1
|
Mahmoudi A, Butler AE, De Vincentis A, Jamialahmadi T, Sahebkar A. Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis. Curr Med Chem 2024; 31:3631-3652. [PMID: 37194229 DOI: 10.2174/0929867330666230516123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients. METHODS Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma. RESULTS A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma. CONCLUSION This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antonio De Vincentis
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, Rome 00128, Italy
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Carvalho MR, Yan LP, Li B, Zhang CH, He YL, Reis RL, Oliveira JM. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication 2023; 15:042004. [PMID: 37699408 DOI: 10.1088/1758-5090/acf8fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Microfluidic organs and organoids-on-a-chip models of human gastrointestinal systems have been established to recreate adequate microenvironments to study physiology and pathophysiology. In the effort to find more emulating systems and less costly models for drugs screening or fundamental studies, gastrointestinal system organoids-on-a-chip have arisen as promising pre-clinicalin vitromodel. This progress has been built on the latest developments of several technologies such as bioprinting, microfluidics, and organoid research. In this review, we will focus on healthy and disease models of: human microbiome-on-a-chip and its rising correlation with gastro pathophysiology; stomach-on-a-chip; liver-on-a-chip; pancreas-on-a-chip; inflammation models, small intestine, colon and colorectal cancer organoids-on-a-chip and multi-organoids-on-a-chip. The current developments related to the design, ability to hold one or more 'organs' and its challenges, microfluidic features, cell sources and whether they are used to test drugs are overviewed herein. Importantly, their contribution in terms of drug development and eminent clinical translation in precision medicine field, Food and Drug Administration approved models, and the impact of organoid-on-chip technology in terms of pharmaceutical research and development costs are also discussed by the authors.
Collapse
Affiliation(s)
- Mariana R Carvalho
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Bo Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Chang-Hua Zhang
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Yu-Long He
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Hammoudeh S, Janahi IA. Advances in Cystic Fibrosis Research in Qatar: A Commentary. J Pers Med 2023; 13:jpm13030448. [PMID: 36983631 PMCID: PMC10055988 DOI: 10.3390/jpm13030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Cystic fibrosis is a genetic disorder caused by a Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene defect. Many across the globe suffer the debilitating symptoms. The aim of this commentary is to briefly cover various aspects related to the disease in the Arab world and then in Qatar.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Research Affairs, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Ibrahim A. Janahi
- Medical Education, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Pediatric Pulmonology, Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Correspondence:
| |
Collapse
|
4
|
de Boer A, van der Harst J, Fehr M, Geurts L, Knipping K, Kramer N, Krul L, Tabernero Urbieta M, van de Water B, Venema K, Schütte K, Triantis V. Animal-free strategies in food safety & nutrition: What are we waiting for? Part II: Nutrition research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, Zhang X, Nair GG, Seufferlein T, Hebrok M, Sander M, Julier C, Kleger A, Costa IG. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol 2021; 4:1298. [PMID: 34789845 PMCID: PMC8599846 DOI: 10.1038/s42003-021-02818-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.
Collapse
Affiliation(s)
- Sandra Heller
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zhijian Li
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, Bioinformatics, Berlin, Germany
| | - Ryan Geusz
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Markus Breunig
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Xi Zhang
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gopika G. Nair
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Thomas Seufferlein
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Matthias Hebrok
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Maike Sander
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Cécile Julier
- grid.4444.00000 0001 2112 9282Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
6
|
Wiedenmann S, Breunig M, Merkle J, von Toerne C, Georgiev T, Moussus M, Schulte L, Seufferlein T, Sterr M, Lickert H, Weissinger SE, Möller P, Hauck SM, Hohwieler M, Kleger A, Meier M. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat Biomed Eng 2021; 5:897-913. [PMID: 34239116 PMCID: PMC7611572 DOI: 10.1038/s41551-021-00757-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreatic progenitors through ductal intermediates to two types of mature duct-like cells and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial-mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.
Collapse
Affiliation(s)
- Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Jessica Merkle
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, Heidemannstraße 1, 80939 Müunich, Germany
| | - Tihomir Georgiev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lucas Schulte
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Technical University of Munich, School of Medicine, Ismaninger Straße 22, 81675 Munich, Germany
| | | | - Peter Möller
- Institute for Pathology, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Heidemannstraße 1, 80939 Müunich, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany,Corresponding authors: ; ;
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany,Corresponding authors: ; ;
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Technical University of Munich, School of Medicine, Ismaninger Straße 22, 81675 Munich, Germany,Corresponding authors: ; ;
| |
Collapse
|
7
|
Heller S, Melzer MK, Azoitei N, Julier C, Kleger A. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants. Front Endocrinol (Lausanne) 2021; 12:648284. [PMID: 34079523 PMCID: PMC8166226 DOI: 10.3389/fendo.2021.648284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on β-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.
