1
|
Guo J, Chen Z, Xiao Y, Yu G, Li Y. SATB1 promotes osteogenic differentiation of diabetic rat BMSCs through MAPK signalling activation. Oral Dis 2023; 29:3610-3619. [PMID: 35608610 DOI: 10.1111/odi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Special AT-rich binding protein 1 (SATB1), a chromatin organizer and global transcriptional regulator, plays an important role in tumorigenesis and immune response. However, its function in the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains unknown. Therefore, this study aimed to explore the role of SATB1 in osteogenesis. METHODS BMSCs were collected from the type 2 diabetes rat model and the protein and gene expression of SATB1 and osteospecific genes were evaluated post osteogenic induction. RESULTS SATB1 protein expression significantly decreased in diabetic rat BMSCs whereas it increased in BMSCs following osteogenic induction. SATB1 knockdown significantly suppressed the expression of osteospecific genes, including alkaline phosphatase (Alp), runt-related transcription factor 2, and osteocalcin, and reduced the number of mineral deposits and ALP activity, whereas SATB1 overexpression yielded the opposite results. Moreover, SATB1 knockdown suppressed activation of the MAPK signalling pathway (phosphorylation of p38 and ERK), and MAPK pathway inhibitors could reverse the inhibitory effect of SATB1 knockdown on osteogenic differentiation of BMSCs. CONCLUSION SATB1 plays a key role in the osteogenic differentiation of BMSCs via the p38 MAPK and ERK MAPK signalling pathways. These findings may provide a new strategy for the application of BMSCs in bone regeneration.
Collapse
Affiliation(s)
- Jing Guo
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Zhuochen Chen
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Guiyuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zhou Q, Zhou L, Li J. MiR-218-5p-dependent SOCS3 downregulation increases osteoblast differentiation inpostmenopausal osteoporosis. J Orthop Surg Res 2023; 18:109. [PMID: 36793115 PMCID: PMC9930297 DOI: 10.1186/s13018-023-03580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (POP) is a prevalent skeletal disease among elderly women. Previous study indicated that suppressor of cytokine signaling 3 (SOCS3) participates in the regulation of bone marrow stromal cell (BMSC) osteogenesis. Here, we further investigated the exact function and mechanism of SOCS3 in POP progression. METHODS BMSCs were isolated from Sprague-Dawley rats and treated with Dexamethasone (Dex). Alizarin Red staining and ALP activity assays were applied to assess the osteogenic differentiation of rat BMSCs under the indicated conditions. Osteogenic genes (ALP, OPN, OCN, COL1) mRNA levels were determined using quantitative RT-PCR. Luciferase reporter assay verified the interaction between SOCS3 and miR-218-5p. Rat models of POP were established in ovariectomized (OVX) rats to detect the in vivo effects of SOCS3 and miR-218-5p. RESULTS We found that silencing SOCS3 antagonized the suppressive effects of Dex on the osteogenic differentiation of BMSCs. SOCS3 was found to be targeted by miR-218-5p in BMSCs. The SOCS3 levels were negatively modulated by miR-218-5p in femurs of POP rats. MiR-218-5p upregulation promoted the BMSC osteogenic differentiation, while SOCS3 overexpression reversed the effects of miR-218-5p. Moreover, SOCS3 was highly expressed and miR-218-5p was downregulated in the OVX rat models, and silencing SOCS3 or overexpressing miR-218-5p alleviated POP in OVX rats by promoting osteogenesis. CONCLUSION SOCS3 downregulation mediated by miR-218-5p increases osteoblast differentiation to alleviate POP.
Collapse
Affiliation(s)
- Qian Zhou
- grid.440212.1Department of Geriatrics, Huangshi Central Hospital, Hungshi, 435000 Hubei China
| | - Lihua Zhou
- grid.440212.1Department of Geriatrics, Huangshi Central Hospital, Hungshi, 435000 Hubei China
| | - Jun Li
- Department of Orthopedics, Huangshi Central Hospital, No. 141 Tianjin Avenue, Huangshigang District, Hungshi, 435000, Hubei, China.
| |
Collapse
|
3
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
4
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
5
|
Xu T, Zhou P, Li H, Ding Q, Hua F. MicroRNA-577 aggravates bone loss and bone remodeling by targeting thyroid stimulating hormone receptor in hyperthyroid-associated osteoporosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:539-548. [PMID: 34821002 DOI: 10.1002/tox.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, hyperthyroid-associated osteoporosis has been considered to be the result of increased thyroid hormone levels. The pathogenesis of hyperthyroid-associated osteoporosis remains unclear. Thyroid stimulating hormone receptor (TSHR) is closely associated with osteoporosis. Our study aimed to explore the role of TSHR and its upstream microRNA (miRNA) in hyperthyroid-associated osteoporosis. Bioinformatics analysis (starBase and Targetscan) and a wide range of experiments including reverse-transcription quantitative polymerase chain reaction, luciferase reporter, western blot analysis of osteogenic differentiation markers including OSX, OCN, ALP, OPN, and COL1, hematoxylin and eosin staining, Alizarin Red staining assays were used to explore the function and mechanism of TSHR in hyperthyroid-associated osteoporosis. First, we observed that TSHR was downregulated in bone marrow mesenchymal stem cells (BMSCs) isolated from rats after culture in osteogenic medium for 7 days. Functionally, overexpression of TSHR accelerates BMSC osteogenic differentiation. Mechanistically, we predicted four potential miRNAs for TSHR. MiR-577 was validated to bind with TSHR. Rescue assays showed that miR-577 overexpression inhibited BMSC osteogenic differentiation via targeting TSHR. In vivo experiments showed that miR-577 aggravated bone loss and bone remodeling and our data showed that it is achieved by targeting TSHR in hyperthyroid-associated osteoporosis. This finding may deep our understanding of the pathogenesis of hyperthyroid-associated osteoporosis.
