1
|
Spitz ML, Kashkush A, Benhamou RI. Advancing target validation with PROTAC technology. Expert Opin Drug Discov 2025; 20:551-563. [PMID: 40188374 DOI: 10.1080/17460441.2025.2490248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/08/2025]
Abstract
INTRODUCTION Targeted protein degradation (TPD) is a cutting-edge technology that provides new avenues for drug discovery and development. PROteolysis TArgeting Chimeras (PROTACs) are the most established and advanced TPD strategy, enabling the selective degradation of disease-associated and 'undruggable' proteins of interest (POIs) by leveraging the cell's natural protein degradation machinery. To confirm that PROTAC-induced proximity drives protein degradation, target validation and ternary complex formation must be thoroughly assessed. AREAS COVERED In this perspective, the authors detail some of the most widely used in silico, structural, in vitro, and in cellulo methods to validate PROTAC target engagement and ternary complex formation. Additionally, they discuss the growing use of PROTACs as chemical probes for novel target identification and validation. EXPERT OPINION Target validation is essential in the PROTAC approach, and ongoing studies should prioritize confirming ternary complex formation using assays conducted under physiologically relevant cellular conditions. Proteomics analyses are among the most valuable tools for elucidating PROTAC mechanisms, selectivity, and outcomes. The authors are optimistic about the future of PROTACs in drug development and their use as probes to confirm target engagement. PROTAC technology holds vast opportunities for future exploration, offering significant potential to further both chemical and biological research.
Collapse
Affiliation(s)
- M Leora Spitz
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Aseel Kashkush
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Raphael I Benhamou
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Haid RTU, Reichel A. PK/PD modeling of targeted protein degraders: Charting new waters and navigating the shallows. Drug Discov Today 2025; 30:104311. [PMID: 39929346 DOI: 10.1016/j.drudis.2025.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
The development of targeted protein degraders has picked up considerable steam recently, with interest stoked further by the first compounds entering Phase III studies. To keep up with leading biotech start-up firms, big pharma has been keen to venture into this new field, bringing along experienced crews of drug hunters. At their disposal, they find a burgeoning body of literature on pharmacokinetics/pharmacodynamics (PK/PD) models tailor-made for this new therapeutic modality. However, this ocean of opportunities might seem daunting even to veteran scientists. Here, we provide orientation and direction for researchers to find the approach best suited for their respective questions.
Collapse
Affiliation(s)
- Robin T U Haid
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Preclinical Modeling & Simulation, Preclinical Development, Bayer AG, Berlin, Germany
| | - Andreas Reichel
- Preclinical Modeling & Simulation, Preclinical Development, Bayer AG, Berlin, Germany.
| |
Collapse
|
3
|
Haid RTU, Reichel A. Transforming the Discovery of Targeted Protein Degraders: The Translational Power of Predictive PK/PD Modeling. Clin Pharmacol Ther 2024; 116:770-781. [PMID: 38708948 DOI: 10.1002/cpt.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
Targeted protein degraders (TPDs), an emerging therapeutic modality, are attracting considerable interest with the promise to address disease-related proteins that are not druggable with conventional small molecule inhibitors. Despite their novel mechanism of action, the PK/PD relationship of degraders is still approached with a mindset deeply rooted in inhibitor drugs. Here, we establish how predictive mechanistic modeling specifically tailored to TPDs can significantly enhance the value of the available information during lead generation and optimization. By integrating the results from in vitro assays with routinely collected PK data, modeling accurately predicts degradation in vivo. These predictions transform the prioritization of compounds for in vivo studies as well as the selection of optimal dose schedules and most informative measurement time points with the least number of animals. Moreover, the comprehensive modeling framework (1) identifies the PK/PD driver of targeted protein degradation and subsequent downstream pharmacodynamic effects, and (2) uncovers the fundamental difference between degrader and inhibitor PK/PD relationships. The practical utility of our predictive modeling is demonstrated with relevant use cases. This framework will allow researchers to transition from current, mostly serendipity-based approaches to more sound model-informed decision making. Going forward, the presented predictive PK/PD modeling framework lays out a rational path to incorporate inter-species differences in the pharmacology and thus promises to help with getting the dose right in clinical trials.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- Preclinical Modeling & Simulation, Drug Metabolism & Pharmacokinetics, Preclinical Development, Bayer AG, Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Reichel
