hexanucleotide repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A large body of evidence implicates dipeptide repeats (DPRs) proteins as one of the main drivers of neuronal injury in cell and animal models. METHODS A pure repeat-associated non-AUG (RAN) translation zebrafish model of C9orf72-ALS/FTD was generated. Embryonic and adult transgenic zebrafish lysates were investigated for the presence of RAN-translated DPR species and adult-onset motor deficits. Using C9orf72 cell models as well as embryonic C9orf72-ALS/FTD zebrafish, hypothermic-therapeutic temperature management (TTM) was explored as a potential therapeutic option for C9orf72-ALS/FTD. RESULTS Here, we describe a pure RAN translation zebrafish model of C9orf72-ALS/FTD that exhibits significant RAN-translated DPR pathology and progressive motor decline. We further demonstrate that hypothermic-TTM results in a profound reduction in DPR species in C9orf72-ALS/FTD cell models as well as embryonic C9orf72-ALS/FTD zebrafish. INTERPRETATION The transgenic model detailed in this paper provides a medium throughput in vivo research tool to further investigate the role of RAN-translation in C9orf72-ALS/FTD and further understand the mechanisms that underpin neuroprotective strategies. Hypothermic-TTM presents a viable therapeutic avenue to explore in the context of C9orf72-ALS/FTD. ANN NEUROL 2024;96:1058-1069.
Collapse
Affiliation(s)
- David J Burrows
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Olfat Abduljabbar
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Tennore M Ramesh
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Ramzan NUH, Dhillon RA, Anwer MU, Hashmat MB, Shahjahan K, Asif T, Khalid AS, Saleem F. Targeted Temperature Management for Out-of-Hospital Cardiac Arrest Survivors. Cureus 2024; 16:e69204. [PMID: 39268021 PMCID: PMC11392523 DOI: 10.7759/cureus.69204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted temperature management (TTM), specifically therapeutic hypothermia, has been proposed to provide neuroprotective and mortality benefits for out-of-hospital cardiac arrest (OHCA) survivors. This proposition was based on small-scale trials from the early 2000s, leading to its incorporation into various international guidelines. The proposed neuroprotective mechanisms include reducing cerebral metabolic rate, stabilizing the blood-brain barrier, reducing the release of excitatory neurotransmitters, and suppressing apoptotic pathways. However, these early trials have been criticized for their high risk of bias and lack of standardized protocols. Recent evidence from more rigorously controlled randomized trials indicates no significant association between hypothermia and improved neurological outcomes or survival rates. This review explores the latest clinical evidence on TTM for OHCA patients, discussing the pathophysiology, evaluating the effectiveness of hypothermia through various clinical trials, and providing recommendations for future research and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Talha Asif
- Medicine, Allied Hospital, Faisalabad, PAK
| | | | | |
Collapse
|
5
|
Munoz C, Acon-Chen C, Keith ZM, Shih TM. Hypothermia as potential therapeutic approach to attenuating soman-induced seizure, neuropathology, and mortality with an adenosine A 1 receptor agonist and body cooling. Neuropharmacology 2024; 253:109966. [PMID: 38677446 PMCID: PMC11197881 DOI: 10.1016/j.neuropharm.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Organophosphorus nerve agents, such as soman (GD), produce excitotoxic effects resulting in sustained status epilepticus (SSE) and brain damage. Previous work shows that neuronal inhibitory effects of A1 adenosine receptor (A1AR) agonists, such as N6- Bicyclo (2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (Cl-ENBA), suppresses GD-induced SSE and improves neuropathology. Some other physiologic effects of these agonists are hypothermia, hypotension, and sedation. Hypothermia may also shield the brain from injury by slowing down chemical insults, lessening inflammation, and contributing to improved neurological outcomes. Therefore, we attempted to isolate the hypothermic effect from ENBA by assessing the neuroprotective efficacy of direct surface body cooling in a rat GD-induced SSE model, and comparing the effects on seizure termination, neuropathology, and survival. Male rats implanted with a body temperature (Tb) transponder and electroencephalographic (EEG) electrodes were primed with asoxime (HI-6), exposed to GD 30 min later, and then treated with Cl-ENBA or had Tb lowered directly via body cooling at 30 min after the onset of seizure activity. Afterwards, they were either allowed to develop hypothermia as expected, or received thermal support to maintain normothermic Tb for a period of 6-h. Neuropathology was assessed at 24 h. Regardless of Cl-ENBA or surface cooling, all hypothermic GD-exposed groups had significantly improved 24-h survival compared to rats with normothermic Tb (81% vs. 39%, p < 0.001). Cl-ENBA offered neuroprotection independently of hypothermic Tb. While hypothermia enhanced the overall efficacy of Cl-ENBA by improving survival outcomes, body cooling didn't reduce seizure activity or neuropathology following GD-induced SSE.
Collapse
Affiliation(s)
- Crystal Munoz
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400, USA
| | - Cindy Acon-Chen
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400, USA
| | - Zora-Maya Keith
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400, USA
| | - Tsung-Ming Shih
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400, USA.
| |
Collapse
|
6
|
Bock CA, Medford WG, Coughlin E, Mhaskar R, Sunjic KM. Implementing a Stepwise Shivering Protocol During Targeted Temperature Management. J Pharm Pract 2024; 37:871-879. [PMID: 37551844 DOI: 10.1177/08971900231193533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Shivering is often encountered in patients undergoing targeted temperature management (TTM) after cardiac arrest. The most efficient, safe way to prevent shivering during TTM is not clearly defined. Objective: The purpose of this study was to evaluate the impact of shivering management using a stepwise shivering protocol on time to target temperature (TT), medication utilization and nursing confidence. Methods: Single-center, retrospective chart review of all post-cardiac arrest patients who underwent TTM between 2016 and 2021. The primary outcome is a comparison of time to TT pre- and post-protocol implementation. Secondary objectives compared nursing confidence and medication utilization pre- and post-shivering protocol implementation. Results: Fifty-seven patients were included in the pre-protocol group and thirty-seven were in the post-protocol group. The median (IQR) time to TT was 195 (250) minutes and 165 (170), respectively (p = 0.190). The average doses of acetaminophen was 285 mg pre- vs 1994 mg post- (p <0.001, buspirone 47 mg pre- vs 127 mg post- (p < 0.001), magnesium 0.9 g pre-vs 2.8 g post- (p < 0.001), and fentanyl 1564 mcg pre- vs 2286 mcg post- (p=0.023). No difference was seen for midazolam and cisatracurium. Nurses reported feeling confident with his/her ability to manage shivering during TTM 38.5% of the time pre-protocol compared to 60% post-protocol (p = 0.306). Conclusion: Implementation of a stepwise approach to prevent and treat shivering improved time to TT in our institution, although this finding was not statistically significant. The stepwise protocol supported a reduced amount of high-risk medication use and increased nursing confidence in shivering management.