Collapse
Affiliation(s)
- Tongdao Xu
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Zhou
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Huihua Li
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Ding
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fei Hua
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
| |
Collapse
|
6
|
Kim S, Kwon OJ, Lee J, Kim J, Kim TH, Kim K. A Brief Overview of Recent Engineering Approaches for Intervertebral Disc Regeneration Using Adipose Derived Mesenchymal Stem Cell Administration. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-019-0346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Ocampo PE, Vallejo V, Montoya LM, Rocha NS, Landim FDC, Rahal SC. Potential effect of hyaluronic acid and triamcinolone acetate, alone or combined, on chondrogenic differentiation of mesenchymal stem cells. REV COLOMB CIENC PEC 2020. [DOI: 10.17533/udea.rccp.v34n3a06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Osteoarthritis is a complex degenerative disease with several factors contributing to joint damage. Objective: To compare the potential effect of hyaluronic acid (HA) and triamcinolone acetonide (TA), alone or combined, on the in vitro chondrogenic differentiation process of mesenchymal stem cells (MSCs). Methods: MSCs were divided into four groups: Control, HA, TA, and HA/TA combined. Each treatment group was cultured for 14 days in chondrogenic differentiation medium. The chondrogenic differentiation potential was assessed by histology and immunohistochemistry. Results: The HA and HA/TA-treated MSCs presented histological characteristics similar to native chondrocytes. The extracellular matrix (ECM) of TA-treated MSCs was compact and organized. Glycosaminoglycan staining was intense in Control, moderate in TA, slight in HA/TA, and undetectable in HA. Type II collagen immunoreactivity was high in the TA-treated ECM and MSCs. Conclusions: Histological analysis shows that HA influences morphological development similar to chondrocytes of the MSCs, but with low expression of specific cartilage molecules. The TA promotes formation of a compact and organized ECM.
Collapse
|
8
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Kisiday JD, Schwartz JA, Tangtrongsup S, Goodrich LR, Grande DA. Culture Conditions that Support Expansion and Chondrogenesis of Middle-Aged Rat Mesenchymal Stem Cells. Cartilage 2020; 11:364-373. [PMID: 30056741 PMCID: PMC7298599 DOI: 10.1177/1947603518790047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. DESIGN MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. RESULTS During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. CONCLUSIONS These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.
Collapse
Affiliation(s)
- John D. Kisiday
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA,John D. Kisiday, Orthopaedic Research
Center, Department of Clinical Sciences, Colorado State University, Campus
Delivery 1678, Fort Collins, CO 80523, USA.
| | - John A. Schwartz
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | | | - Laurie R. Goodrich
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | - Daniel A. Grande
- The Feinstein Institute for Medical
Research, North Shore–LIJ Health System, Manhasset, NY, USA
| |
Collapse
|
11
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
12
|
Hidalgo Perea S, Lyons LP, Nishimuta JF, Weinberg JB, McNulty AL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:322-337. [PMID: 31661326 PMCID: PMC7188595 DOI: 10.1080/03008207.2019.1680656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-β. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-β and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-β and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Department of Biology, Duke University, Durham, North
Carolina, USA,Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - James F. Nishimuta
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University School of Medicine,
Durham, North Carolina, USA,VA Medical Center, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA,Department of Pathology, Duke University School of
Medicine, Durham, North Carolina, USA,Corresponding Author: Amy L. McNulty,
PhD, Duke University School of Medicine, 355A Medical Sciences Research Building
1, DUMC Box 3093, Durham, NC 27710, Phone: 919-684-6882,
| |
Collapse
|
13
|
Gonzalez-Fernandez T, Sikorski P, Leach JK. Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019; 96:20-34. [PMID: 31302298 PMCID: PMC6717669 DOI: 10.1016/j.actbio.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise significantly in the coming years due to the aging global population and the increase of associated risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic intervention remain limited. The clinical translation of cell-based therapies for the treatment of musculoskeletal disorders faces many challenges including maintenance of cell survival in the harsh in vivo environment and the lack of control over regulating cell phenotype upon implantation. In order to address these challenges, the development of bio-instructive materials to modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of various cell populations. However, the determination of the necessary cues for a specific application and how these signals should be presented from a biomaterial remains elusive. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the incorporation of these strategies into biofabrication and organ-on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Disorders affecting the musculoskeletal system affect individuals across the lifespan and have a profound effect on mobility and quality of life. While small defects in many tissues can heal successfully, larger defects are often unable to heal or instead heal with inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a promising option for clinical translation, yet challenges related to maintaining cell survival and instructing cell phenotype upon implantation have limited the success of this approach. Bio-instructive materials provide an exciting opportunity to modulate cell behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. However, the identification of critical instructive cues and how to present these stimuli is a focus of intense investigation. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues, while also considering exciting progress in the engineering of immunomodulatory and antibacterial materials.