- Preclinical Modeling & Simulation, Drug Metabolism & Pharmacokinetics, Preclinical Development, Bayer AG, Berlin, Germany
| |
Collapse
|
4
|
Tong Y, Su X, Rouse W, Childs-Disney JL, Taghavi A, Zanon PRA, Kovachka S, Wang T, Moss WN, Disney MD. Transcriptome-Wide, Unbiased Profiling of Ribonuclease Targeting Chimeras. J Am Chem Soc 2024; 146:21525-21534. [PMID: 39047145 PMCID: PMC11740015 DOI: 10.1021/jacs.4c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Various approaches have been developed to target RNA and modulate its function with modes of action including binding and cleavage. Herein, we explored how small molecule binding is correlated with cleavage induced by heterobifunctional ribonuclease targeting chimeras (RiboTACs), where RNase L is recruited to cleave the bound RNA target, in a transcriptome-wide, unbiased fashion. Only a fraction of bound targets was cleaved by RNase L, induced by RiboTAC binding. Global analysis suggested that (i) cleaved targets generally form a region of stable structure that encompasses the small molecule binding site; (ii) cleaved targets have preferred RNase L cleavage sites nearby small molecule binding sites; (iii) RiboTACs facilitate a cellular interaction between cleaved targets and RNase L; and (iv) the expression level of the target influences the extent of cleavage observed. In one example, we converted a binder of LGALS1 (galectin-1) mRNA into a RiboTAC. In MDA-MB-231 cells, the binder had no effect on galectin-1 protein levels, while the RiboTAC cleaved LGALS1 mRNA, reduced galectin-1 protein abundance, and affected galectin-1-associated oncogenic cellular phenotypes. Using LGALS1, we further assessed additional factors including the length of the linker that tethers the two components of the RiboTAC, cellular uptake, and the RNase L-recruiting module on RiboTAC potency. Collectively, these studies may facilitate triangulation of factors to enable the design of RiboTACs.
Collapse
Affiliation(s)
- Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Xiaoxuan Su
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Warren Rouse
- Iowa State University, Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Ames, IA 50011 USA
| | - Jessica L. Childs-Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Amirhossein Taghavi
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Patrick R. A. Zanon
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Sandra Kovachka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Tenghui Wang
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Walter N. Moss
- Iowa State University, Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Ames, IA 50011 USA
| | - Matthew D. Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
5
|
Casan JML, Seymour JF. Degraders upgraded: the rise of PROTACs in hematological malignancies. Blood 2024; 143:1218-1230. [PMID: 38170175 DOI: 10.1182/blood.2023022993] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Targeted protein degradation (TPD) is a revolutionary approach to targeted therapy in hematological malignancies that potentially circumvents many constraints of existing small-molecule inhibitors. Heterobifunctional proteolysis-targeting chimeras (PROTACs) are the leading TPD drug class, with numerous agents now in clinical trials for a range of blood cancers. PROTACs harness the cell-intrinsic protein recycling infrastructure, the ubiquitin-proteasome system, to completely degrade target proteins. Distinct from targeted small-molecule inhibitor therapies, PROTACs can eliminate critical but conventionally "undruggable" targets, overcome resistance mechanisms to small-molecule therapies, and can improve tissue specificity and off-target toxicity. Orally bioavailable, PROTACs are not dependent on the occupancy-driven pharmacology inherent to inhibitory therapeutics, facilitating substoichiometric dosing that does not require an active or allosteric target binding site. Preliminary clinical data demonstrate promising therapeutic activity in heavily pretreated populations and novel technology platforms are poised to exploit a myriad of permutations of PROTAC molecular design to enhance efficacy and targeting specificity. As the field rapidly progresses and various non-PROTAC TPD drug candidates emerge, this review explores the scientific and preclinical foundations of PROTACs and presents them within common clinical contexts. Additionally, we examine the latest findings from ongoing active PROTAC clinical trials.