Collapse
Affiliation(s)
- Czarina A Bock
- Pharmacy Department, Tampa General Hospital, Tampa, FL, USA
| | - Whitney G Medford
- Pharmacy Department, Tampa General Hospital, Tampa, FL, USA
- Virtual Intensive Care Unit, BayCare Healthcare System, St Petersburg, FL, USA
| | - Emily Coughlin
- Department of Medical Education, University of South Florida, Tampa, FL, USA
| | - Rahul Mhaskar
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Katlynd M Sunjic
- Pharmacy Department, Tampa General Hospital, Tampa, FL, USA
- Department of Pharmacotherapeutics and Clinical Research, University of South Florida, Taneja College of Pharmacy, Tampa, FL, USA
| |
Collapse
|
7
|
Ma S, Song Y, Xu Y, Wang C, Yang Y, Zheng Y, Lu Q, Chen Q, Wu J, Wang B, Chen M. Mild Therapeutic Hypothermia Alleviated Myocardial Ischemia/Reperfusion Injury via Targeting SLC25A10 to Suppress Mitochondrial Apoptosis. J Cardiovasc Transl Res 2024; 17:946-958. [PMID: 38568407 PMCID: PMC11371862 DOI: 10.1007/s12265-024-10503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 09/04/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/genetics
- Apoptosis
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Male
- Disease Models, Animal
- Hypothermia, Induced
- Rats, Sprague-Dawley
- Signal Transduction
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/genetics
- Myocardial Infarction/therapy
- Cells, Cultured
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Rats
Collapse
Affiliation(s)
- Senlin Ma
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanxin Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chao Wang
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yifan Yang
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanchao Zheng
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiuxin Lu
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qingjiang Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Mingquan Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
8
|
Keith ZM, Munoz C, Acon-Chen C, Shih TM. Seizure suppression and neuroprotection in soman-exposed rats following delayed intramuscular treatment of adenosine A 1 receptor agonist as an adjunct to standard medical treatment. Toxicol Appl Pharmacol 2024; 488:116970. [PMID: 38777098 DOI: 10.1016/j.taap.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.
Collapse
Affiliation(s)
- Zora-Maya Keith
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | - Crystal Munoz
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | - Cindy Acon-Chen
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | - Tsung-Ming Shih
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
9
|
Malliou A, Mitsiou C, Kyritsis AP, Alexiou GA. Therapeutic Hypothermia in Treating Glioblastoma: A Review. Ther Hypothermia Temp Manag 2024; 14:2-9. [PMID: 37184912 DOI: 10.1089/ther.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly occurring of all malignant central nervous system (CNS) tumors in adults. Considering the low median survival of only ∼15 months and poor prognosis in GBM patients, despite surgical resection with adjuvant radiation and chemotherapy, it is vital to seek brand new and innovative treatment in combination with already existing methods. Hypothermia participates in many metabolic pathways, inflammatory responses, and apoptotic processes, while also promoting the integrity of neurons. Following the successful application of therapeutic hypothermia across a spectrum of disorders such as traumatic CNS injury, cardiac arrest, and epilepsy, several clinical trials have set to evaluate the potency of hypothermia in treating a variety of cancers, including breast and ovaries cancer. In regard to primary neoplasms and more specifically, GBM, hypothermia has recently shown promising results as an auxiliary treatment, reinforcing chemotherapy's efficacy. In this review, we discuss the recent advances in utilizing hypothermia as treatment for GBM and other cancers.
Collapse
Affiliation(s)
- Athina Malliou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| | | | | | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| |
Collapse
|
10
|
Fukuda N, Toriuchi K, Mimoto R, Aoki H, Kakita H, Suzuki Y, Takeshita S, Tamura T, Yamamura H, Inoue Y, Hayashi H, Yamada Y, Aoyama M. Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4. Neurochem Res 2024; 49:800-813. [PMID: 38112974 DOI: 10.1007/s11064-023-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.
Collapse
Affiliation(s)
- Naoya Fukuda
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Mimoto
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Tamura
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
11
|
Sohn SH, Chae S, Choi JW, Nam K, Cho YJ, Cho JY, Hwang HY. Differences in Brain Metabolite Profiles Between Normothermia and Hypothermia. J Korean Med Sci 2024; 39:e79. [PMID: 38412613 PMCID: PMC10896702 DOI: 10.3346/jkms.2024.39.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND This study evaluated the difference in brain metabolite profiles between normothermia and hypothermia reaching 25°C in humans in vivo. METHODS Thirteen patients who underwent thoracic aorta surgery under moderate hypothermia were prospectively enrolled. Plasma samples were collected simultaneously from the arteries and veins to estimate metabolite uptake or release. Targeted metabolomics based on liquid chromatographic mass spectrometry and direct flow injection were performed, and changes in the profiles of respective metabolites from normothermia to hypothermia were compared. The ratios of metabolite concentrations in venous blood samples to those in arterial blood samples (V/A ratios) were calculated, and log2 transformation of the ratios [log2(V/A)] was performed for comparison between the temperature groups. RESULTS Targeted metabolomics were performed for 140 metabolites, including 20 amino acids, 13 biogenic amines, 10 acylcarnitines, 82 glycerophospholipids, 14 sphingomyelins, and 1 hexose. Of the 140 metabolites analyzed, 137 metabolites were released from the brain in normothermia, and the release of 132 of these 137 metabolites was decreased in hypothermia. Two metabolites (dopamine and hexose) showed constant release from the brain in hypothermia, and 3 metabolites (2 glycophospholipids and 1 sphingomyelin) showed conversion from release to uptake in hypothermia. Glutamic acid demonstrated a distinct brain metabolism in that it was taken up by the brain in normothermia, and the uptake was increased in hypothermia. CONCLUSION Targeted metabolomics demonstrated various degrees of changes in the release of metabolites by the hypothermic brain. The release of most metabolites was decreased in hypothermia, whereas glutamic acid showed a distinct brain metabolism.
Collapse
Affiliation(s)
- Suk Ho Sohn
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sihyun Chae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woong Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| | - Ho Young Hwang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Ghia S, Savadjian A, Shin D, Diluozzo G, Weiner MM, Bhatt HV. Hypothermic Circulatory Arrest in Adult Aortic Arch Surgery: A Review of Hypothermic Circulatory Arrest and its Anesthetic Implications. J Cardiothorac Vasc Anesth 2023; 37:2634-2645. [PMID: 37723023 DOI: 10.1053/j.jvca.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/20/2023]
Abstract
Diseases affecting the aortic arch often require surgical intervention. Hypothermic circulatory arrest (HCA) enables a safe approach during open aortic arch surgeries. Additionally, HCA provides neuroprotection by reducing cerebral metabolism and oxygen requirements. However, HCA comes with significant risks (eg, neurologic dysfunction, stroke, and coagulopathy), and the cardiac anesthesiologist must completely understand the surgical techniques, possible complications, and management strategies.
