1
|
Najafi Tabrizi N, Marjani M, Tohidi V, Ghorannevis Z. Histopathology Findings of Low-Level Laser Therapy Effectiveness on Achilles Tendon Repair in Rabbit Model. Vet Med Sci 2025; 11:e70347. [PMID: 40213974 PMCID: PMC11986839 DOI: 10.1002/vms3.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Low-level laser therapy (LLLT) has been utilized to treat tendinitis and various other musculoskeletal conditions. The current study assessed the impact of LLLT (650 and 750 nm) on tendon repair in rabbits. MATERIALS AND METHODS Fifteen 2-year-old male New Zealand White rabbits were divided into three groups: control, 650 nm laser and 750 nm laser therapy. After applying Achilles tendon-destructive surgery on their right legs, rabbits underwent LLLT, and tendon repair was assessed using histopathology and immunohistochemistry (IHC) findings. All data were analysed using SPSS version 21, considering a significant level <0.05. RESULTS The study's histopathological and immunohistochemical analysis revealed that LLLT at 650 and 750 nm significantly improved tendon healing compared to the control group (p < 0.05). The treated groups exhibited better organized tendon fibres with reduced discontinuity, collagen fibre waviness, and inflammatory response (p < 0.05). Both laser wavelengths showed similar results with no significant differences between them (p > 0.05), but both were notably better than the control group in reducing inflammation, enhancing fibre structure, and lowering levels of collagen type I (Col-I); collagen type III (Col-III); transformer growth factor beta (TGF-β); galectin-3 (galectin-3); VGF nerve growth factor inducible; vascular endothelial growth factor (VEGF), indicating a more effective healing process with LLLT. CONCLUSION Due to our findings, LLLT at 650 and 750 nm effectively reduced inflammation, improved structural integrity, and enhanced the organization of collagen fibres for Achilles tendon repair in rabbits.
Collapse
Affiliation(s)
| | - Mehdi Marjani
- Department of Clinical Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Vooria Tohidi
- Department of Radiology, Karaj BranchIslamic Azad UniversityKarajIran
| | | |
Collapse
|
2
|
Huang J, Li Y, Yan M, Wu J, Wang K. Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons. JOURNAL OF BIOPHOTONICS 2025; 18:e202400528. [PMID: 39899889 DOI: 10.1002/jbio.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/05/2025]
Abstract
Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.
Collapse
Affiliation(s)
- Jun Huang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yanyu Li
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Mintao Yan
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jinjin Wu
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
3
|
Xiong Z, Lin B, Huang C, Duan A, Zhang C, Qiang G, Liu W, Zhao R, Deng X, Wang D, Ge Z, Wang G, Hu X, Lin W. Biocompatible and stretchable chitosan piezoelectric gel with antibacterial capability and motion monitoring function for Achilles tendon rupture treatment. Carbohydr Polym 2025; 352:123149. [PMID: 39843054 DOI: 10.1016/j.carbpol.2024.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
Achilles tendon rupture is a common and serious condition that remains a challenge in the restoration of tendon structure and function. The design and use of high-performance piezoelectric materials serve as an effective solution to enhance repair outcomes, shorten recovery times, and reduce the risk of recurrence. In this study, we prepared a chitosan piezoelectric gel (CSPG) as an organic polymer with excellent biocompatibility, stretchability, and piezoelectric properties as well as excellent antibacterial properties. In vitro experiments showed that CSPG, which induces a piezoelectric effect, can inhibit bacterial growth, promote cell proliferation and migration, upregulate the expression of tendon-related genes, and inhibit the expression of inflammation-related genes. In vivo experiments showed improved outcomes for Achilles tendon repair following CSPG intervention, as evidenced by enhanced animal mobility and improved mechanical test results. In addition, the CSPG exhibited sensory functions capable of monitoring temperature and motion, providing timely feedback on repair efficacy. In summary, this study not only successfully prepared a multifunctional piezoelectric material that can effectively promote Achilles tendon rupture repair and regeneration and control inflammatory response, it also possesses antibacterial and sensing functions, thus offering a new strategy for Achilles tendon rupture repair.
