1
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
2
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Kim JW, Fedorov EA, Zon LI. G-CSF-induced hematopoietic stem cell mobilization from the embryonic hematopoietic niche does not require neutrophils and macrophages. Exp Hematol 2024; 131:104147. [PMID: 38160994 PMCID: PMC10939783 DOI: 10.1016/j.exphem.2023.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hematopoietic stem cell transplantation requires the collection of hematopoietic cells from patients or stem cell donors. Granulocyte colony-stimulating factor (G-CSF) is widely used in the clinic to mobilize hematopoietic stem and progenitor cells (HSPCs) from the adult bone marrow niche into circulation, allowing a collection of HSPCs from the blood. The mechanism by which G-CSF acts to mobilize HSPCs is unclear, with some studies showing a direct stimulation of stem cells and others suggesting that myeloid cells are required. In this study, we developed a heat-inducible G-CSF transgenic zebrafish line to study HSPC mobilization in vivo. Live imaging of HSPCs after G-CSF induction revealed an increase in circulating HSPCs, demonstrating a successful HSPC mobilization. These mobilized HSPCs went on to prematurely colonize the kidney marrow, the adult zebrafish hematopoietic niche. We eliminated neutrophils or macrophages using a nitroreductase-based cell ablation system and found that G-CSF still mobilizes HSPCs from the niche. Our findings indicate that neutrophils and macrophages are not required for G-CSF-induced HSPC mobilization from the embryonic hematopoietic niche.
Collapse
Affiliation(s)
- Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Evan A Fedorov
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA.
| |
Collapse
|
4
|
Choo S, Wolf CB, Mack HM, Egan MJ, Kiem HP, Radtke S. Choosing the right mouse model: comparison of humanized NSG and NBSGW mice for in vivo HSC gene therapy. Blood Adv 2024; 8:916-926. [PMID: 38113461 PMCID: PMC10877116 DOI: 10.1182/bloodadvances.2023011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT In vivo hematopoietic stem cell (HSC) gene therapy is an emerging and promising area of focus in the gene therapy field. Humanized mouse models are frequently used to evaluate novel HSC gene therapy approaches. Here, we comprehensively evaluated 2 mouse strains, NSG and NBSGW. We studied human HSC engraftment in the bone marrow (BM), mobilization of BM-engrafted HSCs into circulation, in vivo transduction using vesicular stomatitis virus glycoprotein-pseudotyped lentiviral vectors (VSV-G LVs), and the expression levels of surface receptors needed for transduction of viral vectors. Our findings reveal that the NBSGW strain exhibits superior engraftment of human long-term HSCs compared with the NSG strain. However, neither model resulted in a significant increase in circulating human HSCs after mobilization. We show that time after humanization as well as human chimerism levels and platelet counts in the peripheral blood can be used as surrogates for human HSC engraftment in the BM. Furthermore, we observed low expression of the low-density lipoprotein receptor, a requirement for VSV-G LV transduction, in the human HSCs present in the murine BM. Our comprehensive characterization of humanized mouse models highlights the necessity of proper validation of the model and methods to study in vivo HSC gene therapy strategies.
Collapse
Affiliation(s)
- Seunga Choo
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Carl B. Wolf
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Heather M. Mack
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mitchell J. Egan
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Hans-Peter Kiem
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Stefan Radtke
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
5
|
Winkler R, Lu H. Cell-Specific Regulation of Inflammatory Cytokines and Acute-Phase Proteins by the Glucocorticoid Receptor. Mediators Inflamm 2023; 2023:4399998. [PMID: 39619227 PMCID: PMC11606692 DOI: 10.1155/2023/4399998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Literature and data mining found abnormal induction of chemokine (C-X-C motif) ligand 1 (CXCL1) and CXCL8 and down-regulation of CXCL2 in inflammatory liver diseases. This study was performed to understand the glucocorticoid receptor's (GR's) effects on chemokine and acute-phase protein expression in human liver, in settings of bacterial infection (modeled using LPS) or inflammation (modeled using TNFα). METHODS Primary human hepatocytes (PHH) were treated with combinations of tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and dexamethasone (DEX) for 24 h, following which chemokine mRNA and protein expression were analyzed using qPCR and enzyme-linked immunosorbent assay assays. Dual luciferase assays were performed on transfected cell lines. Mutant CXCL2 promoters were used in dual luciferase assays to identify specific regions of the CXCL2 promoter affected by GR, TNFα, or hepatocyte nuclear factor 4α (HNF4α, a liver-enriched transcription factor). RESULTS In PHH from donor 1, GR strongly inhibited LPS-induced CXCL1 and CXCL8 translation and transcription, whereas CXCL2 transcription tended to increase with DEX treatment. In PHH from donor 2, DEX treatment inhibited protein expression and secretion of CXCL1 and CXCL8 induced by TNFα and/or LPS, whereas CXCL2 upregulation was largely unaffected by DEX treatment. In nonliver HEK293T cells GR activity inhibited CXCL2 promoter activity. However, in liver-derived HEPG2 cells, GR induced CXCL2 promoter activity. A 407-base pair region upstream of CXCL2 promoter is necessary for full GR functionality in HEPG2 cells. TNFα synergized with HNF4α in inducing CXCL2 promoter activity in HEPG2 cells. CONCLUSIONS GR's effects on chemokine expression are cell-type specific and chemokine specific. GR down-regulated CXCL1 and CXCL8 in different cell types, whereas the specific activation of CXCL2 in hepatocytes and down-regulation of CXCL2 in nonhepatocytes by GR appears due to cell-specific utilization of CXCL2 promoter. By specifically increasing GR activity in the liver, we may normalize chemokine imbalances and prevent sepsis in inflammatory liver diseases.
