1
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Putri IL, Fatchiyah, Pramono C, Bachtiar I, Latief FDE, Utomo B, Rachman A, Soesilawati P, Hakim L, Rantam FA, Perdanakusuma DS. Alveolar Repair Using Cancellous Bone and Beta Tricalcium Phosphate Seeded With Adipose-Derived Stem Cell. Cleft Palate Craniofac J 2024; 61:555-565. [PMID: 36237116 DOI: 10.1177/10556656221132372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) have been subject of several studies due to their abundance, ease of preparation, and application in bone regeneration. We aim to compare effectiveness of alveolar reconstruction utilizing human cancellous freeze-dried graft (HCG) and beta tricalcium phosphate (BTP), both seeded with human ADSC (hADSC) and autologous bone graft (ABG). MATERIAL AND METHODS A 5 × 5 mm alveolar defect in 36 male Wistar rats were treated using: ABG (C), HCG-hADSC (H1), and BTP-hADSC (H2). At 1 and 8 weeks after surgery, runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osterix (OSX), and bone morphogenetic protein 2 (BMP2; g/mL) were quantified using immunohistochemistry, while bone tissue volume (BV, mm3), bone tissue volume fraction (BF, percentage), and trabecular thickness of bone (TT, mm) were assessed using micro-computed tomography (CT). RESULTS One week after surgery, H2 was higher in RUNX2, OSX, ALP, and BMP2 than C (P < .05). Only RUNX2 and OSX were found to be higher in H1 than C, while ALP and BMP2 were higher in H2 than H1. Micro-CT revealed that H2 had a higher TT than C and C had a higher TT than H1 (P < .05). Eight weeks after surgery, both H2 and H1 was higher in RUNX2, OSX, ALP, and BMP2 than C (P < .05). RUNX2 and BMP2 were found to be higher in H1 than H2. Micro-CT revealed that H2 had higher BV and TT than C and H1 (P < .05). CONCLUSIONS Exogenous hADSC strengthened the effectiveness of HCG and BTP to accelerate osteogenesis, osteoconduction, and osteoinduction. The latter was the most successful in bone formation, followed by HCG and ABG.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fatchiyah
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
| | - Coen Pramono
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Indra Bachtiar
- Regenic Laboratory, Stem Cell and Cancer Institute, Jakarta, Indonesia
| | - Fourier Dzar Eljabbar Latief
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Budi Utomo
- Department of Community Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Arif Rachman
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Lukman Hakim
- Department of Urology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - David Sontani Perdanakusuma
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
4
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
5
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Barreiro BOB, Koth VS, Sesterheim P, Salum FG, Rübensam G, Augustin AH, Cherubini K. Autogenous dentin combined with mesenchymal stromal cells as an alternative alveolar bone graft: an in vivo study. Clin Oral Investig 2022; 27:1907-1922. [PMID: 36574044 DOI: 10.1007/s00784-022-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Considering the chemical and structural properties of dentin, this study was aimed at evaluating the effect of dentin matrix alone or combined with mesenchymal stromal cells (MSC) on postextraction alveolar bone regeneration. MATERIAL AND METHODS Wistar rats were subjected to tooth extraction with osteotomy and allocated into groups according to the graft inserted: (1) Gelita-Spon®, (2) Bio-Oss®, (3) Dentin, (4) MSC, (5) Dentin/MSC, and (6) Control. Maxillae were analyzed by means of hematoxylin and eosin (H&E) staining, immunohistochemical (IHC) analysis, microcomputed tomography (micro-CT), and scanning electron microscopy (SEM). Serum levels of calcium and phosphorus were quantified. RESULTS The Bio-Oss group showed less bone than Gelita-Spon and Dentin/MSC; no other significant differences were seen in H&E analysis. The Bio-Oss group showed higher expression of collagen type I compared to the Dentin and Dentin/MSC groups and also higher osteocalcin expression than the Dentin/MSC group. There was a tendency of higher expression of osteopontin in the MSC, Dentin, and Dentin/MSC groups and higher VEGF in the MSC group. On micro-CT analysis, the Bio-Oss and the Dentin/MSC groups exhibited greater bone volume than the Control. Serum calcium and phosphorus levels did not significantly differ between the groups. SEM analysis depicted particles of Bio-Oss and dentin in the respective groups, as well as significant cellularity in the MSC group. CONCLUSION Autogenous nondemineralized dentin is an alternative for alveolar bone grafting, which can be improved by combination with MSC. CLINICAL RELEVANCE This work provides support for the clinical applicability of dentin graft alone or combined with MSC.