Collapse
Affiliation(s)
| | - Pawel Sikorski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA.
| |
Collapse
|
14
|
Panek M, Antunović M, Pribolšan L, Ivković A, Gotić M, Vukasović A, Caput Mihalić K, Pušić M, Jurkin T, Marijanović I. Bone Tissue Engineering in a Perfusion Bioreactor Using Dexamethasone-Loaded Peptide Hydrogel. MATERIALS 2019; 12:ma12060919. [PMID: 30893951 PMCID: PMC6470940 DOI: 10.3390/ma12060919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
The main goal of this study was the formation of bone tissue using dexamethasone (DEX)-loaded [COCH₃]-RADARADARADARADA-[CONH₂] (RADA 16-I) scaffold that has the ability to release optimal DEX concentration under perfusion force. Bone-marrow samples were collected from three patients during a hip arthroplasty. Human mesenchymal stem cells (hMSCs) were isolated and propagated in vitro in order to be seeded on scaffolds made of DEX-loaded RADA 16-I hydrogel in a perfusion bioreactor. DEX concentrations were as follows: 4 × 10-3, 4 × 10-4 and 4 × 10-5 M. After 21 days in a perfusion bioreactor, tissue was analyzed by scanning electron microscopy (SEM) and histology. Markers of osteogenic differentiation were quantified by real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Minerals were quantified and detected by the von Kossa method. In addition, DEX release from the scaffold in a perfusion bioreactor was assessed. The osteoblast differentiation was confirmed by the expression analysis of osteoblast-related genes (alkaline phosphatase (ALP), collagen I (COL1A1) and osteocalcin (OC). The hematoxylin/eosin staining confirmed the presence of cells and connective tissue, while SEM revealed morphological characteristics of cells, extracellular matrix and minerals-three main components of mature bone tissue. Immunocytochemical detection of collagen I is in concordance with given results, supporting the conclusion that scaffold with DEX concentration of 4 × 10-4 M has the optimal engineered tissue morphology. The best-engineered bone tissue is produced on scaffold loaded with 4 × 10-4 M DEX with a perfusion rate of 0.1 mL/min for 21 days. Differentiation of hMSCs on DEX-loaded RADA 16-I scaffold under perfusion force has a high potential for application in regenerative orthopedics.
Collapse
Affiliation(s)
- Marina Panek
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
| | - Maja Antunović
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Lidija Pribolšan
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, 10000 Zagreb, Croatia.
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| | - Marijan Gotić
- Department of Material Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| | - Andreja Vukasović
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
| | - Katarina Caput Mihalić
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Maja Pušić
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Tanja Jurkin
- Department of Material Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| | - Inga Marijanović
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| |
Collapse
|
15
|
Hu H, Zhao C, Zhang P, Liu Y, Jiang Y, Wu E, Xue H, Liu C, Li Z. miR-26b modulates OA induced BMSC osteogenesis through regulating GSK3β/β-catenin pathway. Exp Mol Pathol 2019; 107:158-164. [PMID: 30768922 DOI: 10.1016/j.yexmp.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUNDS Osteoactivin (OA) is a key regulator promoting bone marrow stromal cells osteogenesis progress, while Dexamethasone (Dex) could inhibit OA induced osteogenesis and lead to osteoporosis. miR-26b increased during BMSC osteogenesis but whether it participates in this progress is enigma. Osteogenesis is under regulation of canonical Wnt signaling pathway which could serve as potential target for miR-26b. It bears therapeutic potential if miR-26b could regulate osteogenesis and antagonize Dex induced Osteoporosis (OP). METHODS BMSC were isolated from bone marrow of rats and induced for osteogenesis by OA administration. We detected miR-26b mRNA level together with osteogenesis related genes or Wnt signal pathway related genes by qRT-PCR. BMSC cells with miR-26b inhibitor or mimics revealed the effect of miR-26b on osteogenesis. The osteogenesis efficiency was detected by Alizarin Red staining and ALP activity. Protein level of canonical Wnt signal pathway and other proteins were detected by Western blot. The interaction between miR-26b and GSK3β was detected by dual luciferase reporter assay. RESULTS We found that miR-26b was increased during OA induced BMSC osteogenesis. Inhibiting miR-26b could lead to osteogenesis inhibition while miR-26b mimics could promote this progress. The key regulator of Wnt signal pathway GSK3β is down-regulated when miR-26b was overexpressed, resulting in β-catenin activation. Since Dex could promote GSK3β expression and inhibit Wnt signal, miR-26b could also alleviate Dex induced osteogenesis inhibition. CONCLUSION Our findings indicate that miR-26b promoted BMSC osteogenesis by directly targeting GSK3β and activating canonical Wnt signal pathway, suggesting miR-26b might be serve as potential therapeutic candidate of osteoporosis.