Collapse
Affiliation(s)
- Samit Ghia
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andre Savadjian
- Department of Anesthesiology and Critical Care, Duke University School of Medicine, Durham, NC
| | - DaWi Shin
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gabriele Diluozzo
- Department of Cardiovascular Surgery, Yale School of Medicine, Bridgeport, CT
| | - Menachem M Weiner
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Himani V Bhatt
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Alitalo O, González-Hernández G, Rosenholm M, Kohtala P, Matsui N, Müller HK, Theilmann W, Klein A, Kärkkäinen O, Rozov S, Rantamäki T, Kohtala S. Linking Hypothermia and Altered Metabolism with TrkB Activation. ACS Chem Neurosci 2023; 14:3212-3225. [PMID: 37551888 PMCID: PMC10485900 DOI: 10.1021/acschemneuro.3c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK3β). Increased TrkB, GSK3β, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.
Collapse
Affiliation(s)
- Okko Alitalo
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Gemma González-Hernández
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Marko Rosenholm
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Center
for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Piia Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| | - Nobuaki Matsui
- Faculty
of Pharmacy, Gifu University of Medical
Science, 4-3-3 Nijigaoka,
Kani, Gifu 509-0293, Japan
| | - Heidi Kaastrup Müller
- Translational
Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Wiebke Theilmann
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Anders Klein
- Novo
Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark
- Department
of Drug Design & Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Olli Kärkkäinen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
- Afekta
Technologies Ltd., Kuopio 70210, Finland
| | - Stanislav Rozov
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Tomi Rantamäki
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Samuel Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
14
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Imataka G, Fujita Y, Kikuchi J, Wake K, Ono K, Yoshihara S. Brain Hypothermia Therapy and Targeted Temperature Management for Acute Encephalopathy in Children: Status and Prospects. J Clin Med 2023; 12:2095. [PMID: 36983098 PMCID: PMC10058746 DOI: 10.3390/jcm12062095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
In adult intensive care, brain hypothermia therapy (BHT) was reported to be effective in neuroprotection after resuscitation and cardiac arrest. By contrast, in neonatal intensive care, the pathophysiology of brain damage caused by hypoxic-ischemic encephalopathy (HIE) is attributed to circulatory disturbances resulting from ischemia/reperfusion, for which neonatal brain cryotherapy is used. The International Liaison Committee on Resuscitation, 2010, recommends cerebral cryotherapy for HIE associated with severe neonatal pseudoparenchyma death. The usefulness of BHT for neuroprotection in infants and children, especially in pediatric acute encephalopathy, is expected. Theoretically, BHT could be useful in basic medical science and animal experiments. However, there are limitations in clinical planning for treating pediatric acute encephalopathy. No international collaborative study has been conducted, and no clinical evidence exists for neuroprotection using BHT. In this review, we will discuss the pathogenesis of neuronal damage in hypoxic and hypoperfused brains; the history of BHT, its effects, and mechanisms of action; the success of BHT; cooling and monitoring methods of BHT; adverse reactions to BHT; literature on BHT. We will review the latest literature on targeted temperature management, which is used for maintaining and controlling body temperature in adults in intensive care. Finally, we will discuss the development of BHT and targeted temperature management as treatments for pediatric acute encephalopathy.
Collapse
Affiliation(s)
- George Imataka
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Yuji Fujita
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Jin Kikuchi
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Koji Wake
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Kazuyuki Ono
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| |
Collapse
|
16
|
Zhou Q, Fu X, Xu J, Dong S, Liu C, Cheng D, Gao C, Huang M, Liu Z, Ni X, Hua R, Tu H, Sun H, Shen Q, Chen B, Zhang J, Zhang L, Yang H, Hu J, Yang W, Pei W, Yao Q, Sheng X, Zhang J, Yang WZ, Shen WL. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron 2023; 111:387-404.e8. [PMID: 36476978 DOI: 10.1016/j.neuron.2022.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.
Collapse
Affiliation(s)
- Qian Zhou
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Shiming Dong
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Changhao Liu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Dali Cheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cuicui Gao
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhua Huang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiduo Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xinyan Ni
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongqing Tu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Baoting Chen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Liye Zhang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China.
| | - Wen Z Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Wei L Shen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
17
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
18
|
Chorostecki JR, Schneider NJ, Stutzman SE, Olson DM. A Case Series of Clinical Limitations to the Clinical Course of Neurogenic Fever. Ther Hypothermia Temp Manag 2022. [PMID: 36099203 DOI: 10.1089/ther.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nurses play a vital role in the care of neurocritical patients. Fever is a common and dangerous occurrence, and there is a substantial lack of consistency in how to maintain normothermia in these patients. We present five cases in which patients were confirmed to have neurogenic fever (NF) and the documented interventions. In all five cases, temperature and interventions were not documented consistently, making it difficult to assess how nurses acted to avoid hyperthermia in these patients. Additional research is needed to determine interventions, processes, procedures, and documentation of NF in neurocritical patients.
Collapse
Affiliation(s)
- Jessica R Chorostecki
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan J Schneider
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sonja E Stutzman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - DaiWai M Olson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Baker TS, Zannou AL, Cruz D, Khadka N, Kellner C, Tyc R, Bikson M, Costa A. Development and Clinical Validation of a Finite Element Method Model Mapping Focal Intracranial Cooling. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2168-2174. [PMID: 35316187 PMCID: PMC9533256 DOI: 10.1109/tnsre.2022.3161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic hypothermia (TH) is a common and effective technique to reduce inflammation and induce neuroprotection across a variety of diseases. Focal TH of the brain can avoid the side effects of systemic cooling. The degree and extent of focal TH are a function of cooling probe design and local brain thermoregulation processes. To refine focal TH probe design, with application-specific optimization, we develop precise computational models of brain thermodynamics under intense local cooling. Here, we present a novel multiphysics in silico model that can accurately predict brain response to focal cooling. The model was parameterized from previously described values of metabolic activity, thermal conductivity, and temperature-dependent cerebral perfusion. The model was validated experimentally using data from clinical cases where local cooling was induced intracranially and brain temperatures monitored in real-time with MR thermometry. The validated model was then used to identify optimal design probe parameters to maximize volumetric TH, including considering three stratifications of cooling (mild, moderate, and profound) to produce Volume of Tissue Cooled (VOTC) maps. We report cooling radius increases in a nearly linear fashion with probe length and decreasing probe surface temperature.
Collapse
|
20
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Depolarization time and extracellular glutamate levels aggravate ultraearly brain injury after subarachnoid hemorrhage. Sci Rep 2022; 12:10256. [PMID: 35715559 PMCID: PMC9205962 DOI: 10.1038/s41598-022-14360-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Early brain injury after aneurysmal subarachnoid hemorrhage (SAH) worsens the neurological outcome. We hypothesize that a longer duration of depolarization and excessive release of glutamate aggravate neurological outcomes after SAH, and that brain hypothermia can accelerate repolarization and inhibit the excessive release of extracellular glutamate and subsequent neuronal damage. So, we investigated the influence of depolarization time and extracellular glutamate levels on the neurological outcome in the ultra-early phase of SAH using a rat injection model as Experiment 1 and then evaluated the efficacy of brain hypothermia targeting ultra-early brain injury as Experiment 2. Dynamic changes in membrane potentials, intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and extracellular glutamate levels were observed within 30 min after SAH. A prolonged duration of depolarization correlated with peak extracellular glutamate levels, and these two factors worsened the neuronal injury. Under brain hypothermia using pharyngeal cooling after SAH, cerebral perfusion pressure in the hypothermia group recovered earlier than that in the normothermia group. Extracellular glutamate levels in the hypothermia group were significantly lower than those in the normothermia group. The early induction of brain hypothermia could facilitate faster recovery of cerebral perfusion pressure, repolarization, and the inhibition of excessive glutamate release, which would prevent ultra-early brain injury following SAH.
