1
|
Kim J, Kim H, Bang D. An open-source, 3D printed inkjet DNA synthesizer. Sci Rep 2024; 14:3773. [PMID: 38355610 PMCID: PMC10867077 DOI: 10.1038/s41598-024-53944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Synthetic oligonucleotides have become a fundamental tool in a wide range of biological fields, including synthetic biology, biosensing, and DNA storage. Reliable access to equipment for synthesizing high-density oligonucleotides in the laboratory ensures research security and the freedom of research expansion. In this study, we introduced the Open-Source Inkjet DNA Synthesizer (OpenIDS), an open-source inkjet-based microarray synthesizer that offers ease of construction, rapid deployment, and flexible scalability. Utilizing 3D printing, Arduino, and Raspberry Pi, this newly designed synthesizer achieved robust stability with an industrial inkjet printhead. OpenIDS maintains low production costs and is therefore suitable for self-fabrication and optimization in academic laboratories. Moreover, even non-experts can create and control the synthesizer with a high degree of freedom for structural modifications. Users can easily add printheads or alter the design of the microarray substrate according to their research needs. To validate its performance, we synthesized oligonucleotides on 144 spots on a 15 × 25-mm silicon wafer filled with controlled pore glass. The synthesized oligonucleotides were analyzed using urea polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Haeun Kim
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
2
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Nelson DJ, Leelawong M, Pask ME, Wester CW, Aliyu MH, Haselton FR. Magnetic Bead Processing Enables Sensitive Ligation-Based Detection of HIV Drug Resistance Mutations. Anal Chem 2022; 94:2625-2632. [PMID: 35077642 PMCID: PMC11127743 DOI: 10.1021/acs.analchem.1c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV develops single nucleotide polymorphisms (SNPs), some of which lead to drug resistance mutations (DRMs) that prevent therapeutic viral suppression. Genomic sequencing enables healthcare professionals to select effective combination antiretroviral therapy (ART) to achieve and maintain viral suppression. However, sequencing technologies, which are resource-intensive, are limited in their availability. This report describes the first step toward a highly specific ligation-based SNP discrimination method with endpoint PCR detection, which is more suitable for resource-limited clinics. The approach is based on magnetic bead processing to maximize reaction product transfer and minimize the carryover of incompatible buffer for three consecutive enzymatic reactions─reverse transcription (RT), oligonucleotide ligation assay (OLA), and PCR. The method improved PCR detection following RT → OLA by 8.06 cycles (∼250-fold) compared to direct pipette processing and detected between 103 and 104 RNA copies per reaction. In studies with synthesized nucleic acids based on the well-studied HIV mutation, K103N, the assay successfully differentiated between wild-type and mutant for RNA targets with high specificity. With further development, this design provides a pathway for SNP detection with more accessible PCR instrumentation and is a step toward a self-contained processing approach that incorporates the SNP specificity of the ligation reaction for more effective clinical management of DRMs in resource-constrained settings.
Collapse
Affiliation(s)
- Dalton J Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E Pask
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - C William Wester
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Muktar H Aliyu
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
4
|
Pearlman S, Leelawong M, Richardson KA, Adams NM, Russ PK, Pask ME, Wolfe AE, Wessely C, Haselton FR. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12457-12467. [PMID: 32039572 PMCID: PMC7082792 DOI: 10.1021/acsami.9b21564] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Nucleic acid-based diagnostic tests often require isolation and concentration of nucleic acids from biological samples. Commercial purification kits are difficult to use in low-resource settings because of their cost and insufficient laboratory infrastructure. Several recent approaches based on the use of magnetic beads offer a potential solution but remain limited to small volume samples. We have developed a simple and low-cost nucleic acid extraction method suitable for isolation and concentration of nucleic acids from small or large sample volumes. The method uses magnetic beads, a transfer pipette, steel wool, and an external magnet to implement high-gradient magnetic separation (HGMS) to retain nucleic acid-magnetic bead complexes within the device's steel wool matrix for subsequent processing steps. We demonstrate the method's utility by extracting tuberculosis DNA from both sputum and urine, two typical large volume sample matrices (5-200 mL), using guanidine-based extraction chemistry. Our HGMS-enabled extraction method is statistically indistinguishable from commercial extraction kits when detecting a spiked 123-base DNA sequence. For our HGMS-enabled extraction method, we obtained extraction efficiencies for sputum and urine of approximately 10 and 90%, whereas commercial kits obtained 10-17 and 70-96%, respectively. We also used this method previously in a blinded sample preparation comparison study published by Beall et al., 2019. Our manual extraction method is insensitive to high flow rates and sample viscosity, with capture of ∼100% for flow rates up to 45 mL/min and viscosities up to 55 cP, possibly making it suitable for a wide variety of sample volumes and types and point-of-care users. This HGMS-enabled extraction method provides a robust instrument-free method for magnetic bead-based nucleic acid extraction, potentially suitable for field implementation of nucleic acid testing.