Collapse
Affiliation(s)
- Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
7
|
Piccirillo N, Putzulu R, Metafuni E, Massini G, Fatone F, Corbingi A, Giammarco S, Limongiello MA, Di Giovanni A, Zini G, Bacigalupo A, Teofili L, Sica S, Chiusolo P. Peripheral Blood Allogeneic Stem Cell Mobilization: Can We Predict a Suboptimal Mobilization? Transfus Med Rev 2023; 37:150725. [PMID: 37315997 DOI: 10.1016/j.tmrv.2023.150725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
Allogeneic peripheral blood stem cells mobilization is now the basis of most stem cell transplants. In a very limited number of cases, mobilization is suboptimal leading to further collection procedures, to suboptimal cell doses infusion with delayed engraftment time, increased risks of transplant procedure and of related costs. To date we have no recognized and shared criteria for early estimating the probability of poor mobilization in healthy donors. We then analyzed allogeneic peripheral blood stem cell donations performed at the Fondazione Policlinico Universitario A.Gemelli IRCCS Hospital from January 2013 to December 2021 in order to identify premobilization factors associated with successful mobilization. The following data were collected: age, gender, weight, complete blood cell count at baseline, G-CSF dose, number of collection procedures, CD34+ cell count in peripheral blood on the first day of collection, CD34+ cell dose per kg body weight of recipient. Mobilization efficacy was defined according to the number of CD34+ cells in peripheral blood on day +5 of G-CSF administration. We classified donors as sub-optimal mobilizers or good mobilizers according to the achievement of the 50 CD34+ cell/μL threshold. We observed 30 suboptimal mobilizations in 158 allogeneic peripheral blood stem cell donations. Age and baseline white blood cell count were factors significantly associated with negative or positive impact on mobilization, respectively. We did not find significant differences in mobilization based on gender or G-CSF dose. Using cut-off values of 43 years and 5.5×109/L WBC count, we built a suboptimal mobilization score: donors who reach 2, 1 or 0 points have a 46%, 16% or 4% probability of suboptimal mobilization, respectively. Our model explains 26% of the variability of mobilization confirming that most of the mobilization magnitude depends on genetically determined factors; however, suboptimal mobilization score is a simple tool providing an early assessment of mobilization efficacy before G-CSF administration begins in order to support allogeneic stem cells selection, mobilization and collection. Through a systematic review, we looked for confirmation of our findings. According to the published articles, all the variables we included in our model are confirmed to be strongly related to the success of mobilization. We believe that score system approach could be applied in clinical practice to assess the risk of mobilization failure at baseline allowing for a priori intervention.
Collapse
Affiliation(s)
- Nicola Piccirillo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rossana Putzulu
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giuseppina Massini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federica Fatone
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Andrea Corbingi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessia Di Giovanni
- Hematology Unit, Center for Translational Medicine, Azienda USL Toscana NordOvest, Livorno, Italy
| | - Gina Zini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
9
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
10
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Shafiei SL, Movassaghpour A, Hosseini SF, Talebi M, Edalati M, Torabi Goudarzi S, Soltani-Zangbar MS, Mehdizadeh A, Yousefi M. The altered expression of homing factors in CD34 + hematopoietic stem cells following G-CSF injection and its effects on transplantation quality in ALL patients. Cell Biol Int 2022; 46:1876-1885. [PMID: 35880847 DOI: 10.1002/cbin.11865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem cells (HSCs) transplantation is considered a suitable treatment for malignant or nonmalignant hematological diseases. This study aims to investigate the HSCs homing factors in bone marrow (BM) donors of acute lymphoblastic leukemia (ALL) patients following granulocyte colony-stimulating factor (G-CSF) injection, as well as the G-CSF effects on BM transplantation quality in these patients. To mobilize HSCs into peripheral blood, G-CSF was used for ALL patient's BM donors. For HSCs counting, CD34+ cells were evaluated in analogous and autologous donors using flow cytometry. The expression of stem cell homing factors in CD34+ cells and peripheral blood mononuclear cells (PBMCs) were investigated using a real-time polymerase chain reaction. Finally, hematological factors after BM transplantation in ALL patients were assessed. According to our results, after G-CSF injection, the level of CD34+ HSCs was statistically increased. Besides, autologous donors showed a higher level of CD34+ cells compared to analogous donors before and after G-CSF injection. Additionally, a higher number of CD34+ HSCs was achieved in the autologous samples following G-CSF injection. Furthermore, after G-CSF injection, the expression of matrix metalloproteinase (MMP)-2, MMP-9 was increased; while, stromal cell-derived factor 1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 expression were decreased. Moreover, the expression of C-X-C chemokine receptor type 4, lymphocyte function-associated antigen 1, and very late antigen-4 in CD34+ cells and PBMCs were decreased. BM transplantation on Day 90 also caused an increased level of white blood cells, red blood cells, and platelets as compared to the first day; however, no statistical differences were observed in hemoglobin level. In conclusion, G-CSF by altering the expression of HSCs homing factors in ALL donors improves BM transplantation quality in ALL patients.
Collapse
Affiliation(s)
- Seyede-Leila Shafiei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Fatemeh Hosseini
- Department of Anatomy, Faculty of Tabas, School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Edalati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia 2022; 36:333-347. [PMID: 34518644 DOI: 10.1038/s41375-021-01413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.
Collapse
|
13
|
Brackett CM, Greene KF, Aldrich AR, Trageser NH, Pal S, Molodtsov I, Kandar BM, Burdelya LG, Abrams SI, Gudkov AV. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov 2021; 7:266. [PMID: 34584068 PMCID: PMC8478872 DOI: 10.1038/s41420-021-00642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Kellee F Greene
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Alyssa R Aldrich
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nicholas H Trageser
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ivan Molodtsov
- I.V. Davydovsky Clinical City Hospital, Moscow Department of Healthcare, Moscow, Russian Federation
| | - Bojidar M Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
14
|
Lévesque JP, Summers KM, Millard SM, Bisht K, Winkler IG, Pettit AR. Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Exp Hematol 2021; 100:12-31.e1. [PMID: 34298116 DOI: 10.1016/j.exphem.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia.
| | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Kavita Bisht
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
15
|
The Role of Neutrophil Extracellular Traps in Central Nervous System Diseases and Prospects for Clinical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9931742. [PMID: 34336122 PMCID: PMC8294981 DOI: 10.1155/2021/9931742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
Neutrophil extracellular traps (NETs) are complexes of decondensed DNA fibers and antimicrobial peptides that are released by neutrophils and play important roles in many noninfectious diseases, such as cystic fibrosis, systemic lupus erythematosus, diabetes, and cancer. Recently, the formation of NETs has been detected in many central nervous system diseases and is thought to play different roles in the occurrence and development of these diseases. Researchers have detected NETs in acute ischemic stroke thrombi, and these NETs are thought to promote coagulation and thrombosis. NETs in ischemic brain parenchyma were identified as the cause of secondary nerve damage. High levels of NETs were also detected in grade IV glioma tissues, where NETs were involved in the proliferation and invasion of glioma cells by activating a signaling pathway. Extracellular web-like structures have also recently been observed in mice with traumatic brain injury (TBI), and it was hypothesized that NETs contribute to the development of edema after TBI. This article reviews the effect of NETs on multiple diseases that affect the CNS and explores their clinical application prospects.
Collapse
|
16
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
17
|
Justus DG, Manis JP. Parameters affecting successful stem cell collections for genetic therapies in sickle cell disease. Transfus Apher Sci 2021; 60:103059. [PMID: 33541761 DOI: 10.1016/j.transci.2021.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emerging cellular therapies require the collection of peripheral blood hematopoietic stem cells (HSC) by apheresis for in vitro manipulation to accomplish gene addition or gene editing. These therapies require relatively large numbers of HSCs within a short time frame to generate an efficacious therapeutic product. This review focuses on the principal factors that affect collection outcomes, especially relevant to gene therapy for sickle cell disease.
Collapse
Affiliation(s)
- David G Justus
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
18
|
Fang X, Fang X, Mao Y, Ciechanover A, Xu Y, An J, Huang Z. A novel small molecule CXCR4 antagonist potently mobilizes hematopoietic stem cells in mice and monkeys. Stem Cell Res Ther 2021; 12:17. [PMID: 33413613 PMCID: PMC7791974 DOI: 10.1186/s13287-020-02073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB. Methods C3H/HEJ, DBA/2, CD45.1+, and CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiao Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing, China.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China. .,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China. .,Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
20
|
Zhu B, Liu H, Pan Y, Jing J, Li H, Zhao X, Liu L, Wang D, Johnston SC, Wang Z, Wang Y, Wang Y. Elevated Neutrophil and Presence of Intracranial Artery Stenosis Increase the Risk of Recurrent Stroke. Stroke 2019; 49:2294-2300. [PMID: 30355101 DOI: 10.1161/strokeaha.118.022126] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- The association of neutrophil and intracranial artery stenosis (ICAS) with the prognosis of stroke is uncertain. This study evaluated the relationship between neutrophil levels with and without ICAS and the prognosis of patients with minor stroke or transient ischemic attack. Methods- Data from the CHANCE trial (Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events) was reviewed. Patients were divided into 4 groups according to the dichotomy of neutrophil counts and status of ICAS. The primary outcome was a new stroke (ischemic or hemorrhagic), and secondary outcomes included a new composite vascular event (stroke, myocardial infarction, or cardiovascular death) and ischemic stroke. Safety outcome was any hemorrhage at 90 days. The association between neutrophil counts with and without ICAS and risk of any outcome was analyzed by Cox regression models. Results- Of 1034 patients included in this subgroup analysis, 91 had recurrent strokes. Compared with the lower neutrophil levels without ICAS, higher neutrophil levels with ICAS significantly increased the risk of stroke recurrence (adjusted hazard ratio, 2.26; 95% CI, 1.19-4.31; P=0.01) and composite outcome (adjusted hazard ratio, 1.98; 95% CI, 1.06-3.67; P=0.03). However, there was no safety issue. Conclusions- Concomitant presence of higher neutrophil levels and ICAS was associated with the increased risk of stroke recurrence, and combined adverse outcome events in patients already had minor ischemic stroke or high-risk transient ischemic attack. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT00979589.
Collapse
Affiliation(s)
- Bihong Zhu
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China (B.Z., Z.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Huihui Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu, China (H. Liu)
| | - Yuesong Pan
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Jing Jing
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Hao Li
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Xingquan Zhao
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Liping Liu
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - David Wang
- Illinois Neurological Institute Stroke Network, Sisters of the Third Order of St. Francis Healthcare System, University of Illinois College of Medicine, Peoria (D.W.)
| | | | - Zhimin Wang
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China (B.Z., Z.W.)