Collapse
|
22
|
Hypothermia as a potential remedy for canine and feline acute spinal cord injury: a review. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Severe spinal cord injury (SCI) resulting in permanent sensory-motor and autonomic dysfunction caudal to a damaged spinal cord (SC) segment is a catastrophic event in human as well as in veterinary medicine. The situation of paraplegic/tetraplegic people or animals is further impaired by serious complications and often displays an image of permanent suffering. Therapeutic hypothermia (TH) has shown neuroprotective capacity in numerous experimental and several clinical studies or case reports. Hence, the method draws increasing attention of neuroscientists as well as health care workers. While systemic TH is a too complex procedure for veterinary practice, local application of TH with a reduced risk of the whole body temperature fluctuations and minimal side effects can become one of the therapeutic tools considered in the treatment of acute traumatic SCIs in bigger animals, especially when surgical decompression of spinal medulla and vertebral column reconstruction is indicated. Still, additional large prospective randomized studies are essential for the standardization of therapeutic protocols and the introduction of the method into therapeutic armamentarium in canine and feline spinal traumatology. The research strategy involved a PubMed, MEDLINE (Ovid), EMBASE (Ovid), and ISI Web of Science search from January 2000 to July 2021 using the terms “canine and feline spinal cord injuryˮ, “hypothermiaˮ, and “targeted temperature managementˮ in the English language literature; also references from selected studies were scanned and relevant articles included.
Collapse
|
23
|
Kaylor HL, Wiencek C, Hundt E. Targeted Temperature Management: A Program Evaluation. AACN Adv Crit Care 2022; 33:38-52. [PMID: 35259224 DOI: 10.4037/aacnacc2022398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the United States, more than 350 000 cardiac arrests occur annually. The survival rate after an out-of-hospital cardiac arrest remains low. The majority of patients who have return of spontaneous circulation will die of complications of hypoxic-ischemic brain injury. Targeted temperature management is the only recommended neuroprotective measure for those who do not regain consciousness after return of spontaneous circulation. Despite current practices, a review of the literature revealed that evidence on the ideal time to achieve target temperature after return of spontaneous circulation remains equivocal. A program evaluation of a targeted temperature management program at an academic center was performed; the focus was on timing components of targeted temperature management. The program evaluation revealed that nurse-driven, evidence-based protocols can lead to optimal patient outcomes in this low-frequency, high-impact therapy.
Collapse
Affiliation(s)
- Hannah L Kaylor
- Hannah L. Kaylor is CICU APP Fellow, Emory Healthcare, Division of Cardiology, 1364 Clifton Rd NE, Atlanta, GA 30322
| | - Clareen Wiencek
- Clareen Wiencek is Professor of Nursing, School of Nursing, University of Virginia, Charlottesville, Virginia
| | - Elizabeth Hundt
- Elizabeth Hundt is Assistant Professor of Nursing, School of Nursing, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
24
|
Stevic N, Maalouf J, Argaud L, Gallo-Bona N, Lo Grasso M, Gouriou Y, Gomez L, Crola Da Silva C, Ferrera R, Ovize M, Cour M, Bidaux G. Cooling Uncouples Differentially ROS Production from Respiration and Ca 2+ Homeostasis Dynamic in Brain and Heart Mitochondria. Cells 2022; 11:cells11060989. [PMID: 35326440 PMCID: PMC8947173 DOI: 10.3390/cells11060989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.
Collapse
Affiliation(s)
- Neven Stevic
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Jennifer Maalouf
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
| | - Laurent Argaud
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Noëlle Gallo-Bona
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Mégane Lo Grasso
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Ludovic Gomez
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - René Ferrera
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Martin Cour
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Correspondence:
| |
Collapse
|
25
|
Usmanov ES, Chubarova MA, Saidov SK. Emerging Trends in the Use of Therapeutic Hypothermia as a Method for Neuroprotection in Brain Damage (Review). Sovrem Tekhnologii Med 2021; 12:94-104. [PMID: 34796010 PMCID: PMC8596265 DOI: 10.17691/stm2020.12.5.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.
Collapse
Affiliation(s)
- E Sh Usmanov
- Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - M A Chubarova
- Junior Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - Sh Kh Saidov
- Senior Researcher, Laboratory of Clinical Neurophysiology Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| |
Collapse
|
26
|
Neuroprotection in Acute Ischemic Stroke: A Brief Review. Can J Neurol Sci 2021; 49:741-745. [PMID: 34526172 DOI: 10.1017/cjn.2021.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The goal of effective neuroprotection in acute ischemic stroke remains elusive. Despite decades of experimental preclinical and clinical experience with innumerable agents, no strategy has proven to be beneficial in humans. As endovascular therapies mature and approach the limits of speed and efficacy, neuroprotection will become the next frontier of acute stroke care. This review will briefly summarize the history, preclinical and clinical triumphs and failures, and future directions of cerebral neuroprotection.
Collapse
|
27
|
Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful? Cells 2021; 10:cells10071714. [PMID: 34359883 PMCID: PMC8305209 DOI: 10.3390/cells10071714] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
While sudden loss of perfusion is responsible for ischemia, failure to supply the required amount of oxygen to the tissues is defined as hypoxia. Among several pathological conditions that can impair brain perfusion and oxygenation, cardiocirculatory arrest is characterized by a complete loss of perfusion to the brain, determining a whole brain ischemic-anoxic injury. Differently from other threatening situations of reduced cerebral perfusion, i.e., caused by increased intracranial pressure or circulatory shock, resuscitated patients after a cardiac arrest experience a sudden restoration of cerebral blood flow and are exposed to a massive reperfusion injury, which could significantly alter cellular metabolism. Current evidence suggests that cell populations in the central nervous system might use alternative metabolic pathways to glucose and that neurons may rely on a lactate-centered metabolism. Indeed, lactate does not require adenosine triphosphate (ATP) to be oxidated and it could therefore serve as an alternative substrate in condition of depleted energy reserves, i.e., reperfusion injury, even in presence of adequate tissue oxygen delivery. Lactate enriched solutions were studied in recent years in healthy subjects, acute heart failure, and severe traumatic brain injured patients, showing possible benefits that extend beyond the role as alternative energetic substrates. In this manuscript, we addressed some key aspects of the cellular metabolic derangements occurring after cerebral ischemia-reperfusion injury and examined the possible rationale for the administration of lactate enriched solutions in resuscitated patients after cardiac arrest.
