1
|
Aavani F, Rahimi R, Goleij P, Rezaeizadeh H, Bahramsoltani R. Royal jelly and its hormonal effects in breast cancer: a literature review. Daru 2024; 32:745-760. [PMID: 38717683 PMCID: PMC11555035 DOI: 10.1007/s40199-024-00513-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/10/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women which can be cured in most individuals with early-stage non-metastatic disease. Imbalance in estrogen signaling pathways and propagating levels of estrogens has important roles in breast cancer development. Targeting the estrogen receptor signaling pathway is linked to breast cancer treatment. Royal jelly is one of the bee products containing 10-hydroxy-2-decenoic acid, a structure similar to mammalian estrogen, allowing it to attach to estrogen receptors. It is considered as a general tonic and immunomodulator which may be helpful in reducing the side effects of cancer treatments. Currently, there are controversial data regarding the pros and cons of royal jelly in cancer. Here we provide an overview of the effects of royal jelly on sex hormones and its possible role in breast cancer. METHODS Electronic databases including PubMed, Scopus, and Web of Science were searched with the search terms royal jelly, cancer, and sexual hormones. All preclinical and clinical studies regarding the hormonal effects of royal jelly were included. RESULTS According to the collected preclinical data, consumption of royal jelly at daily doses below 200 mg/kg can be useful to decrease the risk of breast cancer since it reduces the serum level of estrogen; whereas increases progesterone, which subsequently decreases the expression of ERs on the ER-positive cells. CONCLUSION Future clinical studies are essential to confirm the safe dose of royal jelly as an adjuvant therapy in breast cancer.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq., P.O. Box: 1417653761, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Sari, Iran
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq., P.O. Box: 1417653761, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Olatunji AO, Ayo JO, Suleiman MM, Ambali SF, Shittu M, Akorede GJ, Aremu A, Lamidi IY, Afisu B, Adenubi OT. Ameliorative potentials of diosmin and hesperidin fractions on chlorpyriphos-induced changes in reproductive hormones, sperm characteristics, and testicular glycogen in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9181-9190. [PMID: 38904770 DOI: 10.1007/s00210-024-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Reproductive deficiency is a major outcome of pesticide exposure sequel to cellular oxidative damage to sex organs. Flavonoid possess potent antioxidant capacities to mitigate pesticide related cellular injury. The present investigation examined the mitigative effect of micronized purified fractions of diosmin and hesperidin on reproductive hormones, sperm parameters, and testicular glycogen in male Wistar rats after sub-chronic Chlorpyriphos (CPF) exposure. Twenty-five male Wistar rats (120-145 g) were randomly allocated five rats per group. Group I (DW) received distilled water (2 ml/kg), Group II (S/oil) received soya oil (2 ml/kg), Group III (DAF) received Daflon at 1000 mg/kg, Group IV (CPF) received Chlorpyriphos (7.74 mg/kg), and Group V (DAF + CPF) received Daflon (1000 mg/kg) followed by CPF (7.74 mg/kg) after 30 min of Daflon. This regimen was administered daily for 60 days. After cervical venesection under light chloroform anesthesia, blood samples were examined for levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Each rat's testicular tissue was quickly cut, collected, and glycogen evaluated. Sperm concentration, motility, morphology, and viability were measured in the right caudal epididymis. Results revealed that the untreated CPF group had significantly lower FSH, LH, testosterone, testicular glycogen, and sperm concentration. Additionally, CPF group sperm characteristics were abnormal compared to other groups. These reproductive hormones, testicular glycogen, and sperm parameters improved in the Daflon-treated groups. Hence, pre-treatment with flavonoid fractions of diosmin and hesperidin mitigated CPF-induced reproductive toxicity.