| | - Yilong Wang
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| | - Yongjun Wang
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Center of Stroke, Beijing Institute for Brain Disorders, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (B.Z., Y.P., J.J., H. Li, X.Z., L.L., Yilong Wang, Yongjun Wang)
| |
Collapse
|
21
|
Valent P, Sadovnik I, Eisenwort G, Herrmann H, Bauer K, Mueller N, Sperr WR, Wicklein D, Schumacher U. Redistribution, homing and organ-invasion of neoplastic stem cells in myeloid neoplasms. Semin Cancer Biol 2019; 60:191-201. [PMID: 31408723 DOI: 10.1016/j.semcancer.2019.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The development of a myeloid neoplasm is a step-wise process that originates from leukemic stem cells (LSC) and includes pre-leukemic stages, overt leukemia and a drug-resistant terminal phase. Organ-invasion may occur in any stage, but is usually associated with advanced disease and a poor prognosis. Sometimes, extra-medullary organ invasion shows a metastasis-like or even sarcoma-like destructive growth of neoplastic cells in local tissue sites. Examples are myeloid sarcoma, mast cell sarcoma and localized blast phase of chronic myeloid leukemia. So far, little is known about mechanisms underlying re-distribution and extramedullary dissemination of LSC in myeloid neoplasms. In this article, we discuss mechanisms through which LSC can mobilize out of the bone marrow niche, can transmigrate from the blood stream into extramedullary organs, can invade local tissue sites and can potentially create or support the formation of local stem cell niches. In addition, we discuss strategies to interfere with LSC expansion and organ invasion by targeted drug therapies.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Department of Medicine III, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Niklas Mueller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Department of Internal Medicine III, Division of Hematology and Oncology, Hospital of the Ludwig-Maximilians-University Munich, Germany
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
de Kruijf EJFM, Fibbe WE, van Pel M. Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci 2019; 1466:24-38. [PMID: 31006885 PMCID: PMC7217176 DOI: 10.1111/nyas.14059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Peripheral blood hematopoietic stem and progenitor cells (HSPCs), mobilized by granulocyte colony‐stimulating factor, are widely used as a source for both autologous and allogeneic stem cell transplantation. The use of mobilized HSPCs has several advantages over traditional bone marrow–derived HSPCs, including a less invasive harvesting process for the donor, higher HSPC yields, and faster hematopoietic reconstitution in the recipient. For years, the mechanisms by which cytokines and other agents mobilize HSPCs from the bone marrow were not fully understood. The field of stem cell mobilization research has advanced significantly over the past decade, with major breakthroughs in the elucidation of the complex mechanisms that underlie stem cell mobilization. In this review, we provide an overview of the events that underlie HSPC mobilization and address the relevant cellular and molecular components of the bone marrow niche. Furthermore, current and future mobilizing agents will be discussed.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Fibbe
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Melissa van Pel
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Gębura K, Butrym A, Chaszczewska-Markowska M, Wróbel T, Kuliczkowski K, Bogunia-Kubik K. G-CSF administration favours SDF-1 release and activation of neutrophils and monocytes in recipients of autologous peripheral blood progenitor cells. Cytokine 2019; 116:38-47. [DOI: 10.1016/j.cyto.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
|
25
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
26
|
Abstract
Bone and marrow are the two facets of the same organ, in which bone and hematopoietic cells coexist and interact. Marrow and skeletal tissue influence each-other and a variety of genetic disorders directly targets both of them, which may result in combined hematopoietic failure and skeletal malformations. Other conditions primarily affect one organ with secondary influences on the other. For instance, various forms of congenital anemias reduce bone mass and induce osteoporosis, while osteoclast failure in osteopetrosis prevents marrow development reducing medullary cavities and causing anemia and pancytopenia. Understanding the pathophysiology of these conditions may facilitate diagnosis and management, although many disorders are presently incurable. This article describes several congenital bone diseases and their relationship to hematopoietic tissue.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Phillips EH, Lorch AH, Durkes AC, Goergen CJ. Early pathological characterization of murine dissecting abdominal aortic aneurysms. APL Bioeng 2018; 2:046106. [PMID: 31069328 PMCID: PMC6481730 DOI: 10.1063/1.5053708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
We report here on the early pathology of a well-established murine model of dissecting abdominal aortic aneurysms (AAAs). Continuous infusion of angiotensin II (AngII) into apolipoprotein E-deficient mice induces the formation of aortic dissection and expansion at some point after implantation of miniosmotic pumps containing AngII. While this model has been studied extensively at a chronic stage, we investigated the early pathology of dissecting AAA formation at multiple scales. Using high-frequency ultrasound, we screened 12-week-old male mice daily for initial formation of these aneurysmal lesions between days 3 and 10 post-implantation. We euthanized animals on the day of diagnosis of a dissecting AAA or at day 10 if no aneurysmal lesion developed. Aortic expansion and reduced vessel wall strain occurred in animals regardless of whether a dissecting AAA developed by day 10. The aortas of mice that did not develop dissecting AAAs showed intermediate changes in morphology and biomechanical properties. RNA sequencing and gene expression analysis revealed multiple proinflammatory and matrix remodeling genes to be upregulated in the suprarenal aorta of AngII-infused mice as compared to saline-infused controls. Histology and immunohistochemistry confirmed that extracellular matrix remodeling and inflammatory cell infiltration, notably neutrophils and macrophages, occurred in AngII-infused mice with and without dissecting AAAs but not saline-infused controls. Understanding early disease processes is a critical step forward in translating experimental results in cardiovascular disease research. This work advances our understanding of this well-established murine model with applications for improving early diagnosis and therapy of acute aortic syndrome in humans.
Collapse
Affiliation(s)
- Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Adam H Lorch
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
28
|
Abstract
THE PURPOSE OF REVIEW Mobilized peripheral blood is the predominant source of stem and progenitor cells for hematologic transplantation. Successful transplant requires sufficient stem cells of high enough quality to recapitulate lifelong hematopoiesis, but in some patients and normal donors, reaching critical threshold stem cell numbers are difficult to achieve. Novel strategies, particularly those offering rapid mobilization and reduced costs, remains an area of interest.This review summarizes critical scientific underpinnings in understanding the process of stem cell mobilization, with a focus on new or improved strategies for their efficient collection and engraftment. RECENT FINDINGS Studies are described that provide new insights into the complexity of stem cell mobilization. Agents that target new pathways such HSC egress, identify strategies to collect more potent competing HSC and new methods to optimize stem cell collection and engraftment are being evaluated. SUMMARY Agents and more effective strategies that directly address the current shortcomings of hematopoietic stem cell mobilization and transplantation and offer the potential to facilitate collection and expand use of mobilized stem cells have been identified.