Collapse
|
28
|
Masè M, Micarelli A, Falla M, Regli IB, Strapazzon G. Insight into the use of tympanic temperature during target temperature management in emergency and critical care: a scoping review. J Intensive Care 2021; 9:43. [PMID: 34118993 PMCID: PMC8199814 DOI: 10.1186/s40560-021-00558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Target temperature management (TTM) is suggested to reduce brain damage in the presence of global or local ischemia. Prompt TTM application may help to improve outcomes, but it is often hindered by technical problems, mainly related to the portability of cooling devices and temperature monitoring systems. Tympanic temperature (TTy) measurement may represent a practical, non-invasive approach for core temperature monitoring in emergency settings, but its accuracy under different TTM protocols is poorly characterized. The present scoping review aimed to collect the available evidence about TTy monitoring in TTM to describe the technique diffusion in various TTM contexts and its accuracy in comparison with other body sites under different cooling protocols and clinical conditions. METHODS The scoping review was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis extension for scoping reviews (PRISMA-ScR). PubMed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 20 years, where TTy was measured in TTM context with specific focus on pre-hospital or in-hospital emergency settings. RESULTS The systematic search identified 35 studies, 12 performing TTy measurements during TTM in healthy subjects, 17 in patients with acute cardiovascular events, and 6 in patients with acute neurological diseases. The studies showed that TTy was able to track temperature changes induced by either local or whole-body cooling approaches in both pre-hospital and in-hospital settings. Direct comparisons to other core temperature measurements from other body sites were available in 22 studies, which showed a faster and larger change of TTy upon TTM compared to other core temperature measurements. Direct brain temperature measurements were available only in 3 studies and showed a good correlation between TTy and brain temperature, although TTy displayed a tendency to overestimate cooling effects compared to brain temperature. CONCLUSIONS TTy was capable to track temperature changes under a variety of TTM protocols and clinical conditions in both pre-hospital and in-hospital settings. Due to the heterogeneity and paucity of comparative temperature data, future studies are needed to fully elucidate the advantages of TTy in emergency settings and its capability to track brain temperature.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy
- IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy
- Centre for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy
- Department of Anesthesia and Intensive Care, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.
| |
Collapse
|
29
|
Huang M, Shoskes A, Migdady I, Amin M, Hasan L, Price C, Uchino K, Choi CW, Hernandez AV, Cho SM. Does Targeted Temperature Management Improve Neurological Outcome in Extracorporeal Cardiopulmonary Resuscitation (ECPR)? J Intensive Care Med 2021; 37:157-167. [PMID: 34114481 DOI: 10.1177/08850666211018982] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Targeted temperature management (TTM) is a standard of care in patients after cardiac arrest for neuroprotection. Currently, the effectiveness and efficacy of TTM after extracorporeal cardiopulmonary resuscitation (ECPR) is unknown. We aimed to compare neurological and survival outcomes between TTM vs non-TTM in patients undergoing ECPR for refractory cardiac arrest. METHODS We searched PubMed and 5 other databases for randomized controlled trials and observational studies reporting neurological outcomes or survival in adult patients undergoing ECPR with or without TTM. Good neurological outcome was defined as cerebral performance category <3. Two independent reviewers extracted the data. Random-effects meta-analyses were used to pool data. RESULTS We included 35 studies (n = 2,643) with the median age of 56 years (interquartile range [IQR]: 52-59). The median time from collapse to ECMO cannulation was 58 minutes (IQR: 49-82) and the median ECMO duration was 3 days (IQR: 2.0-4.1). Of 2,643, 1,329 (50.3%) patients received TTM and 1,314 (49.7%) did not. There was no difference in the frequency of good neurological outcome at any time between TTM (29%, 95% confidence interval [CI]: 23%-36%) vs. without TTM (19%, 95% CI: 9%-31%) in patients with ECPR (P = 0.09). Similarly, there was no difference in overall survival between patients with TTM (30%, 95% CI: 22%-39%) vs. without TTM (24%, 95% CI: 14%-34%) (P = 0.31). A cumulative meta-analysis by publication year showed improved neurological and survival outcomes over time. CONCLUSIONS Among ECPR patients, survival and neurological outcome were not different between those with TTM vs. without TTM. Our study suggests that neurological and survival outcome are improving over time as ECPR therapy is more widely used. Our results were limited by the heterogeneity of included studies and further research with granular temperature data is necessary to assess the benefit and risk of TTM in ECPR population.
Collapse
Affiliation(s)
- Merry Huang
- Department of Neurology, Neurological Institute, 2569Cleveland Clinic, Cleveland, OH, USA
| | - Aaron Shoskes
- Department of Neurology, Neurological Institute, 2569Cleveland Clinic, Cleveland, OH, USA
| | - Ibrahim Migdady
- Division of Neurocritical Care, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moein Amin
- Department of Neurology, Neurological Institute, 2569Cleveland Clinic, Cleveland, OH, USA
| | - Leen Hasan
- 7712University of Connecticut, Medicine Institute, Farmington, CT, USA
| | - Carrie Price
- Albert S. Cook Library, 1492Towson University, Towson, MD, USA
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, 2569Cleveland Clinic, Cleveland, OH, USA
| | - Chun Woo Choi
- Division of Cardiac Surgery, 1500Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian V Hernandez
- Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, 15504University of Connecticut School of Pharmacy, Storrs, CT, USA.,Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru, USA
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Li X, Li Y, Zhang Z, Bian Q, Gao Z, Zhang S. Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation. Neurosci Lett 2021; 756:135940. [PMID: 33971244 DOI: 10.1016/j.neulet.2021.135940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023]
Abstract
Mitochondrial dysfunction is now considered an important sign of neuronal death during cerebral ischemia/reperfusion (I/R) injury. Studies have shown that the transfer of mitochondria from astrocytes to injured neurons contributes to endogenous neuroprotection after stroke. Basic and clinical studies have shown that mild hypothermia exerts a clear protective effect on neurons after cerebral ischemic injury, but the role of mild hypothermia in this endogenous neuroprotective mechanism remains unclear. Here, we established a neuronal cell oxygen-glucose deprivation (OGD)/reoxygenation (OGD/R)-induced injury model and explored the effect of mild hypothermia on the transfer of mitochondria from astrocytes to injured neurons. Astrocytes in the hypothermia group (33 °C) released more functional mitochondria into the extracellular medium than those in the normal temperature group (37 °C). Compared with cells in the normal temperature group, OGD-injured neuronal cells in the mild hypothermia group exhibited an increased intracellular ATP content, mitochondrial membrane potential (MMP) and cellular viability and a decreased death rate after the addition of astrocyte-derived conditioned medium. Based on the results of this study, mild hypothermia promotes endogenous neuroprotective effects through a mechanism related to functional mitochondria released from astrocytes into the extracellular space and transferred into injured neurons.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanli Li
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhiqiang Zhang
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qinghu Bian
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zan Gao
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Shan Zhang
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
31
|
Fulbert C, Chabardès S, Ratel D. Adjuvant therapeutic potential of moderate hypothermia for glioblastoma. J Neurooncol 2021; 152:467-482. [PMID: 33740164 DOI: 10.1007/s11060-021-03704-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma is the most common malignant brain tumor, currently treated by surgery followed by concomitant radiotherapy and temozolomide-based chemotherapy. Despite these treatments, median survival is only 15 months as a result of tumor recurrence in the resection margins. Here, we propose therapeutic hypothermia - known to have neuroprotective effects - as an adjuvant treatment to maintain residual glioblastoma cells in a dormant state, and thus prevent tumor recurrence. METHODS In vitro experiments were performed on healthy tissue with primary human astrocytes, and four human glioblastoma cell lines: A172, U251, U87, and T98G. We explored the adjuvant potential of moderate hypothermia (28 °C) by studying the reversibility of its inhibitory effects on cell proliferation and comparing them to currently used temozolomide. RESULTS Moderate hypothermia reduced healthy cell growth, but also inhibited glioblastoma cell proliferation even after rewarming. Indeed, hypothermic preconditioning duration strongly enhanced inhibitory effects from 35% after 3 days to 100% after 30 days. In contrast, moderate (28 °C) and severe (23 °C) preconditioning induced similar results. Finally, moderate hypothermia had more uniform inhibitory effects than temozolomide, which reduced proliferation by between 15% and 95%, and also potentiated the effects of the latter. CONCLUSION Moderate hypothermia shows promise as an adjuvant therapy for glioblastoma through its inhibition of cell proliferation beyond direct conditioning and potentiation of the effects of chemotherapy. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably inhibit tumor growth, delay tumor recurrence and reduce inter-patient variability.