Collapse
Affiliation(s)
- Bernardo Ottoni Braga Barreiro
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valesca Sander Koth
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Experimental Cardiology Center, Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Gonçalves Salum
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rübensam
- Toxicology and Pharmacology Research Center (INTOX), School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adolpho Herbert Augustin
- Institute of Petroleum and Natural Resources (IPR), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karen Cherubini
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Estomatologia, Hospital São Lucas PUCRS, Av. Ipiranga, 6690 Sala 231, Bairro Jardim Botânico, CEP: 90.610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Bulajić DV, Drljača J, Čapo I, Savić SM, Vojisavljević K, Hodžić A, Sekulić S, Bajkin BV. Biocompatibility of mesoporous SBA-16/hydroxyapatite nanocomposite and dentin demineralized particles on human dental pulp stem cells. Microsc Res Tech 2021; 85:1557-1567. [PMID: 34888993 DOI: 10.1002/jemt.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
In the present work, a biomaterial (SBA-16/HA) based on the growth of hydroxyapatite (HA) particles within an organized silica structure SBA-16 (Santa Barbara Amorphous-16) was developed to evaluate its application to act as a porous microenvironment promoting attachment and viability of human dental pulp stem cells of healthy deciduous teeth (SHED). First, SHED were isolated and their phenotypes were evaluated by flow cytometry. The samples of SBA-16/HA were characterized by X-ray diffraction (XRD), small and wide angle X-ray scattering (SWAXS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive spectra detector (EDS). Afterward, cells were cultured in the eluates of the above-mentioned biomaterial aged for 24 hr, 7. and 14 days. Bio-Oss® and dentin particles are involved for comparison and cells are cultured in the eluates of these two materials also. Thiazolyl Blue Tetrazolium bromide assay-MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay) was used for the determination of cell viability. The results obtained by all aforementioned characterization methods of SBA-16/HA, revealed a uniform spherical mesoporous structure, an intrinsic characteristic of this material. This material displayed excellent biocompatibility on SHEDs, and even proliferative potential, indicating that SBA-16/HA could potentially serve as a suitable substrate for bone regeneration. Contrary to SBA-16/HA, dentin particles showed low cytotoxicity at all time points, compared to control and Bio-Oss®groups. Our results substantiate the idea that SBA-16/HA has a beneficial effect on SHEDs, thus paving the way toward developing new material for bone replacement.
Collapse
Affiliation(s)
- Dragica V Bulajić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Jovana Drljača
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Ivan Čapo
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.,Faculty of Medicine, Department of Histology and Embryology, University of Novi Sad, Novi Sad, Serbia
| | - Slavica M Savić
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
| | | | - Aden Hodžić
- Central European Research Infrastructure Consortium, Basovizza, Italy
| | - Slobodan Sekulić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Neurology, University Hospital, Clinical Center of Vojvodina, Hajduk Veljkova 1-7, Novi Sad, 21000, Serbia
| | - Branislav V Bajkin
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Dental Clinic of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
9
|
Bueno DF, Kabayashi GS, Pinheiro CCG, Tanikawa DYS, Raposo-Amaral CE, Rocha DL, Ferreira JRM, Shibuya Y, Hokugo A, Jarrahy R, ZuK PA, Passos-Bueno MR. Human levator veli palatini muscle: a novel source of mesenchymal stromal cells for use in the rehabilitation of patients with congenital craniofacial malformations. Stem Cell Res Ther 2020; 11:501. [PMID: 33239080 PMCID: PMC7687766 DOI: 10.1186/s13287-020-02017-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 12/02/2022] Open
Abstract
Background Bone reconstruction in congenital craniofacial differences, which affect about 2–3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods We obtained levator veli palatini muscle fragments (3–5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. Results Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02017-7.