Collapse
Affiliation(s)
- Joshua M L Casan
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Kong NR, Jones LH. Clinical Translation of Targeted Protein Degraders. Clin Pharmacol Ther 2023; 114:558-568. [PMID: 37399310 DOI: 10.1002/cpt.2985] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a potentially transformational therapeutic modality with considerable promise. Molecular glue degraders remodel the surface of E3 ligases inducing interactions with neosubstrates resulting in their polyubiquitination and proteasomal degradation. Molecular glues are clinically precedented and have demonstrated the ability to degrade proteins-of-interest (POIs) previously deemed undruggable due to the absence of a traditional small molecule binding pocket. Heterobifunctional proteolysis targeting chimeras (PROTACs) possess ligands for an E3 complex and the POIs, which are chemically linked together, and similarly hijack the ubiquitin machinery to deplete the target. There has been a recent surge in the number of degraders entering clinical trials, particularly directed toward cancer. Nearly all utilize CRL4CRBN as the E3 ligase, and a relatively limited diversity of POIs are currently targeted. In this review, we provide an overview of the degraders in clinical trials and provide a perspective on the lessons learned from their development and emerging human data that will be broadly useful to those working in the TPD field.
Collapse
Affiliation(s)
- Nikki R Kong
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
9
|
Teng M, Gray NS. The rise of degrader drugs. Cell Chem Biol 2023; 30:864-878. [PMID: 37494935 DOI: 10.1016/j.chembiol.2023.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
The cancer genomics revolution has served up a plethora of promising and challenging targets for the drug discovery community. The field of targeted protein degradation (TPD) uses small molecules to reprogram the protein homeostasis system to destroy desired target proteins. In the last decade, remarkable progress has enabled the rational development of degraders for a large number of target proteins, with over 20 molecules targeting more than 12 proteins entering clinical development. While TPD has been fully credentialed by the prior development of immunomodulatory drug (IMiD) class for the treatment of multiple myeloma, the field is poised for a "Gleevec moment" in which robust clinical efficacy of a rationally developed novel degrader against a preselected target is firmly established. Here, we endeavor to provide a high-level evaluation of exciting developments in the field and comment on steps that may realize the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Gao Y, Jiang B, Kim H, Berberich MJ, Che J, Donovan KA, Hatcher JM, Huerta F, Kwiatkowski NP, Liu Y, Liuni PP, Metivier RJ, Murali VK, Nowak RP, Zhang T, Fischer ES, Gray NS, Jones LH. Catalytic Degraders Effectively Address Kinase Site Mutations in EML4-ALK Oncogenic Fusions. J Med Chem 2023; 66:5524-5535. [PMID: 37036171 PMCID: PMC11827123 DOI: 10.1021/acs.jmedchem.2c01864] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Heterobifunctional degraders, known as proteolysis targeting chimeras (PROTACs), theoretically possess a catalytic mode-of-action, yet few studies have either confirmed or exploited this potential advantage of event-driven pharmacology. Degraders of oncogenic EML4-ALK fusions were developed by conjugating ALK inhibitors to cereblon ligands. Simultaneous optimization of pharmacology and compound properties using ternary complex modeling and physicochemical considerations yielded multiple catalytic degraders that were more resilient to clinically relevant ATP-binding site mutations than kinase inhibitor drugs. Our strategy culminated in the design of the orally bioavailable derivative CPD-1224 that avoided hemolysis (a feature of detergent-like PROTACs), degraded the otherwise recalcitrant mutant L1196M/G1202R in vivo, and commensurately slowed tumor growth, while the third generation ALK inhibitor drug lorlatinib had no effect. These results validate our original therapeutic hypothesis by exemplifying opportunities for catalytic degraders to proactively address binding site resistant mutations in cancer.
