1
|
Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro. Antibiotics (Basel) 2020; 9:antibiotics9060309. [PMID: 32521723 PMCID: PMC7345279 DOI: 10.3390/antibiotics9060309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Flucloxacillin (FLU), an isoxazolyl penicillin, is widely used for the treatment of different bacterial infections in intensive care units (ICU). Being highly bound to plasma proteins, FLU is prone to drug-drug interactions (DDI) when administered concurrently with other drugs. As FLU is binding to both Sudlow’s site I and site II of human serum albumin (HSA), competitive and allosteric interactions with other drugs, highly bound to the same sites, seem conceivable. Knowledge about interaction(s) of FLU with the widely used anticancer agents paclitaxel (PAC), imatinib (IMA), and 5-fluorouracil (5-FU is scarce. The effects of the selected anticancer agents on the unbound fraction of FLU were evaluated in pooled plasma as well as in HSA and α-1-acid glycoprotein (AGP) samples, the second major drug carrier in plasma. FLU levels in spiked samples were analyzed by LC-MS/MS after ultrafiltration. Significant increase in FLU unbound fraction was observed when in combination with PAC and IMA and to a lesser extent with 5-FU. Furthermore, significant binding of FLU to AGP was observed. Collectively, this is the first study showing the binding of FLU to AGP as well as demonstrating a significant DDI between PAC/IMA/5-FU and FLU.
Collapse
|
2
|
Kobayashi M, Okada Y, Ueno H, Mizorogi T, Ohara K, Kawasumi K, Suruga K, Kadokura K, Ohnishi Y, Arai T. Effects of Supplementation with Anti-Inflammatory Compound Extracted from Herbs in Healthy and Obese Cats. VETERINARY MEDICINE-RESEARCH AND REPORTS 2020; 11:39-44. [PMID: 32215260 PMCID: PMC7084122 DOI: 10.2147/vmrr.s240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
Abstract
Background Obesity has become a serious public health problem all over the world, and prevalence of obesity has increased in cats. Obesity is characterized by continuous low-grade inflammation based on oxidative stress by excessively produced reactive oxygen species (ROS). Supplementation with anti-oxidant and anti-inflammatory compounds is very effective to relieve the obesity condition. A plant extract mixture containing Rhus verniciflua and some other herbs, Rv-PEM01-99, shows anti-oxidant and anti-inflammatory effects in animals. The aim of this study was to evaluate the effects of supplementation with Rv-PEM01-99 as an anti-inflammatory compound in healthy and obese cats. Materials and Methods Ten healthy mix breed cats and four obesity disease cats were used. The healthy cats were randomly divided into control and test groups. Anti-inflammatory compound, Rv-PEM01-99, in which quercetin derivative is the main component, was supplemented to the healthy test group and the obesity disease cats at the dose of 100–120 mg/kg/day (2.5–3.0 mg/kg/day as quercetin) for 4 weeks. Metabolites, hormones and enzymes were measured before and after the compound supplementation. Results The anti-inflammatory compound supplementation decreased serum amyloid A (SAA) concentrations as inflammatory markers in both healthy and obesity disease cats. In obesity disease cats, plasma total cholesterol concentrations and AST and ALT activities decreased significantly after the compound supplementation. Conclusion Quercetin derivative seems to have strong anti-inflammatory activities. In the healthy cats, anti-inflammatory compound supplementation decreased plasma NEFA and SAA concentrations. In the obesity disease cats, the compound supplementation may have alleviated obesity disease by relieving inflammation and improvement of lipid metabolism in livers.