Collapse
Affiliation(s)
| | | | - Mohammed Musa Suleiman
- Ahmadu Bello University, (Veterinary Pharmacology and Toxicology), Zaria, Kaduna, Nigeria
| | | | - Muftau Shittu
- Ahmadu Bello University, (Veterinary Pharmacology and Toxicology), Zaria, Kaduna, Nigeria
| | - Ganiu Jimoh Akorede
- University of Ilorin, (Veterinary Pharmacology and Toxicology), Ilorin, Kwara, Nigeria
| | - Abdulfatai Aremu
- University of Ilorin, (Veterinary Pharmacology and Toxicology), Ilorin, Kwara, Nigeria
| | - Ibrahim Yusuf Lamidi
- University of Maiduguri, (Veterinary Pharmacology and Toxicology), Maiduguri, Borno, Nigeria
| | - Basiru Afisu
- University of Ilorin (Veterinary Physiology and Biochemistry), Ilorin, Kwara, Nigeria
| | | |
Collapse
|
3
|
Naderi N, Souri M, Nasr-Esfahani MH, Hajian M, Nazem MN. Ferulago angulata extract alleviates testicular toxicity in male mice exposed to diazinon and lead. Tissue Cell 2023; 85:102257. [PMID: 37924715 DOI: 10.1016/j.tice.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
In this study, we investigated the protective effects of Ferulago angulata extract (FAE) against the reproductive toxicants Diazinon (DZN) and Lead (Pb) in mice. These pollutants are known to induce oxidative stress (OS), while FAE acts as a natural antioxidant. Adult male NMRI mice were exposed to DZN, Pb, and DZN+Pb, with or without FAE treatment for six weeks. We evaluated OS markers, testicular histology, and expression of mRNA related to enzymatic antioxidants. Exposure to DZN and Pb led to increased levels of thiobarbituric acid reactive substance (TBARS) and nitric oxide (NO) in the testes, along with a decrease in the total antioxidant capacity (TAC). Furthermore, the mRNA expression of antioxidant enzymes such as superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4) was altered. However, when FAE was administered concurrently, it restored the biochemical parameters to normal levels, reduced the toxic effects of DZN and Pb, and provided protection against testicular histopathological injury. These findings suggest that FAE has the potential to serve as a protective agent against oxidative damage caused by contaminants in reproductive organs, specifically in the testes.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Manouchehr Souri
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Naser Nazem
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Ivanović SR, Borozan N, Miladinović DĆ, Živković I, Borozan S. The relationship between the cholinergic mechanism of toxicity and oxidative stress in rats during subacute diazinon poisoning. Toxicol Appl Pharmacol 2023; 473:116598. [PMID: 37331382 DOI: 10.1016/j.taap.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Diazinon is an organophosphate pesticide (OP) that has significant potential for accidental and intentional poisoning of wildlife, domestic animals and humans. The aim of the study is to investigate the correlation between cholinesterase activity and oxidative stress parameters in liver and diaphragm by continuous monitoring as a function of time during prolonged use of diazinon. Wistar rats were treated orally with diazinon (55 mg/kg/day): 7, 14, 21 and 28 days. At the end of each period, blood, liver and diaphragm were collected to examine cholinesterase activity and enzymatic/non-enzymatic oxidative stress parameters: superoxide dismutase 1 (SOD1), catalase (CAT), thiobarbituric acid substances (TBARS), protein carbonyl groups. In all four time periods, there was a significant change in acetylcholinesterase (AChE) in erythrocytes and butyrylcholinesterase (BuChE) in blood plasma, CAT in liver and diaphragm and SOD1 in diaphragm. Parameters significantly altered during the cholinergic crisis included: cholinesterases and TBARS in liver and diaphragm and partially SOD1 in liver. Protein carbonyl groups in liver and diaphragm were significantly altered outside the cholinergic crisis. In the liver, there was a very strong negative correlation between BuChE and TBARS in all four time periods and BuChE and CAT on day 7. In the diaphragm, a very strong negative correlation was found between AChE and TBARS at days 7 and 14, and a very strong positive correlation between AChE and SOD1 at days 14, 21 and 28. A better understanding of the relationship between cholinergic overstimulation and oxidative stress may help to better assess health status in prolonged OPs intoxication.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| | | | | | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| |
Collapse
|
6
|