Collapse
Affiliation(s)
- He Hu
- Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, PR.China
| | - Chuanlong Zhao
- Department of Orthopedics, Ordos Central Hospital, Ordos 017000, Inner Mongolia, PR.China
| | - Peiguang Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, PR.China
| | - Yalong Liu
- Department of Orthopedics, Yangling, Demonstration Zone hospital District Hospital Xianyang 712100, Xian, PR.China
| | - Yulian Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, PR.China
| | - Enquan Wu
- Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, PR.China
| | - Hao Xue
- Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, PR.China
| | - Caiyun Liu
- Hunan Youcheng Biotechnology Co. Ltd, Changsha, 410000, China
| | - Zhehai Li
- Department of Orthopedics, Beijing Northern Hospital, China North Industries, Beijing 100089, PR.China.; Inner Mongolia Medical University, Hohhot 014010, Inner Mongolia, PR.China..
| |
Collapse
|
16
|
Tian F, Zhan Y, Zhu W, Li J, Tang M, Chen X, Jiang J. MicroRNA-497 inhibits multiple myeloma growth and increases susceptibility to bortezomib by targeting Bcl-2. Int J Mol Med 2018; 43:1058-1066. [PMID: 30535471 DOI: 10.3892/ijmm.2018.4019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a common severe hematopoietic malignancy occuring in aged population. MicroRNA (miR)‑497 was previously reported to contribute to the apoptosis of other cell types, presumably through targeting B‑cell lymphoma 2 (Bcl‑2). In the present study, miRNA and protein expression levels were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. The cell proliferation and viability was measured using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2, 5‑diphenyltetrazolium bromide and plate clonality assays, and the cell growth cycle was measured with a flow cytometer. Terminal deoxynucleotidyl transferase (TdT)‑mediated dUTP nick‑end‑labeling, Annexin V and caspase‑3 activity assays were performed to examine the cell apoptotic rates. The results showed that miR‑497 was markedly decreased, whereas Bcl‑2 was enhanced in MM tissues and cell lines. miR‑497 targeted Bcl‑2 and affected its downstream apoptosis‑related genes. The overexpression of miR‑497 promoted MM cell apoptosis through cell cycle arrest, and decreased colony genesis ability and viability. In addition, miR‑497 increased the sensitivity of MM cells to bortezomib. Taken together, miR‑497 suppressed MM cell proliferation and promoted apoptosis by directly targeting Bcl‑2 and altering the expression of downstream apoptosis‑related proteins. The combination of miR‑497 and bortezomib may enhance drug sensitivity, serving as a potentially available therapeutic method for MM.
Collapse
Affiliation(s)
- Faqing Tian
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yong Zhan
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wei Zhu
- Department of Radiology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China, P.R. China
| | - Juheng Li
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Meiqin Tang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaohui Chen
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jian Jiang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
17
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
18
|
Xu C, Chen J, Li L, Pu X, Chu X, Wang X, Li M, Lu Y, Zheng X. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: Implications for new cartilage repair biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:106-114. [PMID: 30274037 DOI: 10.1016/j.msec.2018.07.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Copper (Cu) has drawn considerable attention in the design of biomaterials due to its multifunction, such as antibacterial property, osteogenic and angiogenic ability. However, the effect of Cu on chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential for cartilage repair biomaterials has been rarely studied. Here, we report that Cu can significantly enhance chondrogensis of MSCs. Specifically, in vitro studies showed that Cu could promote MSCs cytoskeleton change, extracellular glycosaminoglycan (GAG) deposition and the chrodrogenic genes (Sox9, Aggrecan, and Col-2) up-regulation. Furthermore, we prepared a Cu-containing alginate (Alg) porous scaffold to assess the chondroinductivity of Cu in vivo. In eight weeks, we found that Alg/Cu scaffolds could induce better formation of new cartilage tissue compared to the pure Alg scaffolds fabricated by the same procedure but without adding Cu. These encouraging results indicate that Cu can bring considerable benefits to the development and application of cartilage repair biomaterials.
Collapse
Affiliation(s)
- Changkui Xu
- Department of Orthopaedic, Guangzhou Overseas Chinese Hospital, No. 613, West Whampoa Road, Tianhe District, Guangzhou 510630, Guangdong, China; Department of Orthopaedic, Foshan Sanshui District People's Hospital, No. 16, West Guanghai Road, Sanshui District, Foshan 528100, Guangdong, China; Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Jiarong Chen
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Lihua Li
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Xiaobing Pu
- Department of Orthopaedic, No.4 West China Teaching Hospital of Sichuan University, No. 18, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiao Chu
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Xiaolan Wang
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Mei Li
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Yao Lu
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China; Department of Orthopaedic, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510282, Guangdong, China.