Collapse
Affiliation(s)
- Motoo Kobayashi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan.,One Health Co. Ltd, Tokyo 157-0066, Japan
| | - Yuki Okada
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan.,One Health Co. Ltd, Tokyo 157-0066, Japan
| | - Hiromichi Ueno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan
| | - Takayuki Mizorogi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan
| | - Kenji Ohara
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan
| | - Koh Kawasumi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan
| | - Kohei Suruga
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Tokyo 206-0812, Japan
| | - Kazunari Kadokura
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Tokyo 206-0812, Japan
| | | | - Toshiro Arai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8601, Japan.,One Health Co. Ltd, Tokyo 157-0066, Japan
| |
Collapse
|
3
|
Effect of ketoconazole on the transport and metabolism of drugs in the human liver cell model. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Jafarpour-Sadegh F, Montazeri V, Adili A, Esfehani A, Rashidi MR, Pirouzpanah S. Consumption of Fresh Yellow Onion Ameliorates Hyperglycemia and Insulin Resistance in Breast Cancer Patients During Doxorubicin-Based Chemotherapy: A Randomized Controlled Clinical Trial. Integr Cancer Ther 2016; 16:276-289. [PMID: 27352956 PMCID: PMC5759935 DOI: 10.1177/1534735416656915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Doxorubicin has been found to be associated with insulin resistance in animal models. Onion, a so-called functional food, is noted to affect the insulin signaling pathway of diabetes in vitro. To our knowledge, this is the first study to investigate the effects of consuming fresh yellow onions on insulin-related indices compared with a low-onion-containing diet among breast cancer (BC) patients treated with doxorubicin. METHODS This parallel-design, randomized, triple-blind, controlled clinical trial was conducted on 56 eligible BC patients (aged 30-63 years), diagnosed with invasive ductal carcinoma. Following their second cycle of chemotherapy, subjects were assigned in a stratified-random allocation to receive body mass index-dependent 100 to 160 g/d of onion as high onion group (HO; n = 28) or 30 to 40 g/d small onions in low onion group (LO; n = 28) for 8 weeks intervention. Participants, care givers, and those who assessed laboratory analyses were blinded to the assignments (IRCT Registry No.: IRCT2012103111335N1). RESULTS The compliance level of participants in the analysis was as high as 87.85%. A total of 23 available cases was analyzed in each group. The daily use of HO resulted in a significant decrease in serum fasting blood glucose and insulin levels in comparison with LO, over the period of study ( P < .001). Posttreatment with HO showed a significant decrease in homeostasis model of assessment-insulin resistance relative to changes in the LO group ( P < .05). A comparison of the changes that occurred throughout pre- and postdose treatments indicated improved quantitative insulin sensitivity check index ( P < .05) and controls on C-peptide in the HO group ( P < .05). CONCLUSIONS The present study demonstrated the effectiveness of onion to ameliorate hyperglycemia and insulin resistance in BC during doxorubicin-based chemotherapy.
Collapse
Affiliation(s)
| | - Vahid Montazeri
- 1 Tabriz University of Medical Sciences, Tabriz, Iran.,2 Nour-Nejat Hospital, Tabriz, Iran
| | - Ali Adili
- 1 Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Esfehani
- 1 Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
5
|
Mehta M, Branford OA, Rolfe KJ. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring. BURNS & TRAUMA 2016; 4:15. [PMID: 27574685 PMCID: PMC4964041 DOI: 10.1186/s41038-016-0040-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.