Gomes MP, Dos Santos MP, de Freitas PL, Schafaschek AM, de Barros EN, Kitamura RSA, Paulete V, Navarro-Silva MA. The aquatic macrophyte Salvinia molesta mitigates herbicides (glyphosate and aminomethylphosphonic acid) effects to aquatic invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12348-12361. [PMID: 36109480 DOI: 10.1007/s11356-022-23012-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the individual and combined effects of different environmentally representative concentrations of glyphosate (0, 25, 50, 75, and 100 µg l-1) and aminomethylphosphonic acid (AMPA; 0, 12.5, 25, 37.5, and 50 µg l-1) on the physiology of Aedes aegypti larvae, as well as the capacity of the aquatic macrophyte Salvinia molesta to attenuate those compounds' toxicological effects. Larvae of Ae. aegypti (between the third and fourth larval stages) were exposed for 48 h to glyphosate and/or AMPA in the presence or absence of S. molesta. Glyphosate and AMPA induced sublethal responses in Ae. aegypti larvae during acute exposures. Plants removed up to 49% of the glyphosate and 25% of AMPA from the water, resulting in the exposure of larvae to lower concentration of those compounds in relation to media without plants. As a result, lesser effects of glyphosate and/or AMPA were observed on larval acetylcholinesterase, P450 reductase, superoxide dismutase, mitochondrial electron transport chain enzymes, respiration rates, and lipid peroxidation. In addition to evidence of deleterious effects by media contamination with glyphosate and AMPA on aquatic invertebrates, our results attest to the ability of S. molesta plants to mitigate the toxicological impacts of those contaminants.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil.
| | - Mariana Perez Dos Santos
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Patricia Lawane de Freitas
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil
| | - Ana Marta Schafaschek
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Emily Nentwing de Barros
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil
| | - Volnei Paulete
- Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal Do Paraná, Rua dos Funcionários, 1540, Cabral, Curitiba, Parana, 80035-050, Brazil
| | - Mario Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| |
Collapse
|
7
|
Girón-Pérez MI, Mary VS, Rubinstein HR, Toledo-Ibarra GA, Theumer MG. Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2309-2323. [PMID: 34404283 DOI: 10.1080/09603123.2021.1962814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Diazinon is an organophosphorus pesticide, which may have potential toxic effects on the liver and immune system; however, the underlying mechanisms remain mostly unidentified. This work is aimed at evaluating the oxidative stress and cell cycle alterations elicited by low-dose diazinon in a rat liver cell line (BRL-3A) and spleen mononuclear cells (SMC) from Wistar rats. Diazinon (10-50 μM) caused early reactive oxygen species (ROS) generation (from 4 h) as well as increased O2•- level (from 0.5 h), which led to subsequent lipid peroxidation at 24 h, in BRL-3A cells. In SMC, diazinon (20 μM) produced similar increases in ROS levels, at 4 and 24 h, with the highest O2•- level being found at 4 h. Low-dose diazinon induced G1-phase arrest and cell death in hepatic cells and SMC. Therefore, diazinon could affect the liver and the immunological system through the premature oxidative stress induction.Abbreviations: O2•-: superoxide anion radical; ROS: reactive oxygen species; SMC: spleen mononuclear cells; TBARS: thiobarbituric acid reactive substances.
Collapse
Affiliation(s)
- Manuel Iván Girón-Pérez
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Verónica S Mary
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Héctor R Rubinstein
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Gladys A Toledo-Ibarra
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Martín G Theumer
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
8
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 2021; 10:antiox10060837. [PMID: 34073826 PMCID: PMC8225220 DOI: 10.3390/antiox10060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.
Collapse
|
10
|
Kumari S, Dcunha R, Sanghvi SP, Nayak G, Kalthur SG, Raut SY, Mutalik S, Siddiqui S, Alrumman SA, Adiga SK, Kalthur G. Organophosphorus pesticide quinalphos (Ekalux 25 E.C.) reduces sperm functional competence and decreases the fertilisation potential in Swiss albino mice. Andrologia 2021; 53:e14115. [PMID: 34014595 DOI: 10.1111/and.14115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quinalphos (QP) is one of the most commonly used organophosphate pesticide for agriculture. In this study, adult Swiss albino male mice were orally administered with 0.25, 0.5 and 1.0 mg/kg of QP (Ekalux 25 E.C.) for ten consecutive days and the reproductive function was assessed at 35 and 70 days after QP treatment. At highest dose (1.0 mg/kg), QP exposure resulted in significant decrease in motility and increase in sperm head defects and DNA damage. Pharmacokinetic data showed a threefold increase in concentration of QP in the testis as compared to serum. QP was detectable in testes even after 24 hr of administration indicating slow clearance from tissue. In addition, high oestradiol, low testosterone level with a parallel increase in aromatase and cytochrome P450 transcript levels was observed. Significant decrease in fertilisation, lower blastocyst rate and poor blastocyst quality was observed when spermatozoa collected from QP exposed mice were subjected to in vitro fertilisation. In conclusion, exposure of QP to male mice decreases the sperm functional competence and fertilising ability, which appears to be mediated through elevated oxidative stress and altered steroidogenesis in testes.