Collapse
Affiliation(s)
- Yang Gao
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Baishan Jiang
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hellen Kim
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Matthew J Berberich
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - John M Hatcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Nicholas P Kwiatkowski
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Yingpeng Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Peter P Liuni
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Rebecca J Metivier
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Vineeth K Murali
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023; 22:410-427. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Over the past 3 years, the first bivalent protein degraders intentionally designed for targeted protein degradation (TPD) have advanced to clinical trials, with an initial focus on established targets. Most of these clinical candidates are designed for oral administration, and many discovery efforts appear to be similarly focused. As we look towards the future, we propose that an oral-centric discovery paradigm will overly constrain the chemical designs that are considered and limit the potential to drug novel targets. In this Perspective, we summarize the current state of the bivalent degrader modality and propose three categories of degrader designs, based on their likely route of administration and requirement for drug delivery technologies. We then describe a vision for how parenteral drug delivery, implemented early in research and supported by pharmacokinetic-pharmacodynamic modelling, can enable exploration of a broader drug design space, expand the scope of accessible targets and deliver on the promise of protein degraders as a therapeutic modality.
Collapse
Affiliation(s)
| | - Suman Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, MA, USA
| | - Matthew F Brown
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, CT, USA
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Worldwide Research, Development, and Medical, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
12
|
Abstract
Measurement of target engagement in cells is critical to understand the molecular pharmacology of drugs and chemical probes. Many targeted protein degraders engage the E3 ligase CRL4CRBN and induce proximity with target neosubstrates resulting in their polyubiquitination and subsequent proteasomal degradation. Here we describe the development of a sensitive and robust cellular NanoBRET-based assay that measures occupancy of the CRBN ligand binding site. The assay is based on a bioluminescence resonance energy transfer (BRET) between NanoLuc luciferase tagged CRBN and a BODIPY-lenalidomide tracer which can be competed out by CRBN ligands, including PROTACs and molecular glues. The assay is compatible with a 384-well plate setup, does not require transfections and can be performed in a single day with only 3-4h of laboratory time. The protocols can be used to design other NanoLuc fusion engagement assays based on BODIPY tracers.
Collapse
|
13
|
Haid RTU, Reichel A. A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics 2023; 15:pharmaceutics15010195. [PMID: 36678824 PMCID: PMC9865105 DOI: 10.3390/pharmaceutics15010195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
The field of targeted protein degradation is growing exponentially. Yet, there is an unmet need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive modeling framework which can be applied to experimental data from routine projects to: (1) assess PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability and to build confidence, we have employed these three models to analyze exemplary data on various compounds from different projects and targets. The presented framework allows researchers to tailor their experimental work and to arrive at a better understanding of their results, ultimately leading to more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments, key implications for in vivo studies are also discussed.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Andreas Reichel
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
14
|
VanDyke D, Taylor JD, Kaeo KJ, Hunt J, Spangler JB. Biologics-based degraders - an expanding toolkit for targeted-protein degradation. Curr Opin Biotechnol 2022; 78:102807. [PMID: 36179405 PMCID: PMC9742328 DOI: 10.1016/j.copbio.2022.102807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation (TPD) is a broadly useful proteome editing tool for biological research and therapeutic development. TPD offers several advantages over functional inhibition alone, including the ability to target previously undruggable proteins and the substantial and sustained knockout of protein activity. A variety of small molecule approaches hijack endogenous protein degradation machinery, but are limited to proteins with a cytosolic domain and suitable binding pocket. Recently, biologics-based methods have expanded the TPD toolbox by allowing access to extracellular and surface-exposed proteins and increasing target specificity. Here, we summarize recent advances in the use of biologics to deplete proteins through either the ubiquitin-proteasome system or the lysosomal degradation pathway, and discuss routes to their effective delivery as potential therapeutic interventions.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Kyle J Kaeo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras. BioDrugs 2022; 36:609-623. [PMID: 36098871 DOI: 10.1007/s40259-022-00551-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
In the recent past, proteolysis-targeting chimera (PROTAC) technology has received enormous attention for its ability to overcome the limitations of protein inhibitors and its capability to target undruggable proteins. The PROTAC molecule consists of three components, a ubiquitin E3 ligase ligand, a linker, and a target protein ligand. The application of this technology is rapidly gaining momentum, especially in cancer therapy. In this review, we first look at the history of degraders, followed by a section on the ubiquitin proteasome system (UPS) and E3 ligases used in PROTAC development. PROTACs are dependent on the UPS for degradation of target proteins. We further discuss the scope and design of degraders and mitigation strategies for overcoming the hook effect seen with degraders. As PROTACs do not follow Lipinski's 'Rule of 5', these molecules face drug metabolism and pharmacokinetic challenges. A detailed section on absorption, distribution, metabolism, and excretion of degraders is provided wherein we discuss methodologies and strategies to surmount the challenges faced by these molecules. For understanding PROTAC-mediated degradation, the characterization and measurement of protein levels in cells is important. Currently used techniques and recent advancements in assessment tools for degraders are discussed. Furthermore, we examine the challenges and emerging technologies that need to be focused on in order to competently develop potent degraders. Many companies are working in this area of emerging new modality and a few PROTACs have already entered clinical trials; the details of the trials are included in this review.