Collapse
Affiliation(s)
- Zhencheng Xiong
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Bingqing Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Huang
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ao Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Chaoyi Zhang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wenzheng Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Renliang Zhao
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Xiangtian Deng
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Guanglin Wang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; Trauma Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China; Med-X Center for Manufacturing Sichuan University, Chengdu 610041, China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Lin
- West China Women's and Children's Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Zuo R, Li H, Cai C, Xia W, Liu J, Li J, Xu Y, Zhang Y, Li C, Wu Y, Zhang C. Autophagy modulates tenogenic differentiation of cartilage-derived stem cells in response to mechanical tension via FGF signaling. Stem Cells Transl Med 2025; 14:szae085. [PMID: 39673221 PMCID: PMC11878763 DOI: 10.1093/stcltm/szae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/01/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries. METHODS Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains. RESULTS We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site. CONCLUSION Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Haoke Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Wen Xia
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Jiabin Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Yuan Xu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing 401320, People’s Republic of China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Army Medical University, Chongqing 400038, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People’s Republic of China
| |
Collapse
|
5
|
Gao Y, Wang H, Shi L, Lu P, Dai G, Zhang M, Han B, Cao M, Li Y, Rui Y. Erroneous Differentiation of Tendon Stem/Progenitor Cells in the Pathogenesis of Tendinopathy: Current Evidence and Future Perspectives. Stem Cell Rev Rep 2025; 21:423-453. [PMID: 39579294 DOI: 10.1007/s12015-024-10826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Tendinopathy is a condition characterized by persistent tendon pain, structural damage, and compromised functionality. Presently, the treatment for tendinopathy remains a formidable challenge, partly because of its unclear pathogenesis. Tendon stem/progenitor cells (TSPCs) are essential for tendon homeostasis, regeneration, remodeling, and repair. An innovative theory has been previously proposed, with insufficient evidence, that the erroneous differentiation of TSPCs may constitute one of the fundamental mechanisms underpinning tendinopathy. Over the past few years, there has been accumulating evidence for plausibility of this theory. In this review, we delve into alterations in the differentiation potential of TSPCs and the underlying mechanisms in the context of injury-induced tendinopathy, diabetic tendinopathy, and age-related tendinopathy to provide updated evidence on the erroneous differentiation theory. Despite certain limitations inherent in the existing body of evidence, the erroneous differentiation theory emerges as a promising and highly pertinent avenue for understanding tendinopathy. In the future, advanced methodologies will be harnessed to further deepen comprehension of this theory, paving the way for prospective developments in clinical therapies targeting TSPCs for the management of tendinopathy.
Collapse
Affiliation(s)
- Yucheng Gao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bowen Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
6
|
von Stade D, Meyers M, Johnson J, Schlegel T, Romeo A, Regan D, McGilvray K. Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. Tissue Eng Part A 2025. [PMID: 39761039 DOI: 10.1089/ten.tea.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.
Collapse
Affiliation(s)
- Devin von Stade
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Cortella G, Lamparelli EP, Ciardulli MC, Lovecchio J, Giordano E, Maffulli N, Della Porta G. ColMA-based bioprinted 3D scaffold allowed to study tenogenic events in human tendon stem cells. Bioeng Transl Med 2025; 10:e10723. [PMID: 39801753 PMCID: PMC11711214 DOI: 10.1002/btm2.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 01/16/2025] Open
Abstract
The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material. Indeed, we successfully fabricated a 3D bioengineered scaffold and cultured it for 21 days under perfusion conditions with medium supplemented with growth/differentiation factor-5 (GDF-5). This bioprinting pipeline and the culture conditions created an exceptionally favorable 3D environment, enabling the cells to proliferate, exhibit tenogenic behaviors, and produce a new collagen type I matrix, thereby remodeling the surrounding environment. Indeed, over the 21-day culture period under perfusion condition, tenomodulin expression showed a significant upregulation on day 7, with a 2.3-fold increase, compared to days 14 and 21. Collagen type I gene expression was upregulated nearly 10-fold by day 14. This trend was further confirmed by western blot analysis, which revealed a statistically significant difference in tenomodulin expression between day 21 and both day 7 and day 14. For type I collagen, significant differences were observed between day 0 and day 21, as well as between day 0 and day 14, with a p-value of 0.01. These results indicate a progressive over-expression of type I collagen, reflecting cell differentiation towards a proper tenogenic phenotype. Cytokines, such as IL-8 and IL-6, levels peaked at 8566 and 7636 pg/mL, respectively, on day 7, before decreasing to 54 and 46 pg/mL by day 21. Overall, the data suggest that the novel ColMa bioprinting protocol effectively provided a conducive environment for the growth and proper differentiation of hTSPCs, showcasing its potential for studying cell behavior and tenogenic differentiation.