Collapse
Affiliation(s)
- M. Mehta
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| | - O. A. Branford
- The Royal Marsden Hospital, Fulham Rd, London, SW3 6JJ UK
| | - K. J. Rolfe
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| |
Collapse
|
6
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
7
|
Mukai Y, Senda A, Toda T, Hayakawa T, Eliasson E, Rane A, Inotsume N. Drug−drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes. Basic Clin Pharmacol Toxicol 2014; 116:493-8. [DOI: 10.1111/bcpt.12355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yuji Mukai
- Division of Clinical Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; Otaru Japan
| | - Asuna Senda
- Division of Clinical Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; Otaru Japan
| | - Takaki Toda
- Division of Clinical Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; Otaru Japan
| | - Toru Hayakawa
- Division of Pharmacotherapy; Hokkaido Pharmaceutical University School of Pharmacy; Otaru Japan
| | - Erik Eliasson
- Division of Clinical Pharmacology; Department of Laboratory Medicine; Karolinska University Hospital; Karolinska Institutet; Stockholm Sweden
| | - Anders Rane
- Division of Clinical Pharmacology; Department of Laboratory Medicine; Karolinska University Hospital; Karolinska Institutet; Stockholm Sweden
| | - Nobuo Inotsume
- Division of Clinical Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; Otaru Japan
| |
Collapse
|
8
|
Albassam AA, Mohamed MEF, Frye RF. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes. Xenobiotica 2014; 45:406-12. [DOI: 10.3109/00498254.2014.989935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics 2014; 23:721-8. [PMID: 23962911 DOI: 10.1097/fpc.0b013e3283653b27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Rua F, Di Nardo G, Sadeghi SJ, Gilardi G. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates. Biotechnol Appl Biochem 2014; 59:479-89. [PMID: 23586958 DOI: 10.1002/bab.1051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/08/2023]
Abstract
Macaca fascicularis P450 2C20 shares 92% identity with human cytochrome P450 2C8, which is involved in the metabolism of more than 8% of all prescribed drugs. To date, only paclitaxel and amodiaquine, two substrate markers of the human P450 2C8, have been experimentally confirmed as M. fascicularis P450 2C20 drugs. To bridge the lack of information on the ligands recognized by M. fascicularis P450 2C20, in this study, a three-dimensional homology model of this enzyme was generated on the basis of the available crystal structure of the human homologue P450 2C8 using YASARA. The results indicated that 90.0%, 9.0%, 0.5%, and 0.5% of the residues of the P450 2C20 model were located in the most favorable, allowed, generously allowed, and disallowed regions, respectively. The root-mean-square deviation of the C-alpha superposition of the M. fascicularis P450 2C20 model with the Homo sapiens P450 2C8 was 0.074 Å, indicating a very high similarity of the two structures. Subsequently, the 2C20 model was used for in silico screening of 58 known P450 2C8 substrates and 62 inhibitors. These were also docked in the active site of the crystal structure of the human P450 2C8. The affinity of each compound for the active site of both cytochromes proved to be very similar, meaning that the few key residues that are mutated in the active site of the M. fascicularis P450 do not prevent the P450 2C20 from recognizing the same substrates as the human P450 2C8.
Collapse
Affiliation(s)
- Francesco Rua
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
11
|
Kim KA, Park PW, Kim HK, Ha JM, Park JY. Effect of Quercetin on the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, in Healthy Subjects. J Clin Pharmacol 2013; 45:941-6. [PMID: 16027405 DOI: 10.1177/0091270005278407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previous in vitro studies have demonstrated that quercetin inhibits CYP2C8, but there are no available data to indicate that quercetin inhibits CYP2C8 in vivo. The effect of long-term use of quercetin on the pharmacokinetics of rosiglitazone was evaluated. After administration of quercetin or matched placebo for 3 weeks in a crossover manner, rosiglitazone 4 mg was administered, and the pharmacokinetics of rosiglitazone and N-desmethylrosiglitazone were determined. For AUCinfinity, AUClast, and Cmax, the geometric mean ratios (90% confidence interval) for (quercetin + rosiglitazone/placebo + rosiglitazone) were 0.98 (0.92, 1.05), 0.99 (0.92, 1.05), and 1.01 (0.88, 1.14), respectively. Metabolic conversion based on the AUC ratio of N-desmethylrosiglitazone/rosiglitazone in the quercetin phase (0.49 +/- 0.17) was similar to that of the placebo phase (0.47 +/- 0.14) (P = .574). Even though the acute interaction that would occur during the first few days of concurrent administration of quercetin cannot be excluded, these results indicate that long-term use of quercetin does not inhibit CYP2C8 activity, and the usage has little possibility of interacting with drugs that are metabolized by CYP2C8, including rosiglitazone.
