1
|
Ramasamy S, Madhu S, Choi J. Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood. Bioelectrochemistry 2025; 163:108902. [PMID: 39798421 DOI: 10.1016/j.bioelechem.2025.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO2-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including E. coli, P. aeruginosa, S. aureus, and E. faecalis. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 102-108 CFU/mL for E. coli and S. aureus, and 103-108 CFU/mL for P. aeruginosa and E. faecalis, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.
Collapse
Affiliation(s)
| | - Sekar Madhu
- Department of Mechanical Engineering, Ajou University, South Korea
| | - Jungil Choi
- Department of Mechanical Engineering, Ajou University, South Korea.
| |
Collapse
|
2
|
Vázquez-Díaz S, Saa L, Otaegui D, Pavlov V, Palazón A, Cortajarena AL. Dual-Mode Immunosensor for Antibody Detection: Harnessing the Versatility of Antibody-Based Nanozymes across Optical and Electrochemical Platforms. Anal Chem 2025; 97:3361-3370. [PMID: 39918405 DOI: 10.1021/acs.analchem.4c05317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
In the early years of the 21st century, numerous viral infectious diseases have proliferated, prompting intensified efforts to devise more effective diagnostic methods. In response, various biosensors have emerged with the aim of overcoming the constraints of conventional diagnostic techniques. Nanomaterial-based biosensors have revolutionized conventional approaches, significantly enhancing biosensor performance and effectively tackling these challenges. A diverse array of nanoparticles and nanomaterials has been systematically synthesized, engineered, and employed to augment the functionalities of biosensors. This work capitalizes on the properties of gold-platinum bimetallic nanoclusters (NCs) embedded in the structure of an immunoglobulin (IgG) (Au/Pt NCs-IgG), unveiling a novel double strategy for the detection of antibodies that leverages both their catalytic NC scaffold and the biorecognition element. The detection mechanism revealed the unique oxidase-like properties of Au/Pt NCs-IgG. This distinctive property, in addition to previously reported peroxidase-like activity, positions Au/Pt NCs-IgG as an effective probe in both optical and electrochemical sandwich enzyme-linked immunosorbent assays, facilitating their incorporation in different sensor frameworks and their utilization across various applications. As a study case, anti-SARS-CoV-2 antibodies (anti-RBD IgG antibodies) were employed as the target analyte. A linear detection range was found between 0.5 and 100 ng/mL for optical immunosensors and 50-300 ng/mL for electrochemical immunosensors. The validation of the immunosensor in clinical samples demonstrated its promising diagnostic value. The significantly differential signal obtained between positive and negative clinical samples underscores the suitability of both sensors for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Silvia Vázquez-Díaz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - David Otaegui
- Group of Multiple Sclerosis, Biogipuzkoa Health Research Institute, San Sebastián 20014, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Asis Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences CIC bioGUNE- Basque Research and Technology Alliance BRTA- Bizkaia Technology Park, Derio 48160, Spain
- Ikerbasque. Basque Foundation for Science, Bilbao 48009, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque. Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
3
|
Valera E, Kindratenko V, Jankelow AM, Heredia J, Kim AY, Cowell TW, Chen CL, White K, Han HS, Bashir R. Electrochemical point-of-care devices for the diagnosis of sepsis. CURRENT OPINION IN ELECTROCHEMISTRY 2023; 39:101300. [PMID: 37483649 PMCID: PMC10357885 DOI: 10.1016/j.coelec.2023.101300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Sepsis is a life-threatening dysfunction of organ systems caused by a dysregulated immune system because of an infectious process. It remains one of the leading causes of hospital mortality and of hospital readmissions in the United States. Mortality from sepsis increases with each hour of delayed treatment, therefore, diagnostic devices that can reduce the time from the onset of a patient's infection to the delivery of appropriate therapy are urgently needed. Likewise, tools that are capable of high-frequency testing of clinically relevant biomarkers are required to study disease progression. Electrochemical biosensors offer important advantages such as high sensitivity, fast response, miniaturization, and low cost that can be adapted to clinical needs. In this review paper, we discuss the current state, limitations, and future directions of electrochemical-based point-of-care detection platforms that contribute to the diagnosis and monitoring of sepsis.