Collapse
Affiliation(s)
- Daniela Franco Bueno
- Hospital Sírio-Libanês, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil. .,Hospital Municipal Infantil Menino Jesus, São Paulo, SP, Brazil.
| | - Gerson Shigueru Kabayashi
- Universidade de São Paulo - USP, Instituto de Biociências, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | | | - Daniela Y S Tanikawa
- Hospital Sírio-Libanês, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil.,Hospital Municipal Infantil Menino Jesus, São Paulo, SP, Brazil
| | | | | | - José Ricardo Muniz Ferreira
- Instituto Militar de Engenharia (IME), Departamento de Ciências de Materiais, Programa de Pós-graduação em Ciências de Materiais, Rio de Janeiro, RJ, Brazil
| | - Yoichiro Shibuya
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Akishige Hokugo
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Reza Jarrahy
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Patricia A ZuK
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Maria Rita Passos-Bueno
- Universidade de São Paulo - USP, Instituto de Biociências, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Shi A, Heinayati A, Bao D, Liu H, Ding X, Tong X, Wang L, Wang B, Qin H. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther 2019; 10:172. [PMID: 31196174 PMCID: PMC6567469 DOI: 10.1186/s13287-019-1281-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinically, for stem cell-based therapy (SCBT), autologous stem cells are considered better than allogenic stem cells because of little immune rejection and no risk of communicable disease infection. However, severe maxillofacial bone defects restoration needs sufficient autologous stem cells, and this remains a challenge worldwide. Human gingival mesenchymal stem cells (hGMSCs) derived from clinically discarded, easily obtainable, and self-healing autologous gingival tissues, have higher proliferation rate compared with autologous bone marrow mesenchymal stem cells (hBMSCs). But for clinical bone regeneration purpose, GMSCs have inferior osteogenic differentiation capability. In this study, a TGF-β signaling inhibitor SB431542 was used to enhance GMSCs osteogenesis in vitro and to repair minipig severe maxillofacial bone defects. METHODS hGMSCs were isolated and cultured from clinically discarded gingival tissues. The effects of SB431542 on proliferation, apoptosis, and osteogenic differentiation of hGMSCs were analyzed in vitro, and then, SB431542-treated hGMSCs composited with Bio-Oss® were transplanted into immunocompromised mice subcutaneously to explore osteogenic differentiation in vivo. After that, SB431542-treated autologous pig GMSCs (pGMSCs) composited with Bio-Oss® were transplanted into circular confined defects (5 mm × 12 mm) in minipigs maxillary to investigate severe bone defect regeneration. Minipigs were sacrificed at 2 months and nude mice at 8 weeks to retrieve specimens for histological or micro-CT or CBCT analysis. Effects of SB431542 on TGF-β and BMP signaling in hGMSCs were investigated by Western Blot or qRT-PCR. RESULTS One micromolar of SB431542 treatment induced a robust osteogenesis of hGMSCs in vitro, without adverse effect on apoptosis and growth. In vivo, 1 μM SB431542 treatment also enabled striking osteogenesis of hGMSCs subcutaneously in nude mice and advanced new bone formation of pGMSCs in minipig maxillary bone defect model. In addition, SB431542-treated hGMSCs markedly increased bone-related proteins expression, and BMP2 and BMP4 gene expression. Conversely, SMAD3 protein-dependent TGF-β signal pathway phosphorylation was decreased. CONCLUSIONS Our study show that osteogenic differentiation of GMSCs treated with TGF-β signaling inhibitor SB431542 was increased, and SB431542-treated autologous pig GMSCs could successfully repair minipig severe maxillofacial bone defects. This preclinical study brings about a promising large bone regeneration therapeutic potential of autologous GMSCs induced by SB431542 in clinic settings.
