1
|
Wang K, Ning S, Zhang S, Jiang M, Huang Y, Pei H, Li M, Tan F. Extracellular matrix stiffness regulates colorectal cancer progression via HSF4. J Exp Clin Cancer Res 2025; 44:30. [PMID: 39881364 PMCID: PMC11780783 DOI: 10.1186/s13046-025-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood. METHODS This study included 107 CRC patients. Tumour stiffness was assessed using magnetic resonance elastography (MRE), and collagen ratio was analysed with Masson staining. CRC cell lines were cultured on matrices of varying stiffness, followed by transcriptome sequencing to identify stiffness-related genes. An HSF4 knockout CRC cell model was cultured in different ECM stiffness to evaluate the effects of HSF4 on cell proliferation, migration, and invasion in vitro and in vivo. RESULTS CRC tumour stiffness was significantly higher than normal tissue and positively correlated with collagen content and TNM staging. High-stiffness matrices significantly regulated cell functions and signalling pathways. High HSF4 (heat shock transcriptional factor 4) expression was strongly associated with tumour stiffness and poor prognosis. HSF4 expression increased with higher TNM stages, and its knockout significantly inhibited cell proliferation, migration, and invasion, especially on high-stiffness matrices. In vivo experiments confirmed that HSF4 promoted tumour growth and metastasis, independent of collagen protein increase. CONCLUSIONS This study reveals that tumour stiffness promotes the proliferation and metastasis of CRC by regulating EMT-related signalling pathways through HSF4. Tumour stiffness and HSF4 could be valuable targets for prognostic assessment and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Kangtao Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, Heidelberg, Baden-Württemberg, 69117, Germany
| | - Siyi Ning
- Clinical Laboratory, Changsha Stomatology Hospital, Changsha, Hunan, 410005, China
| | - Shuai Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingming Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Neurorestoration, Changsha, Hunan, 410081, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China.
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
2
|
Deng N, Reyes-Uribe L, Fahrmann JF, Thoman WS, Munsell MF, Dennison JB, Murage E, Wu R, Hawk ET, Thirumurthi S, Lynch PM, Dieli-Conwright CM, Lazar AJ, Jindal S, Chu K, Chelvanambi M, Basen-Engquist K, Li Y, Wargo JA, McAllister F, Allison JP, Sharma P, Sinha KM, Hanash S, Gilchrist SC, Vilar E. Exercise Training Reduces the Inflammatory Response and Promotes Intestinal Mucosa-Associated Immunity in Lynch Syndrome. Clin Cancer Res 2023; 29:4361-4372. [PMID: 37724990 PMCID: PMC10618653 DOI: 10.1158/1078-0432.ccr-23-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Lynch syndrome (LS) is a hereditary condition with a high lifetime risk of colorectal and endometrial cancers. Exercise is a non-pharmacologic intervention to reduce cancer risk, though its impact on patients with LS has not been prospectively studied. Here, we evaluated the impact of a 12-month aerobic exercise cycling intervention in the biology of the immune system in LS carriers. PATIENTS AND METHODS To address this, we enrolled 21 patients with LS onto a non-randomized, sequential intervention assignation, clinical trial to assess the effect of a 12-month exercise program that included cycling classes 3 times weekly for 45 minutes versus usual care with a one-time exercise counseling session as control. We analyzed the effects of exercise on cardiorespiratory fitness, circulating, and colorectal-tissue biomarkers using metabolomics, gene expression by bulk mRNA sequencing, and spatial transcriptomics by NanoString GeoMx. RESULTS We observed a significant increase in oxygen consumption (VO2peak) as a primary outcome of the exercise and a decrease in inflammatory markers (prostaglandin E) in colon and blood as the secondary outcomes in the exercise versus usual care group. Gene expression profiling and spatial transcriptomics on available colon biopsies revealed an increase in the colonic mucosa levels of natural killer and CD8+ T cells in the exercise group that were further confirmed by IHC studies. CONCLUSIONS Together these data have important implications for cancer interception in LS, and document for the first-time biological effects of exercise in the immune system of a target organ in patients at-risk for cancer.
Collapse
Affiliation(s)
- Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whittney S. Thoman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark F. Munsell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T. Hawk
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M. Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina M. Dieli-Conwright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexander J. Lazar
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
| | - Sonali Jindal
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Khoi Chu
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
| | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - James P. Allison
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan C. Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cardiology, The University of Texas MD Anderson, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| |
Collapse
|
3
|
Matamala Montoya M, van Slobbe GJJ, Chang JC, Zaal EA, Berkers CR. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment. Front Oncol 2023; 13:1155621. [PMID: 37091139 PMCID: PMC10117897 DOI: 10.3389/fonc.2023.1155621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.