Collapse
Affiliation(s)
- Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael Karl Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Cécile Julier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
8
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
9
|
Frappart PO, Walter K, Gout J, Beutel AK, Morawe M, Arnold F, Breunig M, Barth TF, Marienfeld R, Schulte L, Ettrich T, Hackert T, Svinarenko M, Rösler R, Wiese S, Wiese H, Perkhofer L, Müller M, Lechel A, Sainz B, Hermann PC, Seufferlein T, Kleger A. Pancreatic cancer-derived organoids - a disease modeling tool to predict drug response. United European Gastroenterol J 2020; 8:594-606. [PMID: 32213029 DOI: 10.1177/2050640620905183] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. METHODS We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. RESULTS First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. CONCLUSION Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.
Collapse
Affiliation(s)
| | - Karolin Walter
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Alica K Beutel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Mareen Morawe
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Frank Arnold
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Markus Breunig
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Fe Barth
- Department of Pathology, University Hospital Ulm, Ulm, Germany
| | - Ralf Marienfeld
- Department of Pathology, University Hospital Ulm, Ulm, Germany
| | - Lucas Schulte
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Ettrich
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Svinarenko
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer, Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patrick C Hermann
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
10
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
11
|
Barcia Durán JG, Lis R, Rafii S. Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Lett 2019; 593:3253-3265. [PMID: 31725897 DOI: 10.1002/1873-3468.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) are the only adult stem cells with a demonstrated clinical use, even though a tractable method to maintain and expand human HSCs in vitro has not yet been found. Owing to the introduction of transplantation strategies for the treatment of haematological malignancies and, more recently, the promise of gene therapy, the need to improve the generation, manipulation and scalability of autologous or allogeneic HSCs has risen steeply over the past decade. In that context, reprogramming strategies based on the expression of exogenous transcription factors have emerged as a means to produce functional HSCs in vitro. These approaches largely stem from the assumption that key master transcription factors direct the expression of downstream target genes thereby triggering haematopoiesis. Both somatic and pluripotent cells have been used to this end, yielding variable results in terms of haematopoietic phenotype and functionality. Here, we present an overview of the haematopoietic reprogramming methods reported to date, provide the appropriate historical context and offer some critical insight about where the field stands at present.
Collapse
Affiliation(s)
- José Gabriel Barcia Durán
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Hammoudeh S, Gadelhak W, AbdulWahab A, Al-Langawi M, Janahi IA. Approaching two decades of cystic fibrosis research in Qatar: a historical perspective and future directions. Multidiscip Respir Med 2019; 14:29. [PMID: 31583102 PMCID: PMC6771098 DOI: 10.1186/s40248-019-0193-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a defect of CF transmembrane conductance regulator (CFTR) gene. CF affects multiple systems, predominantly with respiratory involvement. In Qatar, researchers have been exploring various aspects of the disease for almost 20 years. PubMed and Google Scholar were reviewed for articles related to CF in Qatar. The first publication appeared in the year 2000. Since then, several studies have been conducted on CF patients in Qatar considering a variety of topics. The presence of the CFTR I1234V mutation in a certain Arab tribe stands out as a distinguishing characteristic of CF patients in Qatar when compared to the larger Arab region or even worldwide. We aim here to summarize the existing CF research conducted in Qatar over the years as well as to introduce topics for future research.
Collapse
Affiliation(s)
- Samer Hammoudeh
- 1Medical Research Center, Research Affairs, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Wessam Gadelhak
- 1Medical Research Center, Research Affairs, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Atqah AbdulWahab
- Pediatric Pulmonology, Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mona Al-Langawi
- 3Internal Medicine, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ibrahim A Janahi
- Pediatric Pulmonology, Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
13
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
14
|
Grover AS, Freeman AJ, Abu-El-Haija M, Eisses JF, Gardner TB, Liu QY, Lowe ME, Nathan JD, Palermo TM, Singh VK, Trout AT, Uc A, Husain SZ, Morinville VD. Updates in Pediatric Pancreatology: Proceedings of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Frontiers in Pediatric Pancreatology Symposium. J Pediatr Gastroenterol Nutr 2019; 68:e27-e33. [PMID: 30888340 PMCID: PMC6444930 DOI: 10.1097/mpg.0000000000002186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Pancreas Committee of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition aims to promote awareness of pediatric pancreatic diseases, support clinical and basic science research in the field, educate pediatric gastroenterologists, and advocate on behalf of pediatric patients with pancreatic disorders. At the 2017 Annual North American Society for Pediatric Gastroenterology, Hepatology and Nutrition meeting, the Pancreas Committee held a full day symposium on pediatric pancreatic diseases, entitled, "Frontiers in Pediatric Pancreatology." The symposium served as a timely and novel academic meeting that brought together individuals with a vested interest in the care of children with pancreatic disorders. The objective of this day-long course was to update practicing gastroenterologists on the latest advances in research, management algorithms, endoscopic therapies, radiographic resources, surgical approaches, and novel drug therapies targeted to pediatric pancreatitis. Presentations were divided into 4 modules: diagnosis, risk factors, and natural history of pancreatitis; pancreatic imaging and exocrine function; management of pancreatitis; and new frontiers in pediatric pancreatitis research. The course fostered a unique ecosystem for interdisciplinary collaboration, in addition to promoting discussion and stimulating new research hypotheses regarding pediatric pancreatic disorders. Oral presentations by experts in various fields of pancreatology led to thought-provoking discussion; in addition, a meet-the-professor luncheon stimulated critical evaluation of current research in pediatric pancreatic diseases, highlighting knowledge gaps and future research endeavors. The current report summarizes the major learning points from this novel symposium focusing on the growing demographic of pediatric pancreatic diseases.