Collapse
Affiliation(s)
- Kyoung-Ah Kim
- Department of Pharmacology, Gil Medical Center, Gachon Medical School, 1198 Kuwoldong, Namdong-gu, Incheon 405-760, Korea
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cytochrome P450 2C8 is involved in the metabolism of drugs such as paclitaxel, repaglinide, rosiglitazone, and cerivastatin, among others. An in vitro assessment of 209 frequently prescribed drugs and related xenobiotics was carried out to examine their potential to inhibit CYP2C8. A validated sensitive, moderate-throughput high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay was used to detect N-desethylamodiaquine, the CYP2C8-derived major metabolite of amodiaquine metabolism, using heterologously expressed recombinant CYP2C8 (rhCYP2C8) and pooled human liver microsomes. The 209 drugs were first tested at 30 muM for their ability to inhibit rhCYP2C8. Forty-eight compounds exhibited greater than 50% inhibition and were further evaluated for measurement of IC50. The six most potent inhibitors (IC50 <1 microM) from this set were measured for IC50 in pooled human liver microsomes, and the most potent inhibitor identified was the leukotriene receptor antagonist, montelukast (IC50 = 19.6 nM). Inhibitors of CYP2C8 were identified from a wide variety of therapeutic classes, with no single class predominating. Other potent inhibitors included candesartan cilexetil (cyclohexylcarbonate ester prodrug of candesartan), zafirlukast, clotrimazole, felodipine, and mometasone furoate. Seventeen moderate inhibitors of rhCYP2C8 (1 < IC50 < 10 microM) included salmeterol, raloxifene, fenofibrate, ritonavir, levothyroxine, tamoxifen, loratadine, quercetin, oxybutynin, medroxyprogesterone, simvastatin, ketoconazole, ethinyl estradiol, spironolactone, lovastatin, nifedipine, and irbesartan. These in vitro data were used along with clinical pharmacokinetic information in predicting potential drug-drug interactions that could occur by inhibition of CYP2C8. Although almost all drugs tested are not expected to cause drug interactions via inhibition of CYP2C8, montelukast was identified as being of concern as a potential inhibitor of clinical relevance. These findings are discussed in context to potential drug interactions that could be observed between these agents and drugs for which CYP2C8 is involved in metabolism and warrant investigation of the possibility of clinical drug interactions mediated by inhibition of this enzyme.
Collapse
Affiliation(s)
- Robert L Walsky
- Pharmacokientics, Pharmacodynamics,, and Drug Metabolism, Pfizer Global Research and Development, Groton/New London Laboratories, Groton, CT 06340, USA
| | | | | |
Collapse
|
13
|
Quintieri L, Palatini P, Moro S, Floreani M. Inhibition of cytochrome P450 2C8-mediated drug metabolism by the flavonoid diosmetin. Drug Metab Pharmacokinet 2012; 26:559-68. [PMID: 21791871 DOI: 10.2133/dmpk.dmpk-11-rg-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was to assess the effects of diosmetin and hesperetin, two flavonoids present in various medicinal products, on CYP2C8 activity of human liver microsomes using paclitaxel oxidation to 6α-hydroxy-paclitaxel as a probe reaction. Diosmetin and hesperetin inhibited 6α-hydroxy-paclitaxel production in a concentration-dependent manner, diosmetin being about 16-fold more potent than hesperetin (mean IC(50) values 4.25 ± 0.02 and 68.5 ± 3.3 µM for diosmetin and hesperetin, respectively). Due to the low inhibitory potency of hesperetin, we characterized the mechanism of diosmetin-induced inhibition only. This flavonoid proved to be a reversible, dead-end, full inhibitor of CYP2C8, its mean inhibition constant (K(i)) being 3.13 ± 0.11 µM. Kinetic analysis showed that diosmetin caused mixed-type inhibition, since it significantly decreased the V(max) (maximum velocity) and increased the K(m) value (substrate concentration yielding 50% of V(max)) of the reaction. The results of kinetic analyses were consistent with those of molecular docking simulation, which showed that the putative binding site of diosmetin coincided with the CYP2C8 substrate binding site. The demonstration that diosmetin inhibits CYP2C8 at concentrations similar to those observed after in vivo administration (in the low micromolar range) is of potential clinical relevance, since it may cause pharmacokinetic interactions with co-administered drugs metabolized by this CYP.