| | - Xiaofei Zheng
- Department of Orthopaedic, Guangzhou Overseas Chinese Hospital, No. 613, West Whampoa Road, Tianhe District, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
19
|
Kim M, Garrity ST, Steinberg DR, Dodge GR, Mauck RL. Role of dexamethasone in the long-term functional maturation of MSC-laden hyaluronic acid hydrogels for cartilage tissue engineering. J Orthop Res 2018; 36:1717-1727. [PMID: 29178462 PMCID: PMC6948196 DOI: 10.1002/jor.23815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023]
Abstract
The purpose of study was to investigate the maturation of mesenchymal stem cells (MSC) laden in HA constructs with various combinations of chemically defined medium (CM) components and determine the impact of dexamethasone and serum on construct properties. Constructs were cultured in CM with the addition or withdrawal of media components or were transferred to serum containing media that partially represents an in vivo-like condition where pro-inflammatory signals are present. Constructs cultured in CM+ (CM with TGF-β3) and DEX- (CM+ without dexamethasone) conditions produced robust matrix, while those in ITS/BSA/LA- (CM+ without ITS/BSA/LA) and Serum+ (10% FBS with TGF-β3) produced little matrix. While construct properties in DEX- were greater than those in CM+ at 4 weeks, properties in CM+ and DEX- reversed by 8 weeks. While construct properties in DEX- were greater than those in CM+ at 4 weeks, the continued absence or removal of dexamethasone resulted in marked GAG loss by 8 weeks. Conversely, the continued presence or new addition of dexamethasone at 4 weeks further improved or maintained construct properties through 8 weeks. Finally, when constructs were converted to Serum (in the continued presence of TGF-β3 with or without dexamethasone) after pre-culture in CM+ for 4 weeks, GAG loss was attenuated with addition of dexamethasone. Interestingly, however, collagen content and type was not impacted. In conclusion, dexamethasone influences the functional maturation of MSC-laden HA constructs, and may help to maintain properties during long-term culture or with in vivo translation by repressing pro-inflammatory signals. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1717-1727, 2018.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Sean T. Garrity
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A,Address for Correspondence: Robert L. Mauck, Ph.D., Mary Black Ralston Professor of Orthopaedic Surgery, Professor of Bioengineering, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294, Fax: (215) 573-2133,
| |
Collapse
|
20
|
Hu H, Li Z, Lu M, Yun X, Li W, Liu C, Guo A. Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin β1 and activate ERK pathway. Biomed Pharmacother 2018; 105:66-72. [PMID: 29843046 DOI: 10.1016/j.biopha.2018.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS Dexamethasone (Dex) is widely used in autoimmune diseases and inflammation treatment. A sever side effect of prolonged exposure to Dex is increased risk of osteoporosis (OP) or even femoral head necrosis, which would cause much suffer to patients. To reveal the mechanism behind this phenomenon, provide therapeutic guidance and potential target, we analyzed the inhibitory mechanism of Dex on osteogenesis of rat-BMSC. METHODS Rat BMSC were obtained and characterized with FACS analysis. Osteogenesis and adipogenesis abilities were detected with Oil-O-Red staining, Alizarin Red staining and ALP activity analysis. These BMSC were then treated with Dex in combination with recombinant OA or not and detected for osteogenesis related gene expression with qRT-PCR. Protein interaction and expression were detected by Co-Immunoprecipitation and western blot. RESULTS Osteoactivin (OA) could promote integrin β 1 expression and interact with this protein physically, leading to ERK activation and promoting osteogenesis related genes' expression including Runx2, Col1a and OCN in BMSC. Dex, however, could block expression of several upstream genes of OA and decrease OA mRNA and protein level, and eventually suppress integrin β1-ERK activation and lead to decreased osteogenesis, which could finally develop into OP. CONCLUSION Recombinant OA treated BMSC exerted better osteogenesis potency even with Dex administration. This is because additional OA in medium counter-acts with Dex's influence and rescued osteoblast differentiation via up-regulating integrin β1 and activate ERK/MAPK pathway which promotes osteogenesis. Hence, OA/integrin β1 could serve as potential therapeutic target for OP.
Collapse
Affiliation(s)
- He Hu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China; Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, PR China
| | - Zhehai Li
- Department of Orthopedics, Beijing Northern Hospital, China North Industries, Beijing, 100089, PR China; Inner Mongolia Medical University, Hohhot, 014010, Inner Mongolia, PR China
| | - Min Lu
- Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, PR China
| | - Xinyi Yun
- Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, PR China
| | - Wei Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, PR China
| | - Caiyun Liu
- Hunan Youcheng Biotechnology Co. Ltd, Changsha, 410000, PR China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China.