Collapse
Affiliation(s)
- Sandhya Kumari
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Reyon Dcunha
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sahil Piyush Sanghvi
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sushil Yadaorao Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Kingdom of Saudi Arabia, Abha
| | - Sulaiman A Alrumman
- Department of Biology, College of Sciences, King Khalid University, Kingdom of Saudi Arabia, Abha
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Central Research Lab, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Naderi N, Souri M, Nasr Esfahani MH, Hajian M, Tanhaei Vash N. Ferulago angulata extract ameliorates epididymal sperm toxicity in mice induced by lead and diazinon. Andrology 2020; 8:706-718. [PMID: 31747138 DOI: 10.1111/andr.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The potential toxicity that results from environmental xenobiotics is not completely known. Increasing levels of heavy metals and the use of organophosphate pesticides (OPs) and their co-existence in the environment could be associated with an increasing incidence of male reproductive system disorders in humans and animals. Ferulago angulata is a dietary source of phenolic compounds with reported health benefits. OBJECTIVE This study was conducted to investigate whether an extract of Ferulago angulata could protect adult male NMRI mice against reproductive toxicity induced by lead acetate (PbAc), diazinon (DZN), or PbAc + DZN. MATERIALS AND METHODS Adult male NMRI mice were exposed to either 0.5% PbAc in drinking water, DZN (3 mg/kg/day, intraperitoneal [i.p.] injection), or PbAc + DZN in the presence or absence of 400 mg/kg/day Ferulago angulata hydroalcoholic extract (FAE) that was administered via gavage for 6 weeks. RESULTS Chronic exposure to PbAc, DZN, and PbAc + DZN decreased sperm quality, sperm chromatin maturity and integrity, increased oxidative stress and lipid peroxidation, and could reduce male fertility indices. Co-administration of FAE could reduce these negative effects. CONCLUSION The Ferulago angulata extract should be considered as a useful natural extract for the treatment of male infertility, especially in males exposed to conditions which induce reproductive toxicity.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Manouchehr Souri
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
12
|
Guiekep AJN, Kenfack A, Ngoula F, Vemo BN, Nguemmeugne KS, Tedonkeng EP. Attenuating effects of Mangifera indica leaves ethanolic extract against acetamiprid induced reproductive toxicity in male guinea pigs. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:187-192. [PMID: 31737226 PMCID: PMC6828173 DOI: 10.30466/vrf.2019.95154.2292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/28/2019] [Indexed: 11/04/2022]
Abstract
Acetamiprid (ACP) belonging to the neonicotinoid family used against wide array of pests in agriculture and domestic purposes. In this study, we evaluated the attenuating effects of ethanolic extract of Mangifera indica leaves (EEMI) in averting reproductive toxicity caused by ACP in male guinea pigs. Thirty male guinea pigs were randomly assigned to five treatment groups (n = 6). Group 1 (T0) received distilled water orally; group 2 (T0-) was given 80 mg kg-1 of ACP and groups 3, 4 and 5 were treated, respectively, with EEMI at doses of 50, 100 and 200 mg kg-1 plus ACP. After 90 days, the reaction time, sexual organ weights, sperm count, motility and anomalies, spermatozoa with entire plasma membrane, testicular histology, serum testosterone concentration, testicular malondialdehyde (MDA) level, reduced glutathione (GSH) concentration, testicular superoxide dismutase (SOD) and catalase (CAT) activities were assessed. Co-administration of EEMI significantly reduced the reaction time, sperm anomalies and testicular MDA, SOD and CAT levels compared to the T0- group. Co-treatment of EEMI significantly alleviated sperm count and motility, percentage of spermatozoa with the normal plasma membrane, serum testosterone concentration, accessory sex gland weights, and testicular GSH concentrations. The ACP treatment induced cell membrane degradation in the testis and this effect was prevented with the addition of EEMI. In conclusion, ACP negatively affected the animal reproductive function and induced oxidative stress. The addition of EEMI alleviated the toxic effects of ACP on the reproductive function of male guinea pigs.