Collapse
Affiliation(s)
- Luigi Quintieri
- Department of Pharmacology and Anaesthesiology, University of Padova, Italy
| | | | | | | |
Collapse
|
14
|
Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 2011; 36:1-16. [PMID: 21336516 DOI: 10.1007/s13318-011-0024-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
The majority of marketed small-molecule drugs undergo metabolism by hepatic Cytochrome P450 (CYP) enzymes (Rendic 2002). Since these enzymes metabolize a structurally diverse number of drugs, metabolism-based drug-drug interactions (DDIs) can potentially occur when multiple drugs are coadministered to patients. Thus, a careful in vitro assessment of the contribution of various CYP isoforms to the total metabolism is important for predicting whether such DDIs might take place. One method of CYP phenotyping involves the use of potent and selective chemical inhibitors in human liver microsomal incubations in the presence of a test compound. The selectivity of such inhibitors plays a critical role in deciphering the involvement of specific CYP isoforms. Here, we review published data on the potency and selectivity of chemical inhibitors of the major human hepatic CYP isoforms. The most selective inhibitors available are furafylline (in co-incubation and pre-incubation conditions) for CYP1A2, 2-phenyl-2-(1-piperidinyl)propane (PPP) for CYP2B6, montelukast for CYP2C8, sulfaphenazole for CYP2C9, (-)-N-3-benzyl-phenobarbital for CYP2C19 and quinidine for CYP2D6. As for CYP2A6, tranylcypromine is the most widely used inhibitor, but on the basis of initial studies, either 3-(pyridin-3-yl)-1H-pyrazol-5-yl)methanamine (PPM) and 3-(2-methyl-1H-imidazol-1-yl)pyridine (MIP) can replace tranylcypromine as the most selective CYP2A6 inhibitor. For CYP3A4, ketoconazole is widely used in phenotyping studies, although azamulin is a far more selective CYP3A inhibitor. Most of the phenotyping studies do not include CYP2E1, mostly because of the limited number of new drug candidates that are metabolized by this enzyme. Among the inhibitors for this enzyme, 4-methylpyrazole appears to be selective.
Collapse
|
15
|
Gao Y, Liu D, Wang H, Zhu J, Chen C. Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions. Xenobiotica 2010; 40:467-75. [PMID: 20459297 DOI: 10.3109/00498254.2010.487163] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. To analyze the polymorphic activities of CYP2C8 and evaluate their impact on drug inhibitory potential, three CYP2C8 allelic variants (CYP2C8.2, CYP2C8.3, and CYP2C8.4), two non-synonymous single nucleotide polymorphic variants (R139K and K399R, carried by CYP2C8.3), and wild-type CYP2C8 (CYP2C8.1) were heterologously expressed in yeast, and their enzymatic activities were characterized. CYP2C8 inhibition-based in vitro and in vivo drug-drug interactions (DDIs) in wild-type and variant CYP2C8s were then predicted. 2. Functional characterization of five CYP2C8 variants revealed similar enzymatic activity in R139K and low activity in CYP2C8.2, CYP2C8.3, CYP2C8.4, and K399R compared with CYP2C8.1. The systematic analysis of these CYP2C8 variants can provide more homogeneous data for predicting CYP2C8 phenotypes and could be applied to personalized drug therapy. 3. Prediction of DDIs indicated that CYP2C8.4, R139K, and K399R dramatically alter the IC(50) values of nifedipine, troglitazone, and raloxifene, and R139K qualitatively and quantitatively reduces the risk of in vivo paclitaxel-raloxifene and paclitaxel-troglitazone interactions. The results provide the first evidence that CYP2C8 inhibition-based DDIs may be influenced by CYP2C8 genetic polymorphisms. These inhibition data can be used by pharmacologists in the design of in vivo studies to further assess and address the potential role of CYP2C8 genotype-dependent inhibition in clinical DDIs.