| |
Collapse
|
21
|
Chijimatsu R, Kobayashi M, Ebina K, Iwahashi T, Okuno Y, Hirao M, Fukuhara A, Nakamura N, Yoshikawa H. Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived stem cells in vitro. Cytotechnology 2018; 70:819-829. [PMID: 29352392 DOI: 10.1007/s10616-018-0191-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/11/2018] [Indexed: 02/05/2023] Open
Abstract
Human synovial mesenchymal stem cells (hSMSCs) are a promising cell source for cartilage regeneration because of their superior chondrogenic potential in vitro. This study aimed to further optimize the conditions for inducing chondrogenesis of hSMSCs, focusing on the dose of dexamethasone in combination with transforming growth factor-β3 (TGFβ3) and/or bone morphogenetic protein-2 (BMP2). When hSMSCs-derived aggregates were cultured with TGFβ3, dexamethasone up to 10 nM promoted chondrogenesis, but attenuated it with heterogeneous tissue formation when used at concentrations over than 100 nM. On the other hands, BMP2-induced chondrogenesis was remarkably disturbed in the presence of more than 10 nM dexamethasone along with unexpected adipogenic differentiation. In the presence of both TGFβ3 and BMP2, dexamethasone dose dependently promoted cartilaginous tissue formation as judged by tissue volume, proteoglycan content, and type 2 collagen expression, whereas few adipocytes were detected in the formed tissue when cultures were supplemented with over 100 nM dexamethasone. Even in chondrogenic conditions, dexamethasone thus affected hSMSCs differentiation not only toward chondrocytes, but also towards adipocytes dependent on the dose and combined growth factor. These findings have important implications regarding the use of glucocorticoids in in vitro tissue engineering for cartilage regeneration using hSMSCs.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Masato Kobayashi
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kosuke Ebina
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Toru Iwahashi
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yosuke Okuno
- Graduate School of Medicine, Metabolic Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Makoto Hirao
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Graduate School of Medicine, Metabolic Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Norimasa Nakamura
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Kita-ku Tenma, Osaka, Osaka, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan
| | - Hideki Yoshikawa
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
22
|
Kudva AK, Luyten FP, Patterson J. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. J Biomed Mater Res A 2017; 106:33-42. [PMID: 28875574 DOI: 10.1002/jbm.a.36208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
The combination of progenitor cells with appropriate scaffolds and in vitro culture regimes is a promising area of research in bone and cartilage tissue engineering. Mesenchymal stem cells (MSCs), when encapsulated within hydrogels composed of the necessary cues and/or preconditioned using suitable culture conditions, have been shown to differentiate into bone or cartilage. Here, we utilized human periosteum-derived cells (hPDCs), a progenitor cell population with MSC characteristics, paired with protease-degradable, functionalized polyethylene glycol (PEG) hydrogels to create tissue-engineered constructs. The objective of this study was to investigate the effects of scaffold composition, exploring the addition of the cell-binding motif Arginine-Glycine-Aspartic Acid (RGD), in combination with various in vitro culture conditions on the proliferation, chondrogenic gene expression, and matrix production of encapsulated hPDCs. In growth medium, the hPDCs in the RGD-functionalized hydrogels maintained high levels of viability and demonstrated an enhanced proliferation when compared with hPDCs in non-functionalized hydrogels. Additionally, the RGD-containing hydrogels promoted higher glycosaminoglycan (GAG) synthesis and chondrogenic gene expression of the encapsulated hPDCs, as opposed to the non-functionalized constructs, when cultured in two different chondrogenic media. These results demonstrate the potential of hPDCs in combination with enzymatically degradable PEG hydrogels functionalized with adhesion ligands for cartilage regenerative applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 33-42, 2018.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| |
Collapse
|
23
|
Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017; 57:1-25. [PMID: 28088667 PMCID: PMC5545789 DOI: 10.1016/j.actbio.2017.01.036] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. STATEMENT OF SIGNIFICANCE Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs.
Collapse
Affiliation(s)
- Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Guangzhou Women and Children's Medical Center, Sun Yat-sen University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
24
|
Zhao Y, Hao J, Wang J, Wang J. Effect of Choline on the Composition and Degradation Enzyme of Extracellular Matrix of Mice Chondrocytes Exposed to Fluoride. Biol Trace Elem Res 2017; 175:414-420. [PMID: 27368532 DOI: 10.1007/s12011-016-0787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/15/2016] [Indexed: 01/03/2023]
Abstract
Choline has been shown to mediate damage of the chondrocyte matrix and degradation enzymes of mice exposed to fluoride (F). To test the action of choline, pregnant mice were treated with differing amounts of F and choline. Newborn mice were weaned at 21 days after birth and treated with the same doses of F and choline as they mothers for 12 weeks. Using hematoxylin-eosin (HE) staining, real-time PCR (RT-PCR), and western blotting, changes in the structure of the cartilage, the expression of mRNA and protein related to proteoglycans (PG), and degradation enzymes were detected. The RT-PCR results show that the expression of the Aggrecan (Acan), transforming growth factor beta (TGF-β1), and Aggrecanases-1 gene were abnormal in the high fluoride (HiF) group, and treatments with choline reversed this phenomenon. The western blotting results show that the protein expression of Aggrecanases-1 was significantly increased in the HiF group (p < 0.01). These findings suggest that F can change the morphology of cartilage tissue, the gene expression of the Acan, TGF-β1, Aggrecanases-1, and the protein expression of the Acan, and that choline can attenuate the effect of F. This may provide the basis for the treatment and prevention of fluorosis.