Collapse
Affiliation(s)
| | - Augustave Kenfack
- Department of Animal Productions, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon.
| | | | | | | | | |
Collapse
|
13
|
Afolabi OK, Wusu AD, Ugbaja R, Fatoki JO. Aluminium phosphide-induced testicular toxicity through oxidative stress in Wistar rats: Ameliorative role of hesperidin. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318812794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The present study was designed to investigate aluminium phosphide (ALP)-induced testicular toxicity, including its effects on sperm parameters and histological alterations in Wistar rats, and the possible protective role of hesperidin (HSD). Oral administration of ALP at 1.15 mg/kg body weight (1/10 LD50) for 30 days resulted in a significant increase in testicular malondialdehyde, lipid hydroperoxides, and oxidized protein levels. These indicators of oxidative stress were accompanied by decreased activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, followed by a drastic reduction in the non-enzymatic antioxidant indices of glutathione and total antioxidant capacity when compared to control. Furthermore, ALP treatment produced a marked reduction in sperm count, motility and viability while increasing abnormal sperm morphology and adverse histopathological changes in testis. Co-administration with HSD significantly ameliorated ALP-induced testicular damage by suppressing oxidative stress indices and enhancing antioxidant status while also improving the sperm parameters and histological alterations in ALP-treated rats. The results of the present study indicated that testicular toxic effects of ALP are due to oxidative imbalance and that HSD could be a potential therapeutic agent against ALP-induced testicular damage.
Collapse
Affiliation(s)
- Olusegun Kayode Afolabi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adedoja Dorcas Wusu
- Department of Biochemistry, Faculty of Sciences, Lagos State University, Lagos, Nigeria
| | - Regina Ugbaja
- Department of Biochemistry, College of Biological Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - John Olabode Fatoki
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
14
|
Hernández-Moreno D, Míguez MP, Soler F, Pérez-López M. Influence of sex on biomarkers of oxidative stress in the kidney, lungs, and liver of rabbits after exposure to diazinon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32458-32465. [PMID: 30232776 DOI: 10.1007/s11356-018-3258-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated the effect of two oral doses of the pesticide diazinon (25 and 125 mg/kg bw) on four biochemical parameters (malondialdehyde and glutathione levels, and catalase and glutathione S-transferase enzymatic activities) in the kidney, lungs, and liver of rabbit after 10 days of exposure. Malondialdehyde levels were significantly greater in exposed animals compared to controls, especially in the animals exposed to the higher dose of the pesticide. This result was reflected in the glutathione levels, which were significantly lower at that same higher dose. Catalase activity was also inhibited by the higher dose of the pesticide in all three organs analysed, whereas inhibition of glutathione S-transferase activity was only significant for the kidney and lungs. There were some slight differences between the sexes: taking the results for all three organs, the higher dose of diazinon resulted in a clearly significant inhibitory effect on the catalase activity and glutathione levels in males, and a significant enhancing effect on the malondialdehyde levels in females. These results help to confirm the interest of considering such endogenous factors in future ecotoxicological studies, and that the four biomarkers considered are suitable for reflecting the toxic effects of diazinon on rabbits, especially the effects related to oxidative stress. Graphical abstract.