Collapse
|
17
|
Targeted protein degraders: a call for collective action to advance safety assessment. Nat Rev Drug Discov 2022; 21:401-402. [PMID: 35322806 DOI: 10.1038/d41573-022-00055-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Campbell RM. The SLAS Discovery Editor's Top 10 for 2021. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:77-78. [PMID: 35104635 DOI: 10.1016/j.slasd.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
19
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
20
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
21
|
Rodriguez-Rivera FP, Levi SM. Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS CENTRAL SCIENCE 2021; 7:1117-1125. [PMID: 34345664 PMCID: PMC8323112 DOI: 10.1021/acscentsci.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities in drug discovery to rationally design and phenotypically screen for efficient degraders.
Collapse
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Samuel M. Levi
- Pfizer
Worldwide Research and Development, Pfizer,
Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Cresser-Brown JO, Marsh GP, Maple HJ. Reviewing the toolbox for degrader development in oncology. Curr Opin Pharmacol 2021; 59:43-51. [PMID: 34058637 DOI: 10.1016/j.coph.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
The field of targeted protein degradation encompasses a growing number of modalities that achieve potent and selective knockdown of target proteins at the post-translational level. Among the most clinically advanced are bifunctional small-molecule degraders, also referred to as PROteolysis Targeting Chimeras, Degronimids, SNIPERs, or uSMITEs. Although applicable to many disease indications, oncology stands to be the first to benefit from this promising therapeutic approach, with the first investigational new drugs (INDs) filed in 2019 and a proliferation of research specifically focused on harnessing degraders for cancer treatment. In this review, we consider the toolbox of guidelines, reagents, and technologies that has evolved alongside the field to support degrader research and development.
Collapse
Affiliation(s)
- Joel O Cresser-Brown
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK.
| |
Collapse
|
23
|
Stacey P, Lithgow H, Lewell X, Konopacka A, Besley S, Green G, Whatling R, Law R, Röth S, Sapkota GP, Smith IED, Burley GA, Harling J, Benowitz AB, Queisser MA, Muelbaier M. A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications. SLAS DISCOVERY 2021; 26:885-895. [PMID: 34041938 DOI: 10.1177/24725552211017517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.
Collapse
Affiliation(s)
| | - Hannah Lithgow
- Medicine Design, GlaxoSmithKline, Stevenage, UK.,Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, UK
| | - Xiao Lewell
- Medicine Design, GlaxoSmithKline, Stevenage, UK
| | | | | | | | | | - Robert Law
- Medicine Design, GlaxoSmithKline, Stevenage, UK
| | - Sascha Röth
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), University of Dundee, Dundee, UK
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), University of Dundee, Dundee, UK
| | | | - Glenn A Burley
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
24
|
Castaldi MP, Fisher SL. Advances in Protein Degradation. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:471-473. [PMID: 33780295 DOI: 10.1177/24725552211001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|