Collapse
Affiliation(s)
- Louis M. Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| | - Hal E Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| |
Collapse
|
29
|
Kwon YW, Lee SJ, Heo SC, Lee TW, Park GT, Yoon JW, Kim SC, Shin HJ, Lee SC, Kim JH. Role of CXCR2 in the Ac-PGP-Induced Mobilization of Circulating Angiogenic Cells and its Therapeutic Implications. Stem Cells Transl Med 2018; 8:236-246. [PMID: 30474937 PMCID: PMC6392381 DOI: 10.1002/sctm.18-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Circulating angiogenic cells (CACs) have been implicated in the repair of ischemic tissues, and their mobilization from bone marrow is known to be regulated by the activations of chemokine receptors, including CXCR2 and CXCR4. This study was conducted to investigate the role of N‐acetylated proline‐glycine‐proline (Ac‐PGP; a collagen‐derived chemotactic tripeptide) on CAC mobilization and its therapeutic potential for the treatment of peripheral artery diseases. Ac‐PGP was administered daily to a murine hind limb ischemia model, and the effects of Ac‐PGP on blood perfusion and CAC mobilization (Sca1+Flk1+ cells) into peripheral blood were assessed. Intramuscular administration of Ac‐PGP significantly improved ischemic limb perfusion and increased limb salvage rate by increasing blood vessel formation, whereas Ac‐PGP‐induced blood perfusion and angiogenesis in ischemic limbs were not observed in CXCR2‐knockout mice. In addition, Ac‐PGP‐induced CAC mobilization was found to occur in wild‐type mice but not in CXCR2‐knockout mice. Transplantation of bone marrow from green fluorescent protein (GFP) transgenic mice to wild‐type mice showed bone marrow‐derived cells homed to ischemic limbs after Ac‐PGP administration and that GFP‐positive cells contributed to the formation of ILB4‐positive capillaries and α smooth muscle actin (α‐SMA)‐positive arteries. These results suggest CXCR2 activation in bone marrow after Ac‐PGP administration improves blood perfusion and reduces tissue necrosis by inducing CAC mobilization. These findings suggest a new pharmaceutical basis for the treatment of critical limb ischemia. stem cells translational medicine2019;8:236&246
Collapse
Affiliation(s)
- Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jun Lee
- Department of Orthopaedic Surgery, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ho Jin Shin
- Division of Hematology-Oncology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
30
|
Esrick EB, Bauer DE. Genetic therapies for sickle cell disease. Semin Hematol 2018; 55:76-86. [PMID: 29958563 DOI: 10.1053/j.seminhematol.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
After decades with few novel therapeutic options for sickle cell disease (SCD), autologous hematopoietic stem cell (HSC) based genetic therapies including lentiviral gene therapy (GT), and genome editing (GE) now appear imminent. Lentiviral GT has advanced considerably in the past decade with promising clinical trial results in multiple disorders. For β-hemoglobinopathies, GT strategies of gene addition and fetal hemoglobin induction through BCL11A regulation are both being evaluated in open clinical trials. GE techniques offer the possibility of a nonviral curative approach, either through sickle hemoglobin mutation repair or fetal hemoglobin elevation. Although GE currently remains at the preclinical stage, multiple clinical trials will likely open soon. In addition to reviewing current strategies for GT and GE, this review highlights important next steps toward optimization of these therapies. All autologous cell-based genetic therapies rely on safely obtaining an adequate yield of autologous HSCs for genetic modification and transplantation. HSC collection is uniquely challenging in SCD. Peripheral mobilization with plerixafor has recently emerged as a promising approach. The acute and long-term toxicities associated with myeloablative conditioning are risks that may not be acceptable to a significant number of SCD patients, highlighting the need for novel conditioning regimens. Finally, increasing availability of autologous genetic therapies will require comprehensive and collaborative discussions regarding cost and access for SCD patients, at individual centers and worldwide.
Collapse
Affiliation(s)
- Erica B Esrick
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| |
Collapse
|
31
|
Chiba Y, Mizoguchi I, Hasegawa H, Ohashi M, Orii N, Nagai T, Sugahara M, Miyamoto Y, Xu M, Owaki T, Yoshimoto T. Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cell Mol Life Sci 2018; 75:1363-1376. [PMID: 29218601 PMCID: PMC11105622 DOI: 10.1007/s00018-017-2724-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.
Collapse
Grants
- a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- the Private University Strategic Research Based Support Project from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Mio Ohashi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Naoko Orii
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Taro Nagai
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Miyaka Sugahara
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Yasunori Miyamoto
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toshiyuki Owaki
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
32
|
Mobilization of progenitor cells and assessment of vessel healing after second generation drug-eluting stenting by optical coherence tomography. IJC HEART & VASCULATURE 2018; 18:17-24. [PMID: 29556525 PMCID: PMC5854838 DOI: 10.1016/j.ijcha.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022]
Abstract
Background Bone marrow-derived progenitor cells likely contribute to both endothelial- and smooth muscle cell-dependent healing responses in stent-injured vessel sites. This study aimed to assess mobilization of progenitor cells and vessel healing after zotarolimus-eluting (ZES) and everolimus-eluting (EES) stents. Methods and results In 63 patients undergoing coronary stent implantation, we measured circulating CD34 + CD133 + CD45low cells and serum levels of biomarkers relevant to stem cell mobilization. In 31 patients of them, we assessed vessel healing within the stented segment using optical coherence tomography (OCT) imaging. The CD34 + CD133 + CD45low cells increased 68 ± 59% 7 days after bare metal stent (BMS), 10 ± 53% after ZES (P < 0.01 vs BMS), 3 ± 49% after EES (P < 0.001 vs BMS), compared with baseline. Percent change in CD34 + CD133 + CD45low cells was positively correlated with that in stromal cell-derived factor (SDF)-1α (R = 0.29, P = 0.034). Percentage of uncovered struts was higher in the EES group (14.4 ± 17.3%), compared with the BMS (0.7 ± 1.3, P < 0.01) and ZES (0.4 ± 0.5, P < 0.01) groups. The change in CD34 + CD133 + CD45low cells showed positive correlation with OCT-quantified mean neointimal area (R = 0.48, P < 0.01). Finally, circulating mononuclear cells obtained from 5 healthy volunteers were isolated to determine the effect of sirolimus, zotarolimus and everolimus on vascular cell differentiation. The differentiation of mononuclear cells into endothelial-like cells was dose-dependently suppressed by sirolimus, zotarolimus, and everolimus. Conclusions Mobilization of progenitor cells was suppressed, and differentiation of mononuclear cells into endothelial-like cells was inhibited, in association with increased number of uncovered stent struts, even after second generation drug-eluting stenting. These data suggest that new approaches are necessary to enhance stent healing.