Collapse
Affiliation(s)
- David Hernández-Moreno
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Avda de la Universidad s/n., 10003, Caceres, Spain
- Universidad Autónoma de Chile (Chile), Región Metropolitana, Chile
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - María Prado Míguez
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Avda de la Universidad s/n., 10003, Caceres, Spain
| | - Francisco Soler
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Avda de la Universidad s/n., 10003, Caceres, Spain
| | - Marcos Pérez-López
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Avda de la Universidad s/n., 10003, Caceres, Spain.
| |
Collapse
|
15
|
Salehzadeh A, Abbasalipourkabir R, Shisheian B, Rafaat A, Nikkhah A, Rezaii T. The alleviating effects of sesame oil on diazinon-induced toxicity in male wistar rats. Drug Chem Toxicol 2018; 42:280-285. [DOI: 10.1080/01480545.2018.1449852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aref Salehzadeh
- Department of Medical Entomology and Vector Control, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghaye Abbasalipourkabir
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behrooz Shisheian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Rafaat
- Department of Anatomy and Embryology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nikkhah
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahereh Rezaii
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Adamkovicova M, Toman R, Martiniakova M, Omelka R, Babosova R, Krajcovicova V, Grosskopf B, Massanyi P. Sperm motility and morphology changes in rats exposed to cadmium and diazinon. Reprod Biol Endocrinol 2016; 14:42. [PMID: 27503218 PMCID: PMC4977869 DOI: 10.1186/s12958-016-0177-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Humans are ubiquitously exposed to multiple environmental contaminants. Consequences of combined action on the reproductive system remain unknown. This study aimed to assess single and joint effects of cadmium and diazinon exposure on sperm quality parameters. METHODS Male adult Wistar rats were randomized into 4 groups of ten animals each. Group A was used as a control, animals from group B were exposed to cadmium (30 mg/L), rats from group C were administered with diazinon (40 mg/L), and rats from group D were exposed simultaneously to cadmium (30 mg/L) and diazinon (40 mg/L) via drinking water for 90 days. Sperm morphology and motility were evaluated using a bright field microscope and a computer-assisted semen analysis. RESULTS The percentage of motile spermatozoa and morphologically normal sperm was markedly reduced in rats from the group B. Rats from the C group showed an increase in velocity parameters, amplitude of lateral head displacement, decrease in beat-cross frequency, and an increase in abnormal sperm morphology. Simultaneous coexposure to cadmium and diazinon increased distance and velocity parameters, and amplitude of lateral head displacement. Reductions were observed in straightness, linearity, wobble, and beat-cross frequency. The decreased normal sperm morphology rates were related to defects of the sperm tail. CONCLUSIONS Exposure to cadmium and diazinon at relatively low doses impairs sperm quality and can reduce male fertility. Cadmium and diazinon caused significant changes on sperm morphology with varying effects on motility patterns. These parameters were significantly higher in the group D as compared to the group C. The findings have important implications for reproductive risk assessment of combined exposures to multiple chemicals.
Collapse
Affiliation(s)
- Maria Adamkovicova
- Department of Botany and Genetics, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Robert Toman
- Department of Veterinary Disciplines, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Ramona Babosova
- Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Vladimira Krajcovicova
- Department of Botany and Genetics, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Birgit Grosskopf
- Institute of Zoology and Anthropology, Georg-August University, 37 073 Göttingen, Germany
| | - Peter Massanyi
- Department of Animal Physiology, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| |
Collapse
|
17
|
García-Díaz EC, Gómez-Quiroz LE, Arenas-Ríos E, Aragón-Martínez A, Ibarra-Arias JA, del Socorro I Retana-Márquez M. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat. Syst Biol Reprod Med 2015; 61:150-60. [PMID: 25640572 DOI: 10.3109/19396368.2015.1008071] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased while testosterone decreased, this decrease is related to the negative effects seen in sperm.