Collapse
Affiliation(s)
- Giacomo Cortella
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Erwin Pavel Lamparelli
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Maria Camilla Ciardulli
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Joseph Lovecchio
- School of Science and EngineeringReykjavík UniversityReykjavíkIceland
- Institute of Biomedical and Neural EngineeringReykjavik UniversityReykjavíkIceland
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI)University of BolognaCesenaFCItaly
- Advanced Research Center on Electronic Systems (ARCES)University of BolognaBolognaBOItaly
| | - Nicola Maffulli
- School of Pharmacy and BioengineeringKeele UniversityStoke‐on‐TrentStaffordshireUK
- Department of Trauma and Orthopaedics, Faculty of Medicine and PsychologySant'Andrea Hospital, “La Sapienza” UniversityRomeItaly
| | - Giovanna Della Porta
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
- Research Centre for Biomaterials BIONAMUniversità di SalernoFiscianoSAItaly
| |
Collapse
|
8
|
Kim JY, Rhim WK, Lee SY, Park JM, Song DH, Cha SG, Lee SH, Hwang DY, Kim BJ, Rho S, Ahn TK, Park CG, Han DK. Hybrid Nanoparticle Engineered with Transforming Growth Factor -β1-Overexpressed Extracellular Vesicle and Cartilage-Targeted Anti-Inflammatory Liposome for Osteoarthritis. ACS NANO 2024; 18:33937-33952. [PMID: 39648484 DOI: 10.1021/acsnano.4c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Extracellular vesicles (EVs) possess the characteristics of their parent cells, based on which various studies have actively investigated treatments for diseases using mesenchymal stem cell-derived EVs due to their regenerative activity. Furthermore, in recent years, there have been significant efforts to engineer EVs to improve their native activities and integrate additional functions. Although both endogenous and exogenous methods are used for engineering EVs, endogenous methods may pose the problem of administering substances to cells undergoing metabolic changes, which can cause potential side effects. In addition, exogenous methods may have the limitation of losing beneficial factors inside EVs due to membrane disruption during engineering processes. Surface modification of EVs may also impair efficiency due to the presence of proteins on the EV surface. Therefore, in this study, a stable and efficient engineering method was achieved through the ethanol-mediated hybridization of EVs and functionalized lipid nanoparticles (LNPs) with a fusogenic lipid component. During hybridization, the internal bioactive factors and targeting moiety were maintained to possess the characteristics of both LNPs and EVs. The Ab-Hybrid, which was successfully synthesized through hybridization with nicotinamide-encapsulated and Col2A1 antibody-modified liposome and Transforming growth factor-β1 (TGF-β1)-overexpressed EVs, was administered to osteoarthritis (OA)-induced rats undergoing the destabilization of the medial meniscus surgery. Ultimately, the Ab-Hybrid demonstrated excellent chondroprotective and anti-inflammatory effects with targeting and long-lasting properties in OA lesions. We anticipate that this approach for manufacturing hybrid particles will serve as a valuable EV engineering method and a versatile platform technology applicable to various diseases.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jung Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Byoung Ju Kim
- ATEMs, Jeongui-ro 8-gil, Songpa-gu, Seoul-si 05836, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center CHA University, Seongnam-si 13496, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
9
|
Yang H, Xu M, He H, Zeng N, Song J, Huang T, Liang Z, Ma H. Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery. FRONTIERS OF OPTOELECTRONICS 2024; 17:39. [PMID: 39648187 PMCID: PMC11625706 DOI: 10.1007/s12200-024-00142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.