Collapse
Affiliation(s)
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.,Neurosurgery Department, CHU Grenoble Alpes, 38000, Grenoble, France.,Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - David Ratel
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.
| |
Collapse
|
32
|
Peretti D, Smith HL, Verity N, Humoud I, de Weerd L, Swinden DP, Hayes J, Mallucci GR. TrkB signaling regulates the cold-shock protein RBM3-mediated neuroprotection. Life Sci Alliance 2021; 4:4/4/e202000884. [PMID: 33563652 PMCID: PMC7893816 DOI: 10.26508/lsa.202000884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.
Collapse
Affiliation(s)
- Diego Peretti
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Heather L Smith
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicholas Verity
- MRC Toxicology Unit at the University of Cambridge, Leicester, UK
| | - Ibrahim Humoud
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Lis de Weerd
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Dean P Swinden
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Joseph Hayes
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
33
|
Matsuo T, Isosaka T, Tang L, Soga T, Kobayakawa R, Kobayakawa K. Artificial hibernation/life-protective state induced by thiazoline-related innate fear odors. Commun Biol 2021; 4:101. [PMID: 33483561 PMCID: PMC7822961 DOI: 10.1038/s42003-020-01629-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Innate fear intimately connects to the life preservation in crises, although this relationships is not fully understood. Here, we report that presentation of a supernormal innate fear inducer 2-methyl-2-thiazoline (2MT), but not learned fear stimuli, induced robust systemic hypothermia/hypometabolism and suppressed aerobic metabolism via phosphorylation of pyruvate dehydrogenase, thereby enabling long-term survival in a lethal hypoxic environment. These responses exerted potent therapeutic effects in cutaneous and cerebral ischemia/reperfusion injury models. In contrast to hibernation, 2MT stimulation accelerated glucose uptake in the brain and suppressed oxygen saturation in the blood. Whole-brain mapping and chemogenetic activation revealed that the sensory representation of 2MT orchestrates physiological responses via brain stem Sp5/NST to midbrain PBN pathway. 2MT, as a supernormal stimulus of innate fear, induced exaggerated, latent life-protective effects in mice. If this system is preserved in humans, it may be utilized to give rise to a new field: "sensory medicine."
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoko Isosaka
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Lijun Tang
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Reiko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan.
| | - Ko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan.
| |
Collapse
|
34
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
35
|
Wu L, Huber M, Wu D, Chen J, Li M, Ding Y, Ji X. Intra-arterial Cold Saline Infusion in Stroke: Historical Evolution and Future Prospects. Aging Dis 2020; 11:1527-1536. [PMID: 33269105 PMCID: PMC7673854 DOI: 10.14336/ad.2020.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 01/04/2023] Open
Abstract
Acute ischemic stroke (AIS) is a perpetual threat to life and functionality due to its high morbidity and mortality. In the past several decades, therapeutic hypothermia has garnered interest as an effective neuroprotective method in the setting of AIS. However, traditional hypothermic methods have been criticized for their low cooling efficiency and side effects. Intra-arterial cold saline infusion (IA-CSI), as a novel hypothermic method, not only minimizes these side effects, but is also perfectly integrated with widely accepted recanalization modalities in AIS, thereby serving as a promising prospect for clinical translation. In this article, we review the historical development of IA-CSI, summarize major studies of IA-CSI in rodents, large animals, and humans to date, and suggest insight into future development prospects in the field of AIS. We hope that this article will provide inspiration for the future application of hypothermia in AIS patients.
Collapse
Affiliation(s)
- Longfei Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mitchell Huber
- 2Department of Emergency Medicine, Ascension St. John Hospital, Detroit, MI, USA
| | - Di Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
37
|
Legriel S. Hypothermia as an adjuvant treatment in paediatric refractory or super-refractory status epilepticus. Dev Med Child Neurol 2020; 62:1017-1023. [PMID: 32412660 DOI: 10.1111/dmcn.14562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
Abstract
Therapeutic hypothermia is among the adjuvant therapies suggested for refractory or super-refractory status epilepticus (R/SR-SE) in paediatric patients. Experimental evidence of neuroprotective and antiseizure effects provides a strong rationale for using therapeutic hypothermia in patients with status epilepticus. Thus, hypothermia between 20°C and 33°C in animals with status epilepticus is associated not only with significantly less neuronal damage, predominantly in the hippocampal CA1, CA2, and CA3 areas, but also with increased seizure latency and decreased seizure frequency and duration. Therapeutic hypothermia has rarely been used in paediatric R/SR-SE. In the few reported cases, seizure control was markedly improved but nearly half the patients experienced recurrences after rewarming. Studies are needed to clarify the modalities and indications of therapeutic hypothermia in paediatric patients with R/SR-SE. WHAT THIS PAPER ADDS: Hypothermia at 20°C to 33°C is neuroprotective and has antiseizure effects in experimental status epilepticus. In children, antiseizure effects are marked but recurrences after rewarming are common.