Collapse
Affiliation(s)
- Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria Kindratenko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aaron M. Jankelow
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John Heredia
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alicia Y. Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas W. Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chih-Lin Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karen White
- Department of Biomedical and Translation Science, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translation Science, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Li H, Morowitz M, Thomas N, Wong PK. Rapid Single-Cell Microbiological Analysis: Toward Precision Management of Infections and Dysbiosis. SLAS Technol 2019; 24:603-605. [PMID: 31448654 DOI: 10.1177/2472630319858922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bacterial infection is a leading cause of morbidity and mortality (from infants to the elderly) and accounts for more than $20 billion in healthcare costs in the United States each year. The pathogens responsible for many of the common infectious diseases, such as urinary tract infection (UTI) and ventilator-associated infections (VAIs), have proven to be highly adept in acquiring mechanisms of antimicrobial resistance. The use of broad-spectrum antibiotics by healthcare providers and the infiltration of antibiotics in the environment have accelerated the selection and growth of resistant pathogens. To further exacerbate the problem, the need for new antibiotics has far outpaced the development of new classes of antibiotics by the pharmaceutical industry (only two new classes of antibiotics have reached the market in the last 20 years), in large part due to prohibitive cost and historically poor return on investment to develop new antibiotics. Consequently, clinicians have limited treatment options, particularly in the neediest patients. To tackle this major global health issue, we are developing novel technological approaches for rapid definitive clinical microbiological analysis. These technologies will improve the clinical management of bacterial infections and reduce the improper use of antibiotics in current practice, hopefully limiting the spread of drug-resistant organisms.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Michael Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal Thomas
- Departments of Pediatrics and Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.,Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA.,Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
5
|
Surrette C, Scherer B, Corwin A, Grossmann G, Kaushik AM, Hsieh K, Zhang P, Liao JC, Wong PK, Wang TH, Puleo CM. Rapid Microbiology Screening in Pharmaceutical Workflows. SLAS Technol 2019; 23:387-394. [PMID: 30027813 DOI: 10.1177/2472630318779758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently advances in miniaturization and automation have been utilized to rapidly decrease the time to result for microbiology testing in the clinic. These advances have been made due to the limitations of conventional culture-based microbiology methods, including agar plate and microbroth dilution, which have long turnaround times and require physicians to treat patients empirically with antibiotics before test results are available. Currently, there exist similar limitations in pharmaceutical sterility and bioburden testing, where the long turnaround times associated with standard microbiology testing drive costly inefficiencies in workflows. These include the time lag associated with sterility screening within drug production lines and the warehousing cost and time delays within supply chains during product testing. Herein, we demonstrate a proof-of-concept combination of a rapid microfluidic assay and an efficient cell filtration process that enables a path toward integrating rapid tests directly into pharmaceutical microbiological screening workflows. We demonstrate separation and detection of Escherichia coli directly captured and analyzed from a mammalian (i.e., CHO) cell culture with a 3.0 h incubation. The demonstration is performed using a membrane filtration module that is compatible with sampling from bioreactors, enabling in-line sampling and process monitoring.