Collapse
Affiliation(s)
- Huibin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Minhui Xu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Honghui He
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Nan Zeng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jiawei Song
- School of Teacher Education, Nanjing Normal University, Nanjing, 210097, China
| | - Tongyu Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ziyang Liang
- Department of Spinal Orthopedics and Massotherapy in Chinese Medicine, Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, 518022, China
| | - Hui Ma
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Physics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Ciardulli MC, Lovecchio J, Parolini O, Giordano E, Maffulli N, Della Porta G. Fibrin Scaffolds Perfused with Transforming Growth Factor-β1 as an In Vitro Model to Study Healthy and Tendinopathic Human Tendon Stem/Progenitor Cells. Int J Mol Sci 2024; 25:9563. [PMID: 39273510 PMCID: PMC11395617 DOI: 10.3390/ijms25179563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-β1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00136 Rome, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
11
|
Winkler T, Geissler S, Maleitzke T, Perka C, Duda GN, Hildebrandt A. Advanced therapies in orthopaedics. EFORT Open Rev 2024; 9:837-844. [PMID: 39222330 PMCID: PMC11457816 DOI: 10.1530/eor-24-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Advanced therapies are expected to play a crucial role in supporting repair after injury, halting the degeneration of musculoskeletal tissue to enable and promote physical activity. Despite advancements, the progress in developing advanced therapies in orthopaedics lags behind specialties like oncology, since innovative regenerative treatment strategies fall short of their expectations in musculoskeletal clinical trials. Researchers should focus on understanding the mechanism of action behind the investigated target before conducting clinical trials. Strategic research networks are needed that not only enhance scientific exchange among like-minded researchers but need to include early on commercial views, companies and venture perspectives, regulatory insights and reimbursement perspectives. Only in such collaborations essential roadblocks towards clinical trials and go-to-patients be overcome.
Collapse
Affiliation(s)
- Tobias Winkler
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| |
Collapse
|
12
|
Hong CC, Seow D, Koh JH, Rammelt S, Pearce CJ. Paratenon preserving repair of the midsubstance acute Achilles tendon rupture: a systematic review and meta-analysis with best- and worst-case analyses for rerupture rates. Arch Orthop Trauma Surg 2024; 144:3379-3391. [PMID: 39153101 DOI: 10.1007/s00402-024-05486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Paratenon preserving techniques to facilitate acute Achilles tendon rupture repair (AATR) functions by maintaining vascularity and biology for optimal healing response. Therefore, the purpose is to evaluate the outcomes following paratenon preserving repair of the midsubstance AATR. The hypothesis was that paratenon-preserving techniques demonstrate high return to play rates and low complication rates for the repair of the midsubstance AATR. MATERIALS AND METHODS A systematic review of the PubMed, Embase, and the Cochrane Library databases was performed by two authors using specific search terms and eligibility criteria. The assessment of the evidence was two-fold: level and quality of evidence. A meta-analysis of proportions for the various complication rates was performed using the restricted maximum likelihood method following the Freeman-Tukey double-arcsine transformation. Fixed effects models were employed if I2 < 25% (low heterogeneity), and random effects models were employed if I2 ≥ 25% (moderate to high heterogeneity). RESULTS The pooled return to play rate was 90.3%. The pooled rerupture rate as reported was 0.9% (best-case scenario 0.8% and worst-case scenario 6.8%). No meaningful subgroup analysis for rerupture rates could be performed based on the meta-regression. The pooled complication rate other than reruptures was 4.8%. The pooled infection rates were 0.3%, DVT rates were 1.6%, and sural nerve injury rates were 0.3%. CONCLUSIONS Paratenon preserving techniques that are minimally invasive in nature demonstrated safe and favorable outcomes with high return to play rates and low complication rates for the repair of the midsubstance AATR.