Collapse
|
18
|
Effects of subchronic exposure to cadmium and diazinon on testis and epididymis in rats. ScientificWorldJournal 2014; 2014:632581. [PMID: 25548789 PMCID: PMC4273512 DOI: 10.1155/2014/632581] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to elucidate the structural changes in testis and epididymis of adult rats following subchronic peroral administration of cadmium at 30 mg/L, diazinon at 40 mg/L, cadmium at 30 mg/L, and diazinon at 40 mg/L, respectively. At the end of 90-day experiment, the samples of the testes and epididymis were assayed by qualitative and quantitative histological methods. The testis and epididymis weights increased following exposure to cadmium and simultaneous exposure to cadmium and diazinon. Testicular damage following cadmium and diazinon coexposure was significantly less expressive than in groups with individual administration of these compounds. Cadmium caused a significant thickening of seminiferous epithelium, cellular degeneration, and necrosis. Desquamation of immature germ cells resulted in a significant increase of intraepithelial spaces and reduced tubule volume in all experimental groups. Vascular dilation and congestion were detected in the interstitial tissue. The changes in epididymal histology in the group exposed to cadmium and group exposed simultaneously included a reduction of epithelium, necrotic epithelial cells, vasoconstriction, and interstitial edema together with mononuclear cell infiltration. Results did not indicate a synergistic or any additional effect from the simultaneous administration of both toxicants. Further research is needed to determine the significance and the mechanism of the adverse effects.
Collapse
|
19
|
Seifert J. Changes in mouse liver and chicken embryo yolk sac membrane soluble proteins due to an organophosphorous insecticide (OPI) diazinon linked to several noncholinergic OPI effects in mice and chicken embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:74-82. [PMID: 25454523 DOI: 10.1016/j.pestbp.2014.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The objective of this study was to identify proteins in mouse livers and chicken embryo yolk sac membranes whose quantities were altered by an organophosphorous insecticide (OPI) treatment and which might be linked, based on their functionality, to the recognized noncholinergic effects of OPI. Mice and fertile chicken eggs were treated with an OPI representative diazinon. The quantitative changes in mouse liver and chicken embryo yolk sac membrane soluble proteins caused by diazinon were determined by two-dimensional electrophoresis. Proteins whose quantity was affected by diazinon were identified by the mass spectrometry. In mouse livers, the altered levels of several enzymes of glucose metabolism were considered with regards to amelioration of hyperglycemia due to diazinon; the reduced levels of 3-hydroxyanthranilate 3,4-dioxygenase to the changes in the l-tryptophan to NAD metabolism caused by pyrimidinyl and crotonamide OPI; the reduced levels of catalase, peroxiredoxin and superoxide dismutase to OPI-increased lipid and/or kynurenine oxidation, the latter effect resulting also in increased urinary excretion of xanthurenic and kynurenic acids; and an increase in glutathione S-methyltransferase to OPI detoxification. In chicken embryo yolk sac membranes, the reduced availability of procollagen-proline dioxygenase may be the factor in micromelia caused by OPI in chicken embryos.
Collapse
Affiliation(s)
- Josef Seifert
- PEPS, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
20
|
Jestadi DB, Phaniendra A, Babji U, Srinu T, Shanmuganathan B, Periyasamy L. Effects of short term exposure of atrazine on the liver and kidney of normal and diabetic rats. J Toxicol 2014; 2014:536759. [PMID: 25349608 PMCID: PMC4198780 DOI: 10.1155/2014/536759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 02/02/2023] Open
Abstract
The present study evaluates the effects of short term (15 days) exposure of low dose (300 μg kg(-1)) of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) on antioxidant status and markers of liver and kidney damage in normal (nondiabetic) and diabetic male Wistar rats. Rats were divided into four groups: Group I as normal control, Group II as atrazine treated, Group III as diabetic control, and Group IV as atrazine treated diabetic rats. Atrazine administration resulted in increased MDA concentration as well as increased activities of SOD, CAT, and GPx in both liver and kidney of atrazine treated and atrazine treated diabetic rats. However, GSH level was decreased in both liver and kidney of atrazine treated and atrazine treated diabetic rats. Atrazine administration led to significant increase in liver damage biomarkers such as AST, ALT, and ALP as well as kidney damage biomarkers such as creatinine and urea in both normal and diabetic rats, but this increase was more pronounced in diabetic rats when compared to normal rats. In conclusion, the results of the present study demonstrate that short term exposure of atrazine at a dose of 300 μg kg(-1) could potentially induce oxidative damage in liver and kidney of both normal and diabetic rats.
Collapse
Affiliation(s)
- Dinesh Babu Jestadi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Alugoju Phaniendra
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Undru Babji
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Thupakula Srinu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bhavatharini Shanmuganathan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|