Collapse
Affiliation(s)
- Anyuan Shi
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Aerali Heinayati
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Dongyu Bao
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Huifen Liu
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xiaochen Ding
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xin Tong
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Liudi Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Haiyan Qin
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| |
Collapse
|
11
|
Alici-Garipcan A, Korkusuz P, Bilgic E, Askin K, Aydin HM, Ozturk E, Inci I, Ozkizilcik A, Kamile Ozturk K, Piskin E, Vargel I. Critical-size alveolar defect treatment via TGF-ß3 and BMP-2 releasing hybrid constructs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:415-436. [DOI: 10.1080/09205063.2019.1571397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aybuke Alici-Garipcan
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Elif Bilgic
- Faculty of Medicine Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Kerem Askin
- Faculty of Dentistry Department of Endodontics, Hacettepe University, Ankara, Turkey
| | - Halil M. Aydin
- Faculty of Engineering Environmental Engineering Department & Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Eda Ozturk
- Faculty of Medicine Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Ilyas Inci
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Asya Ozkizilcik
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | | | - Erhan Piskin
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University Ankara, Ankara, Turkey
| | - Ibrahim Vargel
- Faculty of Medicine Department of Plastic Reconstructive and Aesthetic Surgery & Bioengineering Division, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng 2018; 9:2041731417752766. [PMID: 29375756 PMCID: PMC5777558 DOI: 10.1177/2041731417752766] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.
Collapse
|
13
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Alveolar bone tissue engineering in critical-size defects of experimental animal models: a systematic review and meta-analysis. J Tissue Eng Regen Med 2017; 11:2935-2949. [PMID: 27524517 DOI: 10.1002/term.2198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 01/17/2023]
Abstract
Regeneration of large, 'critical-size' bone defects remains a clinical challenge. Bone tissue engineering (BTE) is emerging as a promising alternative to autogenous, allogeneic and biomaterial-based bone grafting. The objective of this systematic review was to answer the focused question: in animal models, do cell-based BTE strategies enhance regeneration in alveolar bone critical-size defects (CSDs), compared with grafting with only biomaterial scaffolds or autogenous bone? Following PRISMA guidelines, electronic databases were searched for controlled animal studies reporting maxillary or mandibular CSD and implantation of mesenchymal stem cells (MSCs) or osteoblasts (OBs) seeded on biomaterial scaffolds. A random effects meta-analysis was performed for the outcome histomorphometric new bone formation (%NBF). Thirty-six studies were included that reported on large- (monkeys, dogs, sheep, minipigs) and small-animal (rabbits, rats) models. On average, studies presented with an unclear-to-high risk of bias and short observation times. In most studies, MSCs or OBs were used in combination with alloplastic mineral-phase scaffolds. In five studies, cells were modified by ex vivo gene transfer of bone morphogenetic proteins (BMPs). The meta-analysis indicated statistically significant benefits in favour of: (1) cell-loaded vs. cell-free scaffolds [weighted mean difference (WMD) 15.59-49.15% and 8.60-13.85% NBF in large- and small-animal models, respectively]; and (2) BMP-gene-modified vs. unmodified cells (WMD 10.06-20.83% NBF in small-animal models). Results of cell-loaded scaffolds vs. autogenous bone were inconclusive. Overall, heterogeneity in the meta-analysis was high (I2 > 90%). In summary, alveolar bone regeneration is enhanced by addition of osteogenic cells to biomaterial scaffolds. The direction and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of BTE. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
14
|
Hosseinpour S, Ghazizadeh Ahsaie M, Rezai Rad M, Baghani MT, Motamedian SR, Khojasteh A. Application of selected scaffolds for bone tissue engineering: a systematic review. Oral Maxillofac Surg 2017; 21:109-129. [PMID: 28194530 DOI: 10.1007/s10006-017-0608-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE The current systematic review investigated the results of application of some of the most commonly used scaffolds in conjugation with stem cells and growth factors in animal and clinical studies. METHODS A comprehensive electronic search was conducted according to the PRISMA guidelines in NCBI PMC and PubMed from January 1970 to December 2015 limited to English language publications with available full texts. In vivo studies in relation to "bone healing," "bone regeneration," and at least one of the following items were investigated: allograft, β-tricalcium phosphate, deproteinized bovine bone mineral, hydroxyapetite/tricalcium phosphate, nanohydroxyapatite, and composite scaffolds. RESULTS A total of 1252 articles were reviewed, and 46 articles completely fulfilled the inclusion criteria of this study. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used. Among studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells, β-tricalcium phosphate is the most frequently used scaffold, and platelet-rich plasma is the most commonly used growth factor. CONCLUSION The current review aimed to inform reconstructive surgeons of how combinations of various mesenchymal stem cells, scaffolds, and growth factors enhance bone regeneration. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Students' Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Ghazizadeh Ahsaie