Collapse
Affiliation(s)
- Choon Chiet Hong
- Department of Orthopaedic Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, 119228, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Dexter Seow
- Department of Orthopaedic Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, 119228, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Hean Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stefan Rammelt
- University Center for Orthopaedics & Traumatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christopher J Pearce
- Department of Orthopaedic Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, 119228, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Böl M, Leichsenring K, Kohn S, Ehret AE. The anisotropic and region-dependent mechanical response of wrap-around tendons under tensile, compressive and combined multiaxial loads. Acta Biomater 2024; 183:157-172. [PMID: 38838908 DOI: 10.1016/j.actbio.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The present work reports on the multiaxial region and orientation-dependent mechanical properties of two porcine wrap-around tendons under tensile, compressive and combined loads based on an extensive study with n=175 samples. The results provide a detailed dataset of the anisotropic tensile and compressive longitudinal properties and document a pronounced tension-compression asymmetry. Motivated by the physiological loading conditions of these tendons, which include transversal compression at bony abutments in addition to longitudinal tension, we systematically investigated the change in axial tension when the tendon is compressed transversally along one or both perpendicular directions. The results reveal that the transversal compression can increase axial tension (proximal-distal direction) in both cases to orders of 30%, yet by a larger amount in the first case (transversal compression in anterior-posterior direction), which seems to be more relevant for wrap-around tendons in-vivo. These quantitative measurements are in line with earlier findings on auxetic properties of tendon tissue, but show for the first time the influence of this property on the stress response of the tendon, and may thus reveal an important functional principle within these essential elements of force transmission in the body. STATEMENT OF SIGNIFICANCE: The work reports for the first time on multiaxial region and orientation-dependent mechanical properties of wrap-around tendons under various loads. The results indicate that differences in the mechanical properties exist between zones that are predominantly in a uniaxial tensile state and those that experience complex load states. The observed counterintuitive increase of the axial tension upon lateral compression points at auxetic properties of the tendon tissue which may be pivotal for the function of the tendon as an element of the musculoskeletal system. It suggests that the tendon's performance in transmitting forces is not diminished but enhanced when the action line is deflected by a bony pulley around which the tendon wraps, representing an important functional principle of tendon tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, Zürich, CH-8092, Switzerland
| |
Collapse
|
14
|
Pinnarò V, Kirchberger S, Künig S, Gil Cantero S, Ciardulli MC, Della Porta G, Blüml S, Elbe-Bürger A, Bochkov V, Stöckl J. Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells. Int J Mol Sci 2024; 25:7600. [PMID: 39062855 PMCID: PMC11277520 DOI: 10.3390/ijms25147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.
Collapse
Affiliation(s)
- Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | | | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Sara Gil Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| |
Collapse
|
15
|
Zhang K, Zhang P, Shi G, Wang L, Sun C, Xiang W. Tendon extracellular-matrix-derived tissue engineering micro-tissue for Achilles tendon injury regeneration in rats. J Orthop Surg Res 2024; 19:377. [PMID: 38926735 PMCID: PMC11210118 DOI: 10.1186/s13018-024-04863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Achilles tendon is vital in maintaining the stability and function of ankle joint. It is quite difficult to achieve the structural and functional repair of Achilles tendon in tissue engineering. METHODS A tissue-engineered tendon micro-tissue was prepared using rat tail tendon extracellular matrix (TECM) combined with rat adipose stem cells (ADSCs) to repair Achilles tendon injuries. The TECM was prepared by repeated freezing and thawing. The in vitro characteristics of TECM and its effect on ADSCs proliferation were detected. This tissue-engineered tendon micro-tissue for Achilles tendon repair in vivo was evaluated based on general characteristics, gait analysis, ultrasound findings, histological analysis, and biomechanical testing. RESULTS The results showed that the TECM scaffold had good biocompatibility for ADSCs. At 2 weeks post-surgery, collagen types I and III and tenomodulin expression were higher, and vascular endothelial growth factor expression was lower in the micro-tissue group than other groups. At 4 and 8 weeks post-surgery, the results of histological analysis and ultrasound findings showed that the repaired tendon tissue was smooth and lustrous, and was arranged regularly and evenly in the micro-tissue group. Gait analysis confirmed that better motor function recovery was noted in micro-tissue group than other groups. In addition, the mechanical properties of the repaired tendon tissue in micro-tissue group were better than other groups. CONCLUSION Tissue-engineered tendon micro-tissue fabricated by TECM and ADSCs has good biocompatibility and can promote structural and functional repair of tendon in vivo. This composite biomaterial has broad application prospects in tissue engineering.