Collapse
Affiliation(s)
- Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jing Hao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jinming Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
25
|
Thakurta SG, Sahu N, Miller A, Budhiraja G, Akert L, Viljoen H, Subramanian A. Long-term culture of human mesenchymal stem cell-seeded constructs under ultrasound stimulation: evaluation of chondrogenesis. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Armakolas N, Dimakakos A, Armakolas A, Antonopoulos A, Koutsilieris M. Possible role of the Ec peptide of IGF‑1Ec in cartilage repair. Mol Med Rep 2016; 14:3066-72. [PMID: 27571686 PMCID: PMC5042773 DOI: 10.3892/mmr.2016.5627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
The Ec peptide (PEc) of insulin-like growth factor 1 Ec (IGF-1Ec) induces human mesenchymal stem cell (hMSC) mobilization and activates extracellular signal‑regulated kinase 1/2 (ERK 1/2) in various cells. The aim of the present study was to examine the effects of PEc on the mobilization and differentiation of hMSCs, as well as the possibility of its implementation in combination with transforming growth factor β1 (TGF‑β1) for cartilage repair. The effects of the exogenous administration of PEc and TGF‑β1, alone and in combination, on hMSCs were assessed using a trypan blue assay, reverse transcription-quantitative polymerase chain reaction, western blot analysis, Alcian blue staining, wound healing assays and migration/invasion assays. It was determined that PEc is involved in the differentiation process of hMSCs towards hyaline cartilage. Treatment of hMSCs with either PEc, TGF‑β1 or both, demonstrated comparable cartilage matrix deposition. Furthermore, treatment with PEc in combination with TGF‑β1 was associated with a significant increase in hMSC mobilization when compared with treatment with TGF‑β1 or PEc alone (P<0.05). Thus, PEc appears to facilitate in vitro hMSC mobilization and differentiation towards chondrocytes, enhancing the role of TGF‑β1.
Collapse
Affiliation(s)
| | - Andreas Dimakakos
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
27
|
Tatman PD, Muhonen EG, Wickers ST, Gee AO, Kim ES, Kim DH. Self-assembling peptides for stem cell and tissue engineering. Biomater Sci 2016; 4:543-54. [PMID: 26878078 PMCID: PMC4803621 DOI: 10.1039/c5bm00550g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regenerative medicine holds great potential to address many shortcomings in current medical therapies. An emerging avenue of regenerative medicine is the use of self-assembling peptides (SAP) in conjunction with stem cells to improve the repair of damaged tissues. The specific peptide sequence, mechanical properties, and nanotopographical cues vary widely between different SAPs, many of which have been used for the regeneration of similar tissues. To evaluate the potential of SAPs to guide stem cell fate, we extensively reviewed the literature for reports of SAPs and stem cell differentiation. To portray the most accurate summary of these studies, we deliberately discuss both the successes and pitfalls, allowing us to make conclusions that span the breadth of this exciting field. We also expand on these conclusions by relating these findings to the fields of nanotopography, mechanotransduction, and the native composition of the extracellular matrix in specific tissues to identify potential directions for future research.
Collapse
Affiliation(s)
- Philip D Tatman
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Ethan G Muhonen
- School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sean T. Wickers
- Department of Chemistry, University of Colorado, Denver, Colorado, USA
| | - Albert O. Gee
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Eung-Sam Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Eng Part A 2016; 22:621-32. [PMID: 26956216 DOI: 10.1089/ten.tea.2016.0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While significant progress has been made toward engineering functional cartilage constructs with mechanical properties suitable for in vivo loading, the impact on these grafts of inflammatory cytokines, chemical factors that are elevated with trauma or osteoarthritis, is poorly understood. Previous work has shown dexamethasone to be a critical compound for cultivating cartilage with functional properties, while also providing chondroprotection from proinflammatory cytokines. This study tested the hypothesis that the incorporation of poly(lactic-co-glycolic acid) (PLGA) (75:25) microspheres that release dexamethasone from within chondrocyte-seeded agarose hydrogel constructs would promote development of constructs with functional properties and protect constructs from the deleterious effects of interleukin-1α (IL-1α). After 28 days of growth culture, experimental groups were treated with IL-1α (10 ng/mL) for 7 days. Reaching native equilibrium moduli and proteoglycan levels, dexamethasone-loaded microsphere constructs exhibited tissue properties similar to microsphere-free control constructs cultured in dexamethasone-supplemented culture media and were insensitive to IL-1α exposure. These findings are in stark contrast to constructs containing dexamethasone-free microspheres or no microspheres, cultured without dexamethasone, where IL-1α exposure led to significant tissue degradation. These results support the use of dexamethasone delivery from within engineered cartilage, through biodegradable microspheres, as a strategy to produce mechanically functional tissues that can also combat the deleterious effects of local proinflammatory cytokine exposure.
Collapse
Affiliation(s)
- Brendan L Roach
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Arta Kelmendi-Doko
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elaine C Balutis
- 3 Department of Orthopedics and Sports Medicine, Mount Sinai Health System , New York, New York
| | - Kacey G Marra
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,6 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
29
|
Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res A 2016; 104:1002-16. [DOI: 10.1002/jbm.a.35638] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sotirios Koutsopoulos
- Center for Biomedical Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| |
Collapse
|
30
|
Tangtrongsup S, Kisiday JD. Effects of Dexamethasone Concentration and Timing of Exposure on Chondrogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Cartilage 2016; 7:92-103. [PMID: 26958321 PMCID: PMC4749745 DOI: 10.1177/1947603515595263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Dexamethasone is known to support mesenchymal stem cell (MSC) chondrogenesis, although the effects of dose and timing of exposure are not well understood. The objective of this study was to investigate these variables using a laboratory model of MSC chondrogenesis. DESIGN Equine MSCs were encapsulated in agarose and cultured in chondrogenic medium with 1 or 100 nM dexamethasone, or without dexamethasone, for 15 days. Samples were analyzed for extracellular matrix (ECM) accumulation, prostaglandin E2 and alkaline phosphatase secretion, and gene expression of selected collagens and catabolic enzymes. Timing of exposure was evaluated by ECM accumulation after dexamethasone was withdrawn over the first 6 days, or withheld for up to 3 or 6 days of culture. RESULTS ECM accumulation was not significantly different between 1 and 100 nM dexamethasone, but was suppressed ~40% in dexamethasone-free cultures. Prostaglandin E2 secretion, and expression of catabolic enzymes, including matrix metalloproteinase 13, and type X collagen was generally lowest in 100 nM dexamethasone and not significantly different between 1 nM and dexamethasone-free cultures. Dexamethasone could be withheld for at least 2 days without affecting ECM accumulation, while withdrawal studies suggested that dexamethasone supports ECM accumulation beyond day 6. CONCLUSION One nanomolar dexamethasone supported robust cartilage-like ECM accumulation despite not having an effect on markers of inflammation, although higher concentrations of dexamethasone may be necessary to suppress undesirable hypertrophic differentiation. While early exposure to dexamethasone was not critical, sustained exposure of at least a week appears to be necessary to maximize ECM accumulation.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - John D. Kisiday
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA,John D. Kisiday, Orthopaedic Research Center, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA.