Collapse
|
33
|
Hoggatt J, Singh P, Tate TA, Chou BK, Datari SR, Fukuda S, Liu L, Kharchenko PV, Schajnovitz A, Baryawno N, Mercier FE, Boyer J, Gardner J, Morrow DM, Scadden DT, Pelus LM. Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Cell 2018; 172:191-204.e10. [PMID: 29224778 PMCID: PMC5812290 DOI: 10.1016/j.cell.2017.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROβ, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Harvard Medical School, Cancer Center and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Pratibha Singh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tiffany A Tate
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bin-Kuan Chou
- Harvard Medical School, Cancer Center and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Shruti R Datari
- Harvard Medical School, Cancer Center and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Seiji Fukuda
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Liqiong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Schajnovitz
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ninib Baryawno
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francois E Mercier
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Boyer
- Department of Statistical Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA; GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | - David T Scadden
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Singh P, Hoggatt J, Kamocka MM, Mohammad KS, Saunders MR, Li H, Speth J, Carlesso N, Guise TA, Pelus LM. Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. J Clin Invest 2017; 127:4527-4540. [PMID: 29130940 DOI: 10.1172/jci94687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathan Hoggatt
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Cancer Center and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Mary R Saunders
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongge Li
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer Speth
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia Carlesso
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | | - Louis M Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
35
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Mukaida N, Tanabe Y, Baba T. Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. Int J Mol Sci 2017; 18:1824. [PMID: 28829353 PMCID: PMC5578209 DOI: 10.3390/ijms18081824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022] Open
Abstract
All blood lineage cells are generated from hematopoietic stem cells (HSCs), which reside in bone marrow after birth. HSCs self-renew, proliferate, and differentiate into mature progeny under the control of local microenvironments including hematopoietic niche, which can deliver regulatory signals in the form of bound or secreted molecules and from physical cues such as oxygen tension and shear stress. Among these mediators, accumulating evidence indicates the potential involvement of several chemokines, particularly CXCL12, in the interaction between HSCs and bone marrow microenvironments. Fusion between breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog (ABL)-1 gene gives rise to BCR-ABL protein with a constitutive tyrosine kinase activity and transforms HSCs and/or hematopoietic progenitor cells (HPCs) into disease-propagating leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). LSCs can self-renew, proliferate, and differentiate under the influence of the signals delivered by bone marrow microenvironments including niche, as HSCs can. Thus, the interaction with bone marrow microenvironments is indispensable for the initiation, maintenance, and progression of CML. Moreover, the crosstalk between LSCs and bone marrow microenvironments can contribute to some instances of therapeutic resistance. Furthermore, evidence is accumulating to indicate the important roles of bone marrow microenvironment-derived chemokines. Hence, we will herein discuss the roles of chemokines in CML with a focus on bone marrow microenvironments.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Chemokines/metabolism
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Protein Binding
- Receptors, Chemokine/metabolism
- Signal Transduction
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| |
Collapse
|
37
|
Blaser BW, Moore JL, Hagedorn EJ, Li B, Riquelme R, Lichtig A, Yang S, Zhou Y, Tamplin OJ, Binder V, Zon LI. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. J Exp Med 2017; 214:1011-1027. [PMID: 28351983 PMCID: PMC5379982 DOI: 10.1084/jem.20161616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 01/26/2023] Open
Abstract
Blaser et al. use live imaging of the zebrafish hematopoietic niche to show that cxcl8/cxcr1 signaling positively regulates HSPC engraftment by increasing HSPC-niche interactions, HSPC mitotic rate, niche size, and expression of cxcl12a in a niche-autonomous manner. The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC–endothelial cell “cuddling,” HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Bradley W Blaser
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Jessica L Moore
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Owen J Tamplin
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| |
Collapse
|
38
|
Kwak H, Salvucci O, Weigert R, Martinez-Torrecuadrada JL, Henkemeyer M, Poulos MG, Butler JM, Tosato G. Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. J Clin Invest 2016; 126:4554-4568. [PMID: 27820703 PMCID: PMC5127687 DOI: 10.1172/jci87848] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow. Stress signals from cancer and other conditions promote HSPC mobilization into circulation and subsequent homing to tissue microenvironments. HSPC infiltration into tissue microenvironments can influence disease progression; notably, in cancer, HSPCs encourage tumor growth. Here we have uncovered a mutually exclusive distribution of EPHB4 receptors in bone marrow sinusoids and ephrin B2 ligands in hematopoietic cells. We determined that signaling interactions between EPHB4 and ephrin B2 control HSPC mobilization from the bone marrow. In mice, blockade of the EPHB4/ephrin B2 signaling pathway reduced mobilization of HSPCs and other myeloid cells to the circulation. EPHB4/ephrin B2 blockade also reduced HSPC infiltration into tumors as well as tumor progression in murine models of melanoma and mammary cancer. These results identify EPHB4/ephrin B2 signaling as critical to HSPC mobilization from bone marrow and provide a potential strategy for reducing cancer progression by targeting the bone marrow.
Collapse
Affiliation(s)
- Hyeongil Kwak
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, and
| | - Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, and
| | - Roberto Weigert
- National Institute of Dental and Craniofacial Research (NIDCR) and Laboratory of Cellular and Molecular Biology, NCI, NIH, Bethesda, Maryland, USA
| | | | - Mark Henkemeyer
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael G. Poulos
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jason M. Butler
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, and
| |
Collapse
|
39
|
Strecker JK, Schmidt A, Schäbitz WR, Minnerup J. Neutrophil granulocytes in cerebral ischemia - Evolution from killers to key players. Neurochem Int 2016; 107:117-126. [PMID: 27884770 DOI: 10.1016/j.neuint.2016.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Abstract
Neutrophil granulocytes (or polymorphonuclear cells, PMNs) have long been considered as crude killing machines, particularly trained to attack bacterial or fungal pathogens in wounds or infected tissues. That perspective has fundamentally changed over the last decades, as PMNs have been shown to exert a livery exchange between other cells of the innate and adaptive immune system. PMNs do provide major immunomodulatory contribution during acute inflammation and subsequent clearance. Following sterile inflammation like cerebral ischemia, PMNs are among the first hematogenous cells attracted to the ischemic tissue. As inflammation is a crucial component within stroke pathophysiology, several studies regarding the role of PMNs following cerebral ischemia have been carried out. And indeed, recent research suggests a direct connection between PMNs' influx and brain damage severity. This review highlights the latest research regarding the close interconnection between PMNs and co-working cells following cerebral ischemia. We describe how PMNs are attracted to the site of injury and their tasks within the inflamed brain tissue and the periphery. We further report of new findings regarding the interaction of PMNs with resident microglia, immigrating macrophages and T cells after stroke. Finally, we discuss recent research results from experimental studies in the context with current clinical trials and point out potential new therapeutic applications that could emerge from this new knowledge on the action and interaction of PMNs following cerebral ischemia.