Collapse
Affiliation(s)
- Kaihong Zhang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ge Shi
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chen Sun
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Epanomeritakis IE, Eleftheriou A, Economou A, Lu V, Khan W. Mesenchymal Stromal Cells for the Enhancement of Surgical Flexor Tendon Repair in Animal Models: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:656. [PMID: 39061739 PMCID: PMC11274147 DOI: 10.3390/bioengineering11070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Flexor tendon lacerations are primarily treated by surgical repair. Limited intrinsic healing ability means the repair site can remain weak. Furthermore, adhesion formation may reduce range of motion post-operatively. Mesenchymal stromal cells (MSCs) have been trialled for repair and regeneration of multiple musculoskeletal structures. Our goal was to determine the efficacy of MSCs in enhancing the biomechanical properties of surgically repaired flexor tendons. A PRISMA systematic review was conducted using four databases (PubMed, Ovid, Web of Science, and CINAHL) to identify studies using MSCs to augment surgical repair of flexor tendon injuries in animals compared to surgical repair alone. Nine studies were included, which investigated either bone marrow- or adipose-derived MSCs. Results of biomechanical testing were extracted and meta-analyses were performed regarding the maximum load, friction and properties relating to viscoelastic behaviour. There was no significant difference in maximum load at final follow-up. However, friction, a surrogate measure of adhesions, was significantly reduced following the application of MSCs (p = 0.04). Other properties showed variable results and dissipation of the therapeutic benefits of MSCs over time. In conclusion, MSCs reduce adhesion formation following tendon injury. This may result from their immunomodulatory function, dampening the inflammatory response. However, this may come at the cost of favourable healing which will restore the tendon's viscoelastic properties. The short duration of some improvements may reflect MSCs' limited survival or poor retention. Further investigation is needed to clarify the effect of MSC therapy and optimise its duration of action.
Collapse
Affiliation(s)
| | - Andreas Eleftheriou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Anna Economou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
17
|
Zhang M, Wang H, Dai GC, Lu PP, Gao YC, Cao MM, Li YJ, Rui YF. Injectable self-assembled GDF5-containing dipeptide hydrogels for enhanced tendon repair. Mater Today Bio 2024; 26:101046. [PMID: 38600922 PMCID: PMC11004210 DOI: 10.1016/j.mtbio.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Owing to the tissue characteristics of tendons with few blood vessels and cells, the regeneration and repair of injured tendons can present a considerable challenge, which considerably affects the motor function of limbs and leads to serious physical and mental pain, along with an economic burden on patients. Herein, we designed and fabricated a dipeptide hydrogel (DPH) using polypeptides P11-4 and P11-8. This hydrogel exhibited self-assembly characteristics and could be administered in vitro. To endow the hydrogel with differentiation and regeneration abilities, we added different concentrations of growth differentiation factor 5 (GDF5) to form GDF5@DPH. GDF5@DPH promoted the aggregation and differentiation of tendon stem/progenitor cells and promoted the regeneration and repair of tendon cells and collagen fibers in injured areas. In addition, GDF5@DPH inhibited inflammatory reactions in the injured area. Owing to its injectable properties, DPH can jointly inhibit adhesion and scar hyperplasia between tissues caused by endogenous inflammation and exogenous surgery and can provide a favorable internal environment for the regeneration and repair of the injured area. Overall, the GDF5@DPH system exhibits considerable promise as a novel approach to treating tendon injury.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Guan-Chun Dai
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Pan-Pan Lu
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yu-Cheng Gao
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Ming Cao
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
18
|
Miura Y, Endo K, Sekiya I. Histological and biochemical changes in a rat rotator cuff tear model with or without the subacromial bursa. Tissue Cell 2024; 88:102370. [PMID: 38598871 DOI: 10.1016/j.tice.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
The subacromial bursa (SAB) plays an important role in the tendon healing process. Based on previous reports, co-culture of the rotator cuff (RC) and SAB have been shown to increase the tendon-related gene expressions, inflammatory cytokines, and tensile strength. However, the nature of the specific biochemical alterations during the inflammatory and repair phases of tendon healing with or without the SAB remain unknown. Using a full-thickness RC tear rat model, we determined how the presence or absence of the SAB alters the histological characteristics and gene expressions. After 3 and 6 weeks, tissues were collected for histological and real-time quantitative polymerase chain reaction (RT-qPCR) evaluations. Results showed greater cell density at 3 weeks, neovascularization and tendon thickening at 6 weeks with SAB preservation. Immunostaining revealed significant increases in type 3 collagen (COL3) expression at 6 weeks with SAB preservation. The RT-qPCR results showed that SAB preservation induced significant increases in the expression of scleraxis, matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) at 3 weeks and significant increases in COL3, IL-10, and arginase-1 (Arg-1) at 6 weeks. An RC tear undergoes more appropriate inflammatory and repair phases during the tendon healing process when the SAB is retained.