- School of Dentistry, Students' Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Research, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Baghani
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Prosthodontics Department, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Sabali M, Mangano A, Lianos GD, Boni L, Dionigi G, Mangano A. Bone regeneration using mesenchymal stem cells: challenges and future perspectives in regenerative surgery. Regen Med 2016; 10:543-7. [PMID: 26237699 DOI: 10.2217/rme.15.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Maja Sabali
- Department of Craniofacial Development & Stem Cell Biology, King's College London Dental Institute, Floor 27, Tower, Guy's Hospital London, SE1 9RT, UK
| | | | - Georgios D Lianos
- Center for Biosystems & Genomic Network Medicine - CBS.GenNetMed, University of Ioannina, Ioannina, GR 451 10, Greece.,Department of Surgery, University of Ioannina, Ioannina, GR 451 10, Greece
| | - Luigi Boni
- Department of Surgical Sciences & Human Morphology, Insubria University Vares-Como, 1st Division of General Surgery Ospedale di Circolo e Fondazione Macchi, Viale Luigi Borri 57, 21100 Varese, Italy
| | - Gianlorenzo Dionigi
- Department of Surgical Sciences & Human Morphology, Insubria University Vares-Como, 1st Division of General Surgery Ospedale di Circolo e Fondazione Macchi, Viale Luigi Borri 57, 21100 Varese, Italy
| | - Alberto Mangano
- Department of Surgical Sciences & Human Morphology, Insubria University Vares-Como, 1st Division of General Surgery Ospedale di Circolo e Fondazione Macchi, Viale Luigi Borri 57, 21100 Varese, Italy.,Ospedale di Circolo e Fondazione Macchi, Viale Luigi Borri 57, 21100 Varese, Italy
| |
Collapse
|
16
|
Caballero M, Morse JC, Halevi AE, Emodi O, Pharaon MR, Wood JS, van Aalst JA. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies. Tissue Eng Part C Methods 2016; 21:898-908. [PMID: 25837453 DOI: 10.1089/ten.tec.2014.0646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect.
Collapse
Affiliation(s)
- Montserrat Caballero
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Justin C Morse
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | | | - Omri Emodi
- 4 Oral and Maxillofacial Surgery, Rambam Medical Center , Haifa, Israel
| | - Michael R Pharaon
- 5 Plastic Surgery, Kapiolani Hospital for Women and Children , Honolulu, Hawaii
| | - Jeyhan S Wood
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - John A van Aalst
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
17
|
Xu FT, Li HM, Yin QS, Liang ZJ, Huang MH, Chi GY, Huang L, Liu DL, Nan H. Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro. Am J Transl Res 2015; 7:257-270. [PMID: 25901195 PMCID: PMC4399090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
To investigate whether activated autologous platelet-rich plasma (PRP) can promote proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) in vitro. hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3(rd) passage. PRP was collected and activated from human peripheral blood of the same patient. Cultured hASCs were treated with normal osteogenic inductive media alone (group A, control) or osteogenic inductive media plus 5%, 10%, 20%, 40%PRP (group B, C, D, E, respectively). Cell proliferation was assessed by CCK-8 assay. mRNA expression of osteogenic marker genes including alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and core binding factor alpha 1 (Cbfa1) were determined by Real-Time Quantitative PCR Analysis (qPCR). Data revealed that different concentrations of activated autologous PRP significantly promoted hASCs growth in the proliferation phase compared to the without PRP group and resulted in a dose-response relationship. At 7-d and 14-d time point of the osteogenic induced stage, ALP activity in PRP groups gradually increased with the increasing of concentrations of PRP and showed that dose-response relationship. At 21-d time point of the osteogenic induced stage, PRP groups make much more mineralization and mRNA relative expression of ALP, OPN, OCN and Cbfa1 than that without PRP groups and show that dose-response relationship. This study indicated that different concentrations of activated autologous PRP can promote cell proliferation at earlier stage and promote osteogenic differentiation at later stage of hASCs in vitro. Moreover, it displayed a dose-dependent effect of activated autologous PRP on cell proliferation and osteogenic differentiation of hASCs in vitro.