Collapse
Affiliation(s)
- Stephanie
I. Pearlman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kelly A. Richardson
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas M. Adams
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Patricia K. Russ
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E. Pask
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anna E. Wolfe
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cassandra Wessely
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Frederick R. Haselton
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Barthels F, Barthels U, Schwickert M, Schirmeister T. FINDUS: An Open-Source 3D Printable Liquid-Handling Workstation for Laboratory Automation in Life Sciences. SLAS Technol 2019; 25:190-199. [PMID: 31540570 DOI: 10.1177/2472630319877374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
3D-printed laboratory devices can enable ambitious research purposes even at a low-budget level. To follow this trend, here we describe the construction, calibration, and usage of the FINDUS (Fully Integrable Noncommercial Dispensing Utility System). We report the successful 3D printing and assembly of a liquid-handling workstation for less than $400. Using this setup, we achieve reliable and flexible liquid-dispensing automation with relative pipetting errors of less than 0.3%. We show our system is well suited for several showcase applications from both the biology and chemistry fields. In support of the open-source spirit, we make all 3D models, assembly instructions, and source code available for free download, rebuild, and modification.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Barthels
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Zimmers ZA, Adams NM, Gabella WE, Haselton FR. Fluorophore-Quencher Interactions Effect on Hybridization Characteristics of Complementary Oligonucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2862-2867. [PMID: 32661463 PMCID: PMC7357715 DOI: 10.1039/c9ay00584f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nucleic acids are often covalently modified with fluorescent reporter molecules to create a hybridization state-dependent optical signal. Designing such a nucleic acid reporter involves selecting a fluorophore, quencher, and fluorescence quenching design. This report outlines the effect that these choices have on the DNA hybridization characteristics by examining six fluorophores in four quenching schemes: a quencher molecule offset from the fluorophore by 0, 5, or 10 bases, and nucleotide quenching. The similar binding characteristics of left-handed L-DNA were evaluated in comparison with right-handed DNA to quantify the effect of each quenching scheme. These results were applied to the Adaptive PCR method, which monitors fluorescently-labeled L-DNA as a sentinel for analogous unlabeled D-DNA in the reaction. All of the tested fluorophores and quenching schemes increased the annealing temperature of the oligonucleotide pairs by values ranging from 0.5 to 8.5 °C relative to unlabeled oligonucleotides. The design with the smallest increase (0.5 °C) was a sense strand with a FAM fluorophore and an anti-sense strand with Black Hole Quencher 2 offset by 10 bases from the FAM. An identical design that did not offset the quencher molecules resulted in a shift in annealing temperature of 5 °C. PCR was performed using temperature switching based on each of these L-DNA designs, and efficiency was significantly increased for the 10-base offset design, which had the smallest shift in annealing temperature. These results highlight the importance of selecting an appropriate fluorescence quenching scheme for nucleic acid optical signals.