Collapse
Affiliation(s)
- Yugo Miura
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ichiro Sekiya
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
19
|
Roth DM, Piña JO, Raju R, Iben J, Faucz FR, Makareeva E, Leikin S, Graf D, D'Souza RN. Tendon-associated gene expression precedes osteogenesis in mid-palatal suture establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.590129. [PMID: 38798531 PMCID: PMC11118303 DOI: 10.1101/2024.05.11.590129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Orthodontic maxillary expansion relies on intrinsic mid-palatal suture mechanobiology to induce guided osteogenesis, yet establishment of the mid-palatal suture within the continuous secondary palate and causes of maxillary insufficiency remain poorly understood. In contrast, advances in cranial suture research hold promise to improve surgical repair of prematurely fused cranial sutures in craniosynostosis to potentially restore the obliterated signaling environment and ensure continual success of the intervention. We hypothesized that mid-palatal suture establishment is governed by shared principles with calvarial sutures and involves functional linkage between expanding primary ossification centres with the midline mesenchyme. We characterized establishment of the mid-palatal suture from late embryonic to early postnatal timepoints. Suture establishment was visualized using histological techniques and multimodal transcriptomics. We identified that mid-palatal suture formation depends on a spatiotemporally controlled signalling milieu in which tendon-associated genes play a significant role. We mapped relationships between extracellular matrix-encoding gene expression, tenocyte markers, and novel suture patency candidate genes. We identified similar expression patterns in FaceBase-deposited scRNA-seq datasets from cranial sutures. These findings demonstrate shared biological principles for suture establishment, providing further avenues for future development and understanding of maxillofacial interventions.
Collapse
Affiliation(s)
- Daniela M Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Canada
| | - Rena N D'Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
20
|
Kim JY, Lee SY, Cha SG, Park JM, Song DH, Lee SH, Hwang DY, Kim BJ, Rho S, Park CG, Rhim WK, Han DK. Combinatory Nanovesicle with siRNA-Loaded Extracellular Vesicle and IGF-1 for Osteoarthritis Treatments. Int J Mol Sci 2024; 25:5242. [PMID: 38791285 PMCID: PMC11121733 DOI: 10.3390/ijms25105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of MSC-derived EVs has been shown in several studies, but in recent years, there have been many efforts to functionalize EVs to give them more potent therapeutic effects. Strategies for functionalizing EVs include endogenous and exogenous methods. In this study, human umbilical cord MSC (UCMSC)-derived EVs were selected for optimum OA treatments with expectation via bioinformatics analysis based on antibody array. And we created a novel nanovesicle system called the IGF-si-EV, which has the properties of both cartilage regeneration and long-term retention in the lesion site, attaching positively charged insulin-like growth factor-1 (IGF-1) to the surface of the UCMSC-derived Evs carrying siRNA, which inhibits MMP13. The downregulation of inflammation-related cytokine (MMP13, NF-kB, and IL-6) and the upregulation of cartilage-regeneration-related factors (Col2, Acan) were achieved with IGF-si-EV. Moreover, the ability of IGF-si-EV to remain in the lesion site for a long time has been proven through an ex vivo system. Collectively, the final constructed IGF-si-EV can be proposed as an effective OA treatment through its successful MMP13 inhibition, chondroprotective effect, and cartilage adhesion ability. We also believe that this EV-based nanoparticle-manufacturing technology can be applied as a platform technology for various diseases.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Jung Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Sang-Hyuk Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| | - Byoung Ju Kim
- ATEMs, Jeongui-ro 8-gil, Songpa-gu, Seoul-si 05836, Republic of Korea;
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (J.Y.K.); (S.Y.L.); (S.-G.C.); (J.M.P.); (D.H.S.); (S.-H.L.); (D.-Y.H.)