Collapse
Affiliation(s)
- Stephane Legriel
- Medico-Surgical Intensive Care Department, Centre Hospitalier de Versailles, Le Chesnay, France.,University Paris-Saclay, UVSQ, INSERM, CESP, Team « PsyDev », Villejuif, France.,IctalGroup, Le Chesnay, France
| |
Collapse
|
38
|
Ribaud J, McLernon S, Auzinger G. Targeted temperature management in acute liver failure: A systematic review. Nurs Crit Care 2020; 27:784-795. [PMID: 32602249 PMCID: PMC10078683 DOI: 10.1111/nicc.12524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Targeted temperature management is the modern term for therapeutic hypothermia, where cooling is induced by intensive care clinicians to achieve body temperatures below 36°C. Its use in acute liver failure to improve refractory intracranial hypertension and patient outcomes is not supported by strong quality evidence. AIM This systematic review aims to determine if targeted temperature management improves patient outcome as opposed to normothermia in acute liver failure. METHODS A computerized and systematic search of six academic and medical databases was conducted using the following keywords: "acute liver failure", "fulminant hepatic injury", "targeted temperature management", "therapeutic hypothermia", and "cooling". Broad criteria were applied to include all types of primary observational studies, from case reports to randomized controlled trials. Standardized tools were used throughout to critically appraise and extract data. FINDINGS Nine studies published between 1999 and 2016 were included. Early observational studies suggest a benefit of targeted temperature management in the treatment of refractory intracranial hypertension and in survival. More recent controlled studies do not show such a benefit in the prevention of intracranial hypertension. All studies revealed that the incidence of coagulopathy is not higher in patients treated with targeted temperature management. There remains some uncertainty regarding the increased risk of infection and dysrhythmias. Heterogeneity was found between study types, design, sample sizes, and quality. CONCLUSION Although it does not significantly improve survival, targeted temperature management is efficient in treating episodes of intracranial hypertension and stabilizing an unstable critical care patient without increasing the risk of bleeding. It does not, however, prevent intracranial hypertension. Data heterogeneity may explain the contradictory findings. RELEVANCE TO CLINICAL PRACTICE Controlled studies are needed to elucidate the true clinical benefit of targeted temperature management in improving patient outcome.
Collapse
Affiliation(s)
| | - Siobhan McLernon
- School of Health and Social Care, London South Bank University, London, UK
| | - Georg Auzinger
- Liver Intensive Treatment Unit, Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
39
|
Lee YJ. Targeted temperature management and neuroprotective outcomes of pediatric patients after cardiac arrest. Clin Exp Pediatr 2020; 63:180-181. [PMID: 32460462 PMCID: PMC7254173 DOI: 10.3345/cep.2019.01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
40
|
Neo DT, Nuss E, Hacker MR, Mahoney B, Burris HH. Prenatal selective serotonin reuptake inhibitors and therapeutic hypothermia for suspected hypoxic ischemic encephalopathy. J Perinatol 2020; 40:640-645. [PMID: 31767980 PMCID: PMC7101252 DOI: 10.1038/s41372-019-0564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the association between prenatal selective serotonin reuptake inhibitor (SSRI) exposure and postnatal therapeutic hypothermia for suspected hypoxic ischemic encephalopathy. STUDY DESIGN Matched case-control study of singleton deliveries at a tertiary hospital from 2010 to 2016. Cases were infants treated with therapeutic hypothermia for suspected hypoxic ischemic encephalopathy. Controls were noncase infants, matched on gestational age, maternal age, obstetric provider group, and hospital shift. RESULT Prenatal SSRI exposure occurred in 18.4% of cases compared with 4.1% of controls (aOR: 5.9, 95% CI: 1.8-19.7). Among all cases, 36.8% had evidence of hypoxic ischemic encephalopathy on postnatal MRI. In addition, 28.6% of SSRI-exposed cases and 38.7% of SSRI-unexposed cases had MRI confirmation of hypoxic ischemic encephalopathy, respectively. CONCLUSION Future research to disentangle signs of SSRI exposure from true hypoxic ischemic encephalopathy may facilitate targeting therapeutic hypothermia stewardship toward infants more likely to benefit.
Collapse
Affiliation(s)
- Dayna T Neo
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Emily Nuss
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Michele R Hacker
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brianne Mahoney
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Heather H Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Xie C, Basken R, Finger J, Erstad B. Targeted Temperature Management: Quantifying the Extent of Serum Electrolyte and Blood Glucose Shifts in Postcardiac Arrest Patients. Ther Hypothermia Temp Manag 2020; 10:76-81. [DOI: 10.1089/ther.2018.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christina Xie
- Regional Medical Center of San Jose, San Jose, California
| | - Robyn Basken
- Banner University Medical Center—Tucson, Tucson, Arizona
| | | | - Brian Erstad
- University of Arizona College of Pharmacy, Tucson, Arizona
| |
Collapse
|
42
|
Kafka J, Lukacova N, Sulla I, Maloveska M, Vikartovska Z, Cizkova D. Hypothermia in the course of acute traumatic spinal cord injury. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Truse R, Smyk M, Schulz J, Herminghaus A, Weber APM, Mettler-Altmann T, Bauer I, Picker O, Vollmer C. Regional hypothermia improves gastric microcirculatory oxygenation during hemorrhage in dogs. PLoS One 2019; 14:e0226146. [PMID: 31821374 PMCID: PMC6903746 DOI: 10.1371/journal.pone.0226146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023] Open
Abstract
Mild systemic hypothermia increases gastric mucosal oxygenation (μHbO2) during hemorrhagic shock in dogs. In the context of critical blood loss hypothermia might be fatal due to adverse side effects. Selective regional hypothermia might overcome these limitations. The aim of our study was to analyze the effects of regional gastric and oral mucosal hypothermia on μHbO2 and perfusion (μflow). In a cross-over study six anesthetized dogs were subjected to local oral and gastric mucosal hypothermia (34°C), or maintenance of local normothermia during normovolemia and hemorrhage (-20% blood volume). Macro- and microcirculatory variables were recorded continuously. During normovolemia, local hypothermia increased gastric microcirculatory flow (μflow) without affecting oxygenation (μHbO2) or oral microcirculation. During mild hemorrhagic shock gastric μHbO2 decreased from 72±2% to 38±3% in the normothermic group. This was attenuated by local hypothermia, where μHbO2 was reduced from 74±3% to 52±4%. Local perfusion, oral microcirculation and macrocirculatory variables were not affected. Selective local hypothermia improves gastric μHbO2 during hemorrhagic shock without relevant side effects. In contrast to systemic hypothermia, regional mucosal hypothermia did not affect perfusion and oxygen supply during hemorrhage. Thus, the increased μHbO2 during local hypothermia rather indicates reduced mucosal oxygen demand.
Collapse
Affiliation(s)
- Richard Truse
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
- * E-mail:
| | - Michael Smyk
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| |
Collapse
|
44
|
Cajigas I, Mahavadi AK, Shah AH, Borowy V, Abitbol N, Ivan ME, Komotar RJ, Epstein RH. Analysis of intra-operative variables as predictors of 30-day readmission in patients undergoing glioma surgery at a single center. J Neurooncol 2019; 145:509-518. [PMID: 31642024 DOI: 10.1007/s11060-019-03317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Reducing the time from surgery to adjuvant chemoradiation, by decreasing unnecessary readmissions, is paramount for patients undergoing glioma surgery. The effects of intraoperative risk factors on 30-day readmission rates for such patients is currently unclear. We utilized a predictive model-driven approach to assess the impact of intraoperative factors on 30-day readmission rates for the cranial glioma patient. METHODS Retrospectively, the intraoperative records of 290 patients who underwent glioma surgery at a single institution by a single surgeon were assessed. Data on operative variables including anesthesia specific factors were analyzed via univariate and stepwise regression analysis for impact on 30-day readmission rates. A predictive model was built to assess the capability of these results to predict readmission and validated using leave-one-out cross-validation. RESULTS In multivariate analysis, end case hypothermia (OR 0.28, 95% CI [0.09, 0.84]), hypertensive time > 15 min (OR 2.85, 95% CI [1.21, 6.75]), and pre-operative Karnofsky performance status (KPS) (OR 0.63, 95% CI [0.41, 0.98] were identified as being significantly associated with 30-day readmission rates (chi-squared statistic vs. constant model 25.2, p < 0.001). Cross validation of the model resulted in an overall accuracy of 89.7%, a specificity of 99.6%, and area under the receiver operator curve (AUC) of 0.763. CONCLUSION Intraoperative risk factors may help risk-stratify patients with a high degree of accuracy and improve postoperative patient follow-up. Attention should be paid to duration of hypertension and end-case final temperature as these represent potentially modifiable factors that appear to be highly associated with 30-day readmission rates. Prospective validation of our model is needed to assess its potential for implementation as a screening tool to identify patients undergoing glioma surgery who are at a higher risk of post-operative readmission within 30 days.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA.