Collapse
Affiliation(s)
- Jan-Kolja Strecker
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany.
| | - Antje Schmidt
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | - Jens Minnerup
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| |
Collapse
|
40
|
Bajrami B, Zhu H, Kwak HJ, Mondal S, Hou Q, Geng G, Karatepe K, Zhang YC, Nombela-Arrieta C, Park SY, Loison F, Sakai J, Xu Y, Silberstein LE, Luo HR. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. J Exp Med 2016; 213:1999-2018. [PMID: 27551153 PMCID: PMC5030805 DOI: 10.1084/jem.20160393] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Luo et al. report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation and that G-CSF suppresses this mobilization by negatively regulating CXCR2-mediated intracellular signaling. Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation.
Collapse
Affiliation(s)
- Besnik Bajrami
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hyun-Jeong Kwak
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Qingming Hou
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Guangfeng Geng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Yu C Zhang
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - César Nombela-Arrieta
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115 Department of Experimental Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Shin-Young Park
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Fabien Loison
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Jiro Sakai
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Leslie E Silberstein
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| |
Collapse
|
41
|
Fukuda S, Hoggatt J, Singh P, Abe M, Speth JM, Hu P, Conway EM, Nucifora G, Yamaguchi S, Pelus LM. Survivin modulates genes with divergent molecular functions and regulates proliferation of hematopoietic stem cells through Evi-1. Leukemia 2015; 29:433-440. [PMID: 24903482 PMCID: PMC4258188 DOI: 10.1038/leu.2014.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022]
Abstract
The inhibitor of apoptosis protein Survivin regulates hematopoiesis, although its mechanisms of regulation of hematopoietic stem cells (HSCs) remain largely unknown. While investigating conditional Survivin deletion in mice, we found that Survivin was highly expressed in phenotypically defined HSCs, and Survivin deletion in mice resulted in significantly reduced total marrow HSCs and hematopoietic progenitor cells. Transcriptional analysis of Survivin(-/-) HSCs revealed altered expression of multiple genes not previously linked to Survivin activity. In particular, Survivin deletion significantly reduced expression of the Evi-1 transcription factor indispensable for HSC function, and the downstream Evi-1 target genes Gata2, Pbx1 and Sall2. The loss of HSCs following Survivin deletion and impaired long-term HSC repopulating function could be partially rescued by ectopic Evi-1 expression in Survivin -/- HSCs. These data demonstrate that Survivin partially regulates HSC function by modulating the Evi-1 transcription factor and its downstream targets and identify new genetic pathways in HSCs regulated by Survivin.
Collapse
Affiliation(s)
- Seiji Fukuda
- Department of Pediatrics, Shimane University School of Medicine
| | - Jonathan Hoggatt
- Department of Microbiology & Immunology, Indiana University School of Medicine
- Department of Stem Cell and Regenerative Biology, Harvard University
| | - Pratibha Singh
- Department of Microbiology & Immunology, Indiana University School of Medicine
| | - Mariko Abe
- Department of Pediatrics, Shimane University School of Medicine
| | - Jennifer M. Speth
- Department of Microbiology & Immunology, Indiana University School of Medicine
| | - Peirong Hu
- Department of Microbiology & Immunology, Indiana University School of Medicine
| | - Edward M. Conway
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine
| | - Louis M. Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine
| |
Collapse
|
42
|
Hoggatt J, Speth JM, Pelus LM. Concise review: Sowing the seeds of a fruitful harvest: hematopoietic stem cell mobilization. Stem Cells 2015; 31:2599-606. [PMID: 24123398 DOI: 10.1002/stem.1574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cell transplantation is the only curative option for a number of malignant and nonmalignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which led to the widespread use of peripheral blood stem cells for transplantation, with a look toward future enhancements to mobilization strategies.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Harvard University, Department of Stem Cell and Regenerative Biology, Massachusetts General Hospital, Center for Regenerative Medicine, Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol Metab 2014; 4:25-38. [PMID: 25685687 PMCID: PMC4314531 DOI: 10.1016/j.molmet.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. METHODS We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high-fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. RESULTS Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. CONCLUSIONS Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment.
Collapse
|
44
|
Kuzmac S, Grcevic D, Sucur A, Ivcevic S, Katavic V. Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment. Exp Hematol 2014; 42:966-75. [DOI: 10.1016/j.exphem.2014.07.262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
|
45
|
Nagareddy PR, Asfour A, Klyachkin YM, Abdel-Latif A. A novel role for bioactive lipids in stem cell mobilization during cardiac ischemia: new paradigms in thrombosis: novel mediators and biomarkers. J Thromb Thrombolysis 2014; 37:24-31. [PMID: 24318213 DOI: 10.1007/s11239-013-1032-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite major advances in pharmacological and reperfusion therapies, regenerating and/or replacing the infarcted myocardial tissue is an enormous challenge and therefore ischemic heart disease (IHD) remains a major cause of mortality and morbidity worldwide. Adult bone marrow is home for a variety of hematopoietic and non-hematopoietic stem cells including a small subset of primitive cells that carry a promising regenerative potential. It is now well established that myocardial ischemia (MI) induces mobilization of bone marrow-derived cells including differentiated lineage as well as undifferentiated stem cells. While the numbers of stem cells carrying pluripotent features among the mobilized stem cells is small, their regenerative capacity appears immense. Therapies aimed at selective mobilization of these pluripotent stem cells during myocardial ischemia have a promising potential to regenerate the injured myocardium. Emerging evidence suggest that bioactive sphingolipids such as sphingosine-1-phosphate and ceramide-1-phosphate hold a great promise in selective mobilization of pluripotent stem cells to the infarcted region during MI. This review highlights the recent advances in the mechanisms of stem cell mobilization and provides newer evidence in support of bioactive lipids as potential therapeutic agents in the treatment of ischemic heart disease.