Collapse
Affiliation(s)
- Fang-Tian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Affiliated Nanning First People’s Hospital of Guangxi Medical UniversityNanning 530022, China
| | - Qing-Shui Yin
- Department of Orthopedic Surgery, Guangzhou General Hospital of PLAGuangzhou 510180, China
| | - Zhi-Jie Liang
- Department of Hepatobiliary and Gland Surgery, The Affiliated Nanning First People’s Hospital of Guangxi Medical UniversityNanning 530022, China
| | - Min-Hong Huang
- Department of Hepatobiliary and Gland Surgery, The Affiliated Nanning First People’s Hospital of Guangxi Medical UniversityNanning 530022, China
| | - Guang-Yi Chi
- Department of Plastic and Aesthetic Surgery, The Affiliated Nanning First People’s Hospital of Guangxi Medical UniversityNanning 530022, China
| | - Lu Huang
- Department of Plastic and Aesthetic Surgery, The Affiliated Nanning First People’s Hospital of Guangxi Medical UniversityNanning 530022, China
| | - Da-Lie Liu
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Hua Nan
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| |
Collapse
|
18
|
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2445-61. [PMID: 24865980 PMCID: PMC4169585 DOI: 10.1007/s10856-014-5240-2] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/09/2014] [Indexed: 05/04/2023]
Abstract
Bone substitutes are being increasingly used in surgery as over two millions bone grafting procedures are performed worldwide per year. Autografts still represent the gold standard for bone substitution, though the morbidity and the inherent limited availability are the main limitations. Allografts, i.e. banked bone, are osteoconductive and weakly osteoinductive, though there are still concerns about the residual infective risks, costs and donor availability issues. As an alternative, xenograft substitutes are cheap, but their use provided contrasting results, so far. Ceramic-based synthetic bone substitutes are alternatively based on hydroxyapatite (HA) and tricalcium phosphates, and are widely used in the clinical practice. Indeed, despite being completely resorbable and weaker than cortical bone, they have exhaustively proved to be effective. Biomimetic HAs are the evolution of traditional HA and contains ions (carbonates, Si, Sr, Fl, Mg) that mimic natural HA (biomimetic HA). Injectable cements represent another evolution, enabling mininvasive techniques. Bone morphogenetic proteins (namely BMP2 and 7) are the only bone inducing growth factors approved for human use in spine surgery and for the treatment of tibial nonunion. Demineralized bone matrix and platelet rich plasma did not prove to be effective and their use as bone substitutes remains controversial. Experimental cell-based approaches are considered the best suitable emerging strategies in several regenerative medicine application, including bone regeneration. In some cases, cells have been used as bioactive vehicles delivering osteoinductive genes locally to achieve bone regeneration. In particular, mesenchymal stem cells have been widely exploited for this purpose, being multipotent cells capable of efficient osteogenic potential. Here we intend to review and update the alternative available techniques used for bone fusion, along with some hints on the advancements achieved through the experimental research in this field.
Collapse
Affiliation(s)
- V. Campana
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - G. Milano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - E. Pagano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - M. Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C. Cicione
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G. Salonna
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - W. Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
- Latium Musculoskeletal Tissue Bank, Rome, Italy
| | - G. Logroscino
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|