| |
Collapse
|
31
|
Sridharan B, Lin SM, Hwu AT, Laflin AD, Detamore MS. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels. PLoS One 2015; 10:e0141479. [PMID: 26719986 PMCID: PMC4697858 DOI: 10.1371/journal.pone.0141479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance.
Collapse
Affiliation(s)
- BanuPriya Sridharan
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Staphany M. Lin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Alexander T. Hwu
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Amy D. Laflin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael S. Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Siengdee P, Radeerom T, Kuanoon S, Euppayo T, Pradit W, Chomdej S, Ongchai S, Nganvongpanit K. Effects of corticosteroids and their combinations with hyaluronanon on the biochemical properties of porcine cartilage explants. BMC Vet Res 2015; 11:298. [PMID: 26637428 PMCID: PMC4669618 DOI: 10.1186/s12917-015-0611-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 11/28/2015] [Indexed: 01/01/2023] Open
Abstract
Background Intra-articular injection of corticosteroids is used to treat the inflammatory pain of arthritis and osteoarthritis (OA), but our previous study found a deleterious effect of these steroids on chondrocyte cells. Hyaluronic acid (HA) injection has been suggested as a means to counteract negative side effects through replenishment of synovial fluid that can decrease pain in affected joints. To better understand the effects of corticosteroids on these processes, dexamethasone (Dex) and prednisolone (Pred) were administered to porcine cartilage explants at several concentrations with and without HA. We examined corticoid effects by determining sulfate-glycosaminoglycan (s-GAG) and uronic acid (UA) content of the explant media, and safranin-O staining of the cells. Analysis of lactate dehydrogenase (LDH) activity was conducted to assess cell cytotoxicity. Results Dex treatment significantly reduced cellular cytotoxicity compared to the other treatment groups, especially with regards to the release of s-GAG, and protects against superficial proteoglycan damage. However, there was no difference between Pred and Dex, with and without HA, in the UA content remaining in porcine cartilage explants. Conclusions The data suggest that combinations of Dex and Pred with HA did not have a significant effect on protection or enhancement of the articular cartilage matrix under the current conditions.
Collapse
Affiliation(s)
- Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Tiwaporn Radeerom
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Similan Kuanoon
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Waranee Pradit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Siriwan Ongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
33
|
Florine EM, Miller RE, Liebesny PH, Mroszczyk KA, Lee RT, Patwari P, Grodzinsky AJ. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Eng Part A 2014; 21:637-46. [PMID: 25231349 DOI: 10.1089/ten.tea.2013.0679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix production and integration with native tissue.
Collapse
Affiliation(s)
- Emily M Florine
- 1 Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
34
|
Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering. Expert Rev Mol Med 2014; 16:e12. [PMID: 25089851 DOI: 10.1017/erm.2014.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the limited regenerative capacity of cartilage tissue, cartilage repair remains a challenge in clinical treatment. Tissue engineering has emerged as a promising and important approach to repair cartilage defects. It is well known that material scaffolds are regarded as a fundamental element of tissue engineering. Novel biomaterial scaffolds formed by self-assembling peptides consist of nanofibre networks highly resembling natural extracellular matrices, and their fabrication is based on the principle of molecular self-assembly. Indeed, peptide nanofibre scaffolds have obtained much progress in repairing various damaged tissues (e.g. cartilage, bone, nerve, heart and blood vessel). This review outlines the rational design of peptide nanofibre scaffolds and their potential in cartilage tissue engineering.
Collapse
|
35
|
Jeon SY, Park JS, Yang HN, Lim HJ, Yi SW, Park H, Park KH. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells. Biomaterials 2014; 35:8236-48. [PMID: 24965885 DOI: 10.1016/j.biomaterials.2014.05.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 01/16/2023]
Abstract
During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed.
Collapse
Affiliation(s)
- Su Yeon Jeon
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea
| | - Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea
| | - Han Na Yang
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea
| | - Hye Jin Lim
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea
| | - Se Won Yi
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang Univeristy, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Ace-Core Building, 502 Yatap-Dong, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 135-081, Republic of Korea.
| |
Collapse
|