Collapse
|
46
|
Bendall LJ, Bradstock KF. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev 2014; 25:355-67. [DOI: 10.1016/j.cytogfr.2014.07.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
47
|
Donor site healing dynamics: molecular, histological, and noninvasive imaging assessment in a porcine model. J Burn Care Res 2014; 34:549-62. [PMID: 23511287 DOI: 10.1097/bcr.0b013e3182839aca] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the physiology of donor site healing will lead to advances in how these wounds are treated and may ultimately allow faster healing, more frequent autografting, and more effective care of the burn-injured patient. Unfortunately, a paucity of data exists regarding perfusion metrics over the course of donor site healing. Furthermore, there are no studies that interrelate indices of perfusion with the molecular and cellular processes of donor site healing. Male Duroc pigs were anesthetized and donor site wounds were created using a Zimmer dermatome at a depth of 0.060 inch (1.52 mm). Digital photographs, laser Doppler images, and punch biopsies were obtained before and after excision and on days 2, 4, 7, 9, 11, 14, and 16 until wounds were healed. RNA isolation was performed and quantitative polymerase chain reaction was used to examine differential gene expression over the time course. Formalin-fixed biopsies were embedded in paraffin, sectioned, stained, and examined. Wound surfaces were 83% re-epithelialized by day 16. Perfusion peaked on day 2 then declined, but it remained significantly elevated compared to before excision (P < .05). From day 9 onward, mean perfusion units were not significantly different from baseline (P < .05). Twenty-two representative genes were selected for examination. RNA expression of collagen, tenascin-cytoactin, inflammatory cytokines, remodeling enzymes, growth factors, and Wnt was increased. Inflammatory cells and cytokines were demonstrated histologically. Nuclei per high powered field peaked at day 7 and neodermal thickness increased daily to day 14. A novel porcine model for donor site wound healing that interrelates re-epithelilaizationand perfusion with molecular and cellular indices has been demonstrated.
Collapse
|
48
|
Small molecule Me6TREN mobilizes hematopoietic stem/progenitor cells by activating MMP-9 expression and disrupting SDF-1/CXCR4 axis. Blood 2014; 123:428-41. [DOI: 10.1182/blood-2013-04-498535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Key Points
The small molecule Me6TREN is a new potent and efficacious mobilizing agent of HSPCs and works more effectively than G-CSF or AMD3100. Me6 mobilizes murine HSPCs and functions by upregulating MMP-9 expression and disrupting the SDF-1α/CXCR4 axis.
Collapse
|
49
|
Hopman RK, DiPersio JF. Advances in stem cell mobilization. Blood Rev 2014; 28:31-40. [PMID: 24476957 DOI: 10.1016/j.blre.2014.01.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
Abstract
Use of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood hematopoietic progenitor cells (HPCs) has largely replaced bone marrow (BM) as a source of stem cells for both autologous and allogeneic cell transplantation. With G-CSF alone, up to 35% of patients are unable to mobilize sufficient numbers of CD34 cells/kg to ensure successful and consistent multi-lineage engraftment and sustained hematopoietic recovery. To this end, research is ongoing to identify new agents or combinations which will lead to the most effective and efficient stem cell mobilization strategies, especially in those patients who are at risk for mobilization failure. We describe both established agents and novel strategies at various stages of development. The latter include but are not limited to drugs that target the SDF-1/CXCR4 axis, S1P agonists, VCAM/VLA-4 inhibitors, parathyroid hormone, proteosome inhibitors, Groβ, and agents that stabilize HIF. While none of the novel agents have yet gained an established role in HPC mobilization in clinical practice, many early studies exploring these new pathways show promising results and warrant further investigation.
Collapse
Affiliation(s)
- Rusudan K Hopman
- Division of Oncology, Washington University School of Medicine, USA
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, USA; Siteman Cancer Center, Washington University School of Medicine, USA.
| |
Collapse
|
50
|
The role of bioactive lipids in stem cell mobilization and homing: novel therapeutics for myocardial ischemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:653543. [PMID: 24672794 PMCID: PMC3930186 DOI: 10.1155/2014/653543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022]
Abstract
Despite significant advances in medical therapy and interventional strategies, the prognosis of millions of patients with acute myocardial infarction (AMI) and ischemic heart disease (IHD) remains poor. Currently, short of heart transplantation with all of its inherit limitations, there are no available treatment strategies that replace the infarcted myocardium. It is now well established that cardiomyocytes undergo continuous renewal, with contribution from bone marrow (BM)-derived stem/progenitor cells (SPCs). This phenomenon is upregulated during AMI by initiating multiple innate reparatory mechanisms through which BMSPCs are mobilized towards the ischemic myocardium and contribute to myocardial regeneration. While a role for the SDF-1/CXCR4 axis in retention of BMSPCs in bone marrow is undisputed, its exclusive role in their mobilization and homing to a highly proteolytic microenvironment, such as the ischemic/infarcted myocardium, is currently being challenged. Recent evidence suggests a pivotal role for bioactive lipids in the mobilization of BMSPCs at the early stages following AMI and their homing towards ischemic myocardium. This review highlights the recent advances in our understanding of the mechanisms of stem cell mobilization, provides newer evidence implicating bioactive lipids in BMSPC mobilization and differentiation, and discusses their potential as therapeutic agents in the treatment of IHD.
Collapse
|