| | - Anil K Mahavadi
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA
| | - Veronica Borowy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA
| | - Nathalie Abitbol
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, 33136, USA
| | - Richard H Epstein
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
45
|
Farahany NA, Greely HT, Giattino CM. Part-revived pig brains raise slew of ethical quandaries. Nature 2019; 568:299-302. [PMID: 30996311 DOI: 10.1038/d41586-019-01168-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Sun YJ, Zhang ZY, Fan B, Li GY. Neuroprotection by Therapeutic Hypothermia. Front Neurosci 2019; 13:586. [PMID: 31244597 PMCID: PMC6579927 DOI: 10.3389/fnins.2019.00586] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hypothermia therapy is an old and important method of neuroprotection. Until now, many neurological diseases such as stroke, traumatic brain injury, intracranial pressure elevation, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy have proven to be suppressed by therapeutic hypothermia. Beneficial effects of therapeutic hypothermia have also been discovered, and progress has been made toward improving the benefits of therapeutic hypothermia further through combination with other neuroprotective treatments and by probing the mechanism of hypothermia neuroprotection. In this review, we compare different hypothermia induction methods and provide a summarized account of the synergistic effect of hypothermia therapy with other neuroprotective treatments, along with an overview of hypothermia neuroprotection mechanisms and cold/hypothermia-induced proteins.
Collapse
Affiliation(s)
- Ying-Jian Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Sun YJ, Ma S, Fan B, Wang Y, Wang SR, Li GY. Therapeutic hypothermia protects photoreceptors through activating Cirbp pathway. Neurochem Int 2019; 126:86-95. [DOI: 10.1016/j.neuint.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 02/02/2023]
|
48
|
Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE. The neurocritical care of tuberculous meningitis. Lancet Neurol 2019; 18:771-783. [PMID: 31109897 DOI: 10.1016/s1474-4422(19)30154-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Tuberculous meningitis is the most severe form of tuberculosis and often causes critical illness with high mortality. Two primary management objectives are reducing intracranial pressure, and optimising cerebral perfusion, while killing the bacteria and controlling intracerebral inflammation. However, the evidence base guiding the care of critically ill patients with tuberculous meningitis is poor and many patients do not have access to neurocritical care units. Invasive intracranial pressure monitoring is often unavailable and although new non-invasive monitoring techniques show promise, further evidence for their use is required. Optimal management regimens of neurological complications (eg, hydrocephalus and paradoxical reactions) and of hyponatraemia, which frequently accompanies tuberculous meningitis, remain to be elucidated. Advances in the field of tuberculous meningitis predominantly focus on diagnosis, inflammatory processes, and antituberculosis chemotherapy. However, clinical trials are required to provide robust evidence guiding the most effective supportive, therapeutic, and neurosurgical interventions for tuberculous meningitis that will improve morbidity and mortality.
Collapse
Affiliation(s)
- Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Darma Imran
- Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ursula Rohlwink
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Darsalia V, Johansen OE, Lietzau G, Nyström T, Klein T, Patrone C. Dipeptidyl Peptidase-4 Inhibitors for the Potential Treatment of Brain Disorders; A Mini-Review With Special Focus on Linagliptin and Stroke. Front Neurol 2019; 10:493. [PMID: 31139140 PMCID: PMC6518970 DOI: 10.3389/fneur.2019.00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral stroke is a leading cause of death and persistent disability of elderly in the world. Although stroke prevention by targeting several risk factors such as diabetes and hypertension has decreased the stroke incidence, the total number of strokes is increasing due to the population aging and new preventive therapies are needed. Moreover, post-stroke acute pharmacological strategies aimed to reduce stroke-induced brain injury have failed in clinical trials despite being effective in animal models. Finally, approximately 30% of surviving stroke patients do not recover from stroke and remain permanently dependent on supportive care in activities of daily living. Therefore, strategies to improve stroke recovery in the post-acute phase are highly needed. Linagliptin is a dipeptidyl peptidase-4 inhibitor which is clinically approved to reduce hyperglycemia in type 2 diabetes. The regulation of glycemia by dipeptidyl peptidase-4 inhibition is mainly achieved by preventing endogenous glucagon-like peptide-1 (GLP-1) degradation. Interestingly, linagliptin has also shown glycaemia-independent beneficial effects in animal models of stroke, Parkinson's disease and Alzheimer's disease. In some case the preclinical data have been supported with some clinical data. Although potentially very interesting for the development of new strategies against stroke and neurodegenerative disorders, the mode of action of linagliptin in the brain is still largely unknown and seems to occur in a GLP-1R-independent manner. The purpose of this mini-review is to summarize and discuss the recent experimental and clinical work regarding the effects of linagliptin in the central nervous system, with special emphasis on acute neuroprotection, stroke prevention and post-stroke recovery. We also highlight the main questions in this research field that need to be addressed in clinical perspective.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Han Y, Rajah GB, Hussain M, Geng X. Clinical potential of pre-reperfusion hypothermia in ischemic injury. Neurol Res 2019; 41:697-703. [PMID: 31030645 DOI: 10.1080/01616412.2019.1609160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The damage caused by ischemic stroke is mostly refractory to medical therapies and amounts to a substantial degree of mortality and morbidity in the world. The core tenet of treatment for acute ischemic stroke (AIS) is to save 'reversible' ischemic tissue (ischemic penumbra) as quickly as possible within a limited therapeutic time window. The neuroprotective effect of hypothermia has been proven previously in a large number of animal experiments and clinical trials. Some of these animal and human studies have shown that pre-reperfusion hypothermia can reduce myocardial infarction and improve clinical outcomes. However, to date, there is little research about hypothermia before reperfusion in the animal model and human study of AIS. This review will explore possible benefits of the application of pre-reperfusion hypothermia in the setting of AIS.
Collapse
Affiliation(s)
- Yun Han
- a China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University , Beijing , China.,b Department of Neurology, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Gary B Rajah
- c Department of Neurosurgery, Wayne State University School of Medicine , Detroit , MI , USA
| | - Mohammed Hussain
- c Department of Neurosurgery, Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University , Beijing , China.,b Department of Neurology, Beijing Luhe Hospital, Capital Medical University , Beijing , China.,c Department of Neurosurgery, Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|