Collapse
Affiliation(s)
- Yiwen Gao
- School of Life Sciences, Northwest University, Xi'an, P. R. China
| | | | | | | | | |
Collapse
|
16
|
Goel S, Cohen M, Çömezoglu SN, Perrin L, André F, Jayabalan D, Iacono L, Comprelli A, Ly VT, Zhang D, Xu C, Humphreys WG, McDaid H, Goldberg G, Horwitz SB, Mani S. The Effect of Ketoconazole on the Pharmacokinetics and Pharmacodynamics of Ixabepilone: A First in Class Epothilone B Analogue in Late-Phase Clinical Development. Clin Cancer Res 2008; 14:2701-9. [DOI: 10.1158/1078-0432.ccr-07-4151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Natishan TK. Recent Developments of Achiral HPLC Methods in Pharmaceuticals Using Various Detection Modes. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120030603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Theresa K. Natishan
- a Merck & Co., Inc., Merck Research Laboratories , RY818‐C215, P.O. Box 2000, Rahway , New Jersey , 07065 , USA
| |
Collapse
|
18
|
Bun SS, Giacometti S, Fanciullino R, Ciccolini J, Bun H, Aubert C. Effect of several compounds on biliary excretion of paclitaxel and its metabolites in guinea-pigs. Anticancer Drugs 2006; 16:675-82. [PMID: 15930897 DOI: 10.1097/00001813-200507000-00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to evaluate the in vivo metabolic profile of paclitaxel and to examine the effect of potential co-administered drugs on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. We first investigated in vitro paclitaxel metabolism using liver microsomes obtained from various species to identify the most suitable animal model with a similar metabolism to humans. Then, in vivo paclitaxel metabolism was investigated in male guinea-pigs. The levels of paclitaxel and its metabolites were measured by high-performance liquid chromatography in bile samples from guinea-pigs after paclitaxel i.v. injection (6 mg/kg). We further evaluated the effects of various drugs (quercetin, ketoconazole, dexamethasone, cotrimoxazole) on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. This work demonstrated significant in vitro interspecies differences in paclitaxel metabolism. Our findings showed both in vitro and in vivo similarities between human and guinea-pig biotransformation of paclitaxel. 6alpha-Hydroxypaclitaxel, the main human metabolite of paclitaxel, was found in guinea-pig bile. After paclitaxel combination with ketoconazole or quercetin in guinea-pigs, the cumulative biliary excretion of paclitaxel and its metabolites up to 6 h was significantly decreased by 62 and 76%, respectively. The co-administration of cotrimoxazole or pretreatment with dexamethasone did not alter significantly cumulative biliary excretion. The guinea-pig is a suitable model to study metabolism and biliary excretion of paclitaxel, and to investigate in vivo drug interactions.