Collapse
Affiliation(s)
- Zackary A Zimmers
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - Nicholas M Adams
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - William E Gabella
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | | |
Collapse
|
7
|
Kolluri N, Klapperich CM, Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. LAB ON A CHIP 2017; 18:75-94. [PMID: 29125615 DOI: 10.1039/c7lc00758b] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Malaria continues to be one of the most devastating diseases impacting global health. Although there have been significant reductions in global malaria incidence and mortality rates over the past 17 years, the disease remains endemic throughout the world, especially in low- and middle-income countries. The World Health Organization has put forth ambitious milestones moving toward a world free of malaria as part of the United Nations Millennium Goals. Mass screening and treatment of symptomatic and asymptomatic malaria infections in endemic regions is integral to these goals and requires diagnostics that are both sensitive and affordable. Lab-on-a-chip technologies provide a path toward sensitive, portable, and affordable diagnostic platforms. Here, we review and compare currently-available and emerging lab-on-a-chip diagnostic approaches in three categories: (1) protein-based tests, (2) nucleic acid tests, and (3) cell-based detection. For each category, we highlight the opportunities and challenges in diagnostics development for malaria elimination, and comment on their applicability to different phases of elimination strategies.
Collapse
Affiliation(s)
- N Kolluri
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | |
Collapse
|
8
|
Wang X, Gu M, Toh TB, Abdullah NLB, Chow EKH. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. SLAS Technol 2017; 23:44-56. [PMID: 29020497 DOI: 10.1177/2472630317735497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengjie Gu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nurrul Lissa Binti Abdullah
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
9
|
Scherr TF, Markwalter CF, Bauer WS, Gasperino D, Wright DW, Haselton FR. Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Adv Colloid Interface Sci 2017; 246:275-288. [PMID: 28595937 DOI: 10.1016/j.cis.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.
Collapse
|
10
|
Design and use of mouse control DNA for DNA biomarker extraction and PCR detection from urine: Application for transrenal Mycobacterium tuberculosis DNA detection. J Microbiol Methods 2017; 136:65-70. [PMID: 28285168 DOI: 10.1016/j.mimet.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 11/22/2022]
Abstract
Urine samples are increasingly used for diagnosing infections including Escherichia coli, Ebola virus, and Zika virus. However, extraction and concentration of nucleic acid biomarkers from urine is necessary for many molecular detection strategies such as polymerase chain reaction (PCR). Since urine samples typically have large volumes with dilute biomarker concentrations making them prone to false negatives, another impediment for urine-based diagnostics is the establishment of appropriate controls particularly to rule out false negatives. In this study, a mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) DNA target was added to retrospectively collected urine samples from tuberculosis (TB)-infected and TB-uninfected patients to indicate extraction of intact DNA and removal of PCR inhibitors from urine samples. We tested this design on surrogate urine samples, retrospective 1milliliter (mL) urine samples from patients in Lima, Peru and retrospective 5mL urine samples from patients in Cape Town, South Africa. Extraction/PCR control DNA was detectable in 97% of clinical samples with no statistically significant differences among groups. Despite the inclusion of this control, there was no difference in the amount of TB IS6110 Tr-DNA detected between TB-infected and TB-uninfected groups except for samples from known HIV-infected patients. We found an increase in TB IS6110 Tr-DNA between TB/HIV co-infected patients compared to TB-uninfected/HIV-infected patients (N=18, p=0.037). The inclusion of an extraction/PCR control DNA to indicate successful DNA extraction and removal of PCR inhibitors should be easily adaptable as a sample preparation control for other acellular sample types.
Collapse
|
11
|
Chow EKH. The 2017 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technol 2017; 22:3-6. [DOI: 10.1177/2472630316683633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Abstract
The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.
Collapse
Affiliation(s)
- Hariprasad Gali
- 1 Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Russ PK, Karhade AV, Bitting AL, Doyle A, Solinas F, Wright DW, Haselton FR. A Prototype Biomarker Detector Combining Biomarker Extraction and Fixed Temperature PCR. ACTA ACUST UNITED AC 2016; 21:590-8. [DOI: 10.1177/2211068216634072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 11/16/2022]
|
14
|
Scherr TF, Ryskoski HB, Doyle AB, Haselton FR. A two-magnet strategy for improved mixing and capture from biofluids. BIOMICROFLUIDICS 2016; 10:024118. [PMID: 27158286 PMCID: PMC4833749 DOI: 10.1063/1.4946014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/30/2016] [Indexed: 05/25/2023]
Abstract
Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs.
Collapse
Affiliation(s)
- Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Hayley B Ryskoski
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Andrew B Doyle
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| |
Collapse
|