Collapse
Affiliation(s)
- Amit S Grover
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alvin J Freeman
- Childrens' Healthcare of Atlanta, Division of Gastroenterology, Hepatology and Nutrition, Emory University, Atlanta, GA
| | - Maisam Abu-El-Haija
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John F Eisses
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy B Gardner
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Quin Y Liu
- Cedars-Sinai Medical Center, Digestive Diseases Center, Los Angeles, CA
| | - Mark E Lowe
- Department of Pediatrics, Children's Hospital of St. Louis, Washington University School of Medicine, St. Louis, MO
| | - Jaimie D Nathan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Tonya M Palermo
- Department of Anesthesiology and Pain Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA
| | - Vikesh K Singh
- Division of Gastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Johns Hopkins Medical School, Baltimore, MD
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Aliye Uc
- Stead Family Children's Hospital, University of Iowa, Iowa City, IA
| | - Sohail Z Husain
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Veronique D Morinville
- Division of Pediatric Gastroenterology and Nutrition, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Perkhofer L, Frappart PO, Müller M, Kleger A. Importance of organoids for personalized medicine. Per Med 2018; 15:461-465. [PMID: 30418092 DOI: 10.2217/pme-2018-0071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The establishment of organoid culture systems represents a milestone on the route toward successful personalized medicine. This mini review provides an update on the current status of organoid technology and summarizes their applications in personalized medicine. Organoids can be defined as 3D structures derived either from pluripotent or organ restricted stem cells harboring the ability to mimic in vivo architecture and multi lineage differentiation of terminally differentiated tissues. Due to their unique ability of virtually unlimited self-renewal, organoid cultures should be distinguished from previous 'sphere'-culture assays, for example, 'tumor spheres' that have already been described and applied over the last decades.
Collapse
|
16
|
Gorshkov K, Chen CZ, Marshall RE, Mihatov N, Choi Y, Nguyen DT, Southall N, Chen KG, Park JK, Zheng W. Advancing precision medicine with personalized drug screening. Drug Discov Today 2018; 24:272-278. [PMID: 30125678 DOI: 10.1016/j.drudis.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
Abstract
Personalized drug screening (PDS) of approved drug libraries enables rapid development of specific small-molecule therapies for individual patients. With a multidisciplinary team including clinicians, researchers, ethicists, informaticians and regulatory professionals, patient treatment can be optimized with greater efficacy and fewer adverse effects by using PDS as an approach to find remedies. In addition, PDS has the potential to rapidly identify therapeutics for a patient suffering from a disease without an existing therapy. From cancer to bacterial infections, we review specific maladies addressed with PDS campaigns. We predict that PDS combined with personal genomic analyses will contribute to the development of future precision medicine endeavors.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Raisa E Marshall
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Nino Mihatov
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Yong Choi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Kevin G Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - John K Park
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
17
|
Reprogramming to pluripotency does not require transition through a primitive streak-like state. Sci Rep 2017; 7:16543. [PMID: 29185460 PMCID: PMC5707390 DOI: 10.1038/s41598-017-15187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
Pluripotency can be induced in vitro from adult somatic mammalian cells by enforced expression of defined transcription factors regulating and initiating the pluripotency network. Despite the substantial advances over the last decade to improve the efficiency of direct reprogramming, exact mechanisms underlying the conversion into the pluripotent stem cell state are still vaguely understood. Several studies suggested that induced pluripotency follows reversed embryonic development. For somatic cells of mesodermal and endodermal origin that would require the transition through a Primitive streak-like state, which would necessarily require an Eomesodermin (Eomes) expressing intermediate. We analyzed reprogramming in human and mouse cells of mesodermal as well as ectodermal origin by thorough marker gene analyses in combination with genetic reporters, conditional loss of function and stable fate-labeling for the broad primitive streak marker Eomes. We unambiguously demonstrate that induced pluripotency is not dependent on a transient primitive streak-like stage and thus does not represent reversal of mesendodermal development in vivo.
Collapse
|