Collapse
Affiliation(s)
- C Surrette
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - B Scherer
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - A Corwin
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - G Grossmann
- 2 Biology and Physics, GE Global Research Center, Niskayuna, NY, USA
| | - A M Kaushik
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - K Hsieh
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - P Zhang
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J C Liao
- 4 Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - P K Wong
- 5 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - T H Wang
- 3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - C M Puleo
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| |
Collapse
|
6
|
Li H, Lu Y, Wong PK. Diffusion-reaction kinetics of microfluidic amperometric biosensors. LAB ON A CHIP 2018; 18:3086-3089. [PMID: 30207365 DOI: 10.1039/c8lc00794b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amperometric biosensors are widely applied for rapid biomarker detection in physiological and environmental samples. The dynamics and linearity of the current signal, however, are only partially understood. This study investigates the diffusion-reaction kinetics of amperometric biosensing using a self-assembled monolayer (SAM) based biosensor for bacterial 16S rRNA. A numerical model is developed to optimize the chamber dimensions and elucidate the concentration dependences of the biosensor. The results revealed that depletion of substrates associated with the chamber dimension can limit the current signal in a target concentration dependent manner. This study provides practical guidelines in the design and interpretation of microfluidic amperometric biosensors for biochemical applications.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| | | | | |
Collapse
|
7
|
Li X, Chen B, Zhang S, Li X, Chang J, Tang Y, Wu Y, Lu X. Rapid Detection of Respiratory Pathogens for Community-Acquired Pneumonia by Capillary Electrophoresis-Based Multiplex PCR. SLAS Technol 2018; 24:105-116. [PMID: 30048599 DOI: 10.1177/2472630318787452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Community-acquired pneumonia (CAP) is a common infectious disease linked to high rates of morbidity and mortality. Fast and accurate identification of the pathogens responsible for CAP will aid in diagnosis. We established a capillary electrophoresis-based multiplex PCR (CEMP) panel to enable the detection of viral and bacterial pathogens associated with CAP. The assay simultaneously detects and identifies the 13 common unculturable CAP viral and bacterial pathogens within 4 h. We evaluated the performance of a commercially available panel with 314 samples collected from CAP patients. We compared the results to those obtained with the liquid chip-based Luminex xTAG Respiratory Viral Panel (RVP) Fast Kit (for viruses) and the agarose gel-based Seegene PneumoBacter ACE Detection Kit (for atypical bacteria). All positive samples were further verified by the Sanger sequencing method. The sensitivity, specificity, positive predictive value, and negative predictive value of CEMP were 97.31%, 100%, 100%, and 99.85%, respectively. CEMP provides a rapid and accurate method for the high-throughput detection of pathogens in patients with CAP.
Collapse
Affiliation(s)
- Xue Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Bo Chen
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Shaoya Zhang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiuyuan Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Junxia Chang
- 4 Department of Laboratory Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanyan Tang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Yong Wu
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Xinxin Lu
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Mikrochim Acta 2018; 185:217. [PMID: 29594544 DOI: 10.1007/s00604-018-2749-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/24/2018] [Indexed: 01/01/2023]
Abstract
The authors describe an electrochemical assay for fast detection of Escherichia coli (E. coli). It is based on a dual signal amplification strategy and the use of a screen-printed carbon electrode (SPCE) whose surface was modified with a polyaniline (PANI) film and gold nanoparticles (AuNPs) via cyclic voltammetry (CV). In the next step, avidin was covalently immobilized on the PANI/AuNP composite on the SPCE surface. Subsequently, the biotinylated DNA capture probe was immobilized onto the PANI/AuNP/avidin-modified SPCE by biotin-avidin interaction. Then, DNA of E.coli, digoxigenin-labeled DNA detector probe and anti-digoxigenin-labeled horseradish peroxidase (HRP) were placed on the electrode. 3,3',5,5'-Tetramethylbenzidine (TMB) and H2O2 solution were added and the CV electrochemical signal was generated at a potential of -0.1 V (vs. Ag/AgCl) and a scan rate 50 mV.s-1. The assay can detect 4 × 106 to 4 CFU of E. coli without DNA amplification. The biosensor is highly specific over other pathogens including Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, Staphylococcus haemolyticus and Pseudomonas aeruginosa. It can be concluded that this genosensor has an excellent potential for rapid and accurate diagnosis of E.coli inflicted infections. Graphical Abstract Schematic of an electrochemical E. coli genosensor based on sandwich assay on a polyaniline/gold nanoparticle-modified screen printed carbon electrode (SPCE). The biosensor can detect 4 × 106 to 4 CFU of E. coli without DNA amplification.
Collapse
|
9
|
Kai-Hua Chow E. The 2018 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technol 2018; 23:1-4. [DOI: 10.1177/2472630317744283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|