Collapse
Affiliation(s)
- Sok-Siya Bun
- Laboratory of Pharmacokinetics and Toxicokinetics, Faculty of Pharmacy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
19
|
Walsky RL, Obach RS, Gaman EA, Gleeson JPR, Proctor WR. Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 2005; 33:413-8. [PMID: 15608135 DOI: 10.1124/dmd.104.002766] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The leukotriene receptor antagonist montelukast was examined for its inhibition of the human drug-metabolizing enzyme cytochrome P4502C8 (CYP2C8). Montelukast was demonstrated to be a potent inhibitor of CYP2C8-catalyzed amodiaquine N-deethylase, rosiglitazone N-demethylase, and paclitaxel 6alpha-hydroxylase in human liver microsomes. Inhibition was also observed when the reaction was catalyzed by recombinant heterologously expressed CYP2C8. The mechanism of inhibition was competitive, with K(i) values ranging from 0.0092 to 0.15 microM. Inhibition potency was highly dependent on the microsomal protein concentration. Increasing the microsomal protein concentration by 80-fold yielded a 100-fold decrease in inhibition potency. Preincubation of montelukast with human liver microsomes and NADPH did not alter the inhibition potency, suggesting that montelukast is not a mechanism-based inactivator. Montelukast was a selective inhibitor for human CYP2C8; inhibition of other human cytochrome P450 enzymes was substantially less. These in vitro data support the use of montelukast as a selective CYP2C8 inhibitor that could be used to determine the contribution of this enzyme to drug metabolism reactions. These data also raise the possibility that montelukast could have an effect on the metabolic clearance of drugs possessing CYP2C8-catalyzed metabolism as a major clearance pathway, thereby eliciting pharmacokinetic drug-drug interactions.
Collapse
Affiliation(s)
- Robert L Walsky
- Department of Pharmacokinetics, Dynamics, and Drug Metabolism, Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA
| | | | | | | | | |
Collapse
|
20
|
Park JY, Kim KA, Shin JG, Lee KY. Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol 2005; 58:397-402. [PMID: 15373932 PMCID: PMC1884597 DOI: 10.1111/j.1365-2125.2004.02161.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS Fungal infection is a significant comorbidity in patients with diabetes mellitus, and ketoconazole, an antifungal agent, causes a number of drug interactions with coadministered drugs. Rosiglitazone is a novel thiazolidinedione antidiabetic drug, mainly metabolized by CYP2C8 and to a lesser extent CYP2C9. We investigated the possible effect of ketoconazole on the pharmacokinetics of rosiglitazone in humans. METHODS Ten healthy Korean male volunteers were treated twice daily for 5 days with 200 mg ketoconazole or with placebo, using a randomized, open-label, two-way crossover study. On day 5, a single dose of 8 mg rosiglitazone was administered orally, and plasma rosiglitazone concentrations were measured. RESULTS Ketoconazole increased the mean area under the plasma concentration-time curve for rosiglitazone by 47%[P = 0.0003; 95% confidence interval (CI) 23, 70] and the mean elimination half-life from 3.55 to 5.50 h (P = 0.0003; 95% CI in difference 1.1, 2.4). The peak plasma concentration of rosiglitazone was increased by ketoconazole treatment by 17% (P = 0.03; 95% CI 5, 29). The apparent oral clearance of rosiglitazone decreased by 28% after ketoconazole treatment (P = 0.0005; 95% CI 18, 38). CONCLUSIONS This study revealed that ketoconazole affected the disposition of rosiglitazone in humans, probably by the inhibition of CYP2C8 and CYP2C9, leading to increasing rosiglitazone concentrations that could increase the efficacy of rosiglitazone or its adverse events.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Pharmacology, Gachon Medical School and Clinical Trial Centre, Gil Medical Centre, Incheon, Korea.
| | | | | | | |
Collapse
|
21
|
Cascio A, Di Liberto C, D'Angelo M, Iaria C, Scarlata F, Titone L, Campisi G. No findings of dental defects in children treated with minocycline. Antimicrob Agents Chemother 2004; 48:2739-2741. [PMID: 15215140 PMCID: PMC434185 DOI: 10.1128/aac.48.7.2739-2741.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 11/11/2003] [Accepted: 02/24/2004] [Indexed: 11/20/2022] Open
Abstract
Forty-one children <8 years of age treated for brucellosis with oral minocycline (2.5 mg/kg) twice daily for 3 weeks were recalled and examined to check for dental staining and defects. Dental staining and defects were found in 14 of 41 exposed children (34.1%) and in 30 of 82 matched controls (36.6%), respectively (P > 0.2).
Collapse
Affiliation(s)
- Antonio Cascio
- Instituto di Patologia Infettiva e Virologia, G. Di Cristina Hospital, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|