| |
Collapse
|
21
|
DeFoor MT, Cognetti DJ, Yuan TT, Sheean AJ. Treatment of Tendon Injuries in the Servicemember Population across the Spectrum of Pathology: From Exosomes to Bioinductive Scaffolds. Bioengineering (Basel) 2024; 11:158. [PMID: 38391644 PMCID: PMC10886250 DOI: 10.3390/bioengineering11020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Tendon injuries in military servicemembers are one of the most commonly treated nonbattle musculoskeletal injuries (NBMSKIs). Commonly the result of demanding physical training, repetitive loading, and frequent exposures to austere conditions, tendon injuries represent a conspicuous threat to operational readiness. Tendon healing involves a complex sequence between stages of inflammation, proliferation, and remodeling cycles, but the regenerated tissue can be biomechanically inferior to the native tendon. Chemical and mechanical signaling pathways aid tendon healing by employing growth factors, cytokines, and inflammatory responses. Exosome-based therapy, particularly using adipose-derived stem cells (ASCs), offers a prominent cell-free treatment, promoting tendon repair and altering mRNA expression. However, each of these approaches is not without limitations. Future advances in tendon tissue engineering involving magnetic stimulation and gene therapy offer non-invasive, targeted approaches for improved tissue engineering. Ongoing research aims to translate these therapies into effective clinical solutions capable of maximizing operational readiness and warfighter lethality.
Collapse
Affiliation(s)
- Mikalyn T DeFoor
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Daniel J Cognetti
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Tony T Yuan
- Advanced Exposures Diagnostics, Interventions and Biosecurity Group, 59 Medical Wing, Lackland Air Force Base, San Antonio, TX 78236, USA
- Center for Biotechnology (4D Bio3), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
22
|
Clerici M, Citro V, Byrne AL, Dale TP, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Endotenon-Derived Type II Tendon Stem Cells Have Enhanced Proliferative and Tenogenic Potential. Int J Mol Sci 2023; 24:15107. [PMID: 37894787 PMCID: PMC10606148 DOI: 10.3390/ijms242015107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon injuries caused by overuse or age-related deterioration are frequent. Incomplete knowledge of somatic tendon cell biology and their progenitors has hindered interventions for the effective repair of injured tendons. Here, we sought to compare and contrast distinct tendon-derived cell populations: type I and II tendon stem cells (TSCs) and tenocytes (TNCs). Porcine type I and II TSCs were isolated via the enzymatic digestion of distinct membranes (paratenon and endotenon, respectively), while tenocytes were isolated through an explant method. Resultant cell populations were characterized by morphology, differentiation, molecular, flow cytometry, and immunofluorescence analysis. Cells were isolated, cultured, and evaluated in two alternate oxygen concentrations (physiological (2%) and air (21%)) to determine the role of oxygen in cell biology determination within this relatively avascular tissue. The different cell populations demonstrated distinct proliferative potential, morphology, and transcript levels (both for tenogenic and stem cell markers). In contrast, all tendon-derived cell populations displayed multipotent differentiation potential and immunophenotypes (positive for CD90 and CD44). Type II TSCs emerged as the most promising tendon-derived cell population for expansion, given their enhanced proliferative potential, multipotency, and maintenance of a tenogenic profile at early and late passage. Moreover, in all cases, physoxia promoted the enhanced proliferation and maintenance of a tenogenic profile. These observations help shed light on the biological mechanisms of tendon cells, with the potential to aid in the development of novel therapeutic approaches for tendon disorders.
Collapse
Affiliation(s)
- Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| | - Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Amy L. Byrne
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Tina P. Dale
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Aldo R. Boccaccini
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Interdepartmental Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Department of Trauma and Orthopaedic Surgery, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, UK
| |
Collapse
|