Collapse
Affiliation(s)
- María Matamala Montoya
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gijs J. J. van Slobbe
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| |
Collapse
|
4
|
Pu R, Liu W, Zhou X, Chen X, Hou X, Cai S, Chen L, Wu J, Yang F, Tan X, Yin J, Wang X, Cao G. The Effects and Underlying Mechanisms of Hepatitis B Virus X Gene Mutants on the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:836517. [PMID: 35223517 PMCID: PMC8867042 DOI: 10.3389/fonc.2022.836517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
We aimed to elucidate the mechanism by which hepatitis B virus X (HBx) mutations increase the occurrence of hepatocellular carcinoma (HCC) and identify novel putative therapeutic targets. Wild-type HBx (WT-HBx) and four HBx mutants (M1, A1762T/G1764A; M2, T1674G+T1753C+A1762T/G1764A; M3, C1653T+T1674G+A1762T/G1764A; and Ct-HBx, carboxylic acid-terminal truncated HBx) were delivered into Sleeping Beauty (SB) mouse models. The HCC incidence was higher in the M3-HBx- and Ct-HBx-injected SB mice. M3-HBx had a stronger capacity of upregulating inflammatory cytokines than other HBx variants. Ectopic expression of M3-HBx and Ct-HBx significantly increased proliferation and S phase proportion of HepG2 and HeLa cells, compared to WT-HBx. Plasminogen activator inhibitor-1 (PAI1) and cell division cycle 20 (CDC20) were identified as novel effectors by cDNA microarray analysis. M3-HBx and Ct-HBx significantly upregulated the expression of PAI1 and CDC20 in HepG2 and HeLa cells as well as the livers of SB mice. Silencing PAI1 attenuated the effects of M3-HBx and Ct-HBx on the growth of HepG2 and HeLa cells. PAI1, an important player bridging the HBx mutants and HCC, should be a promising candidate as a prognostic biomarker and therapeutic target in HBV-related HCC.
Collapse
Affiliation(s)
- Rui Pu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xinyu Zhou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Liping Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Pathology, Xijing Hospital, Xi'an, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Dziadowicz SA, Wang L, Akhter H, Aesoph D, Sharma T, Adjeroh DA, Hazlehurst LA, Hu G. Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma. Cancers (Basel) 2022; 14:927. [PMID: 35205675 PMCID: PMC8870223 DOI: 10.3390/cancers14040927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer with inevitable drug resistance. MM cells interacting with bone marrow stromal cells (BMSCs) undergo substantial changes in the transcriptome and develop de novo multi-drug resistance. As a critical component in transcriptional regulation, how the chromatin landscape is transformed in MM cells exposed to BMSCs and contributes to the transcriptional response to BMSCs remains elusive. We profiled the transcriptome and regulome for MM cells using a transwell coculture system with BMSCs. The transcriptome and regulome of MM cells from the upper transwell resembled MM cells that coexisted with BMSCs from the lower chamber but were distinctive to monoculture. BMSC-induced genes were enriched in the JAK2/STAT3 signaling pathway, unfolded protein stress, signatures of early plasma cells, and response to proteasome inhibitors. Genes with increasing accessibility at multiple regulatory sites were preferentially induced by BMSCs; these genes were enriched in functions linked to responses to drugs and unfavorable clinic outcomes. We proposed JUNB and ATF4::CEBPβ as candidate transcription factors (TFs) that modulate the BMSC-induced transformation of the regulome linked to the transcriptional response. Together, we characterized the BMSC-induced transcriptome and regulome signatures of MM cells to facilitate research on epigenetic mechanisms of BMSC-induced multi-drug resistance in MM.
Collapse
Affiliation(s)
- Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Halima Akhter
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Drake Aesoph
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Tulika Sharma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
6
|
Kim HS, Kang YH, Lee J, Han SR, Kim DB, Ko H, Park S, Lee MS. Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells. Mol Cells 2021; 44:710-722. [PMID: 34711689 PMCID: PMC8560588 DOI: 10.14348/molcells.2021.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yun Hee Kang
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Seung Ro Han
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Haeun Ko
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seyoun Park
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| |
Collapse
|
7
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
8
|
Varlet E, Ovejero S, Martinez AM, Cavalli G, Moreaux J. Role of Polycomb Complexes in Normal and Malignant Plasma Cells. Int J Mol Sci 2020; 21:ijms21218047. [PMID: 33126754 PMCID: PMC7662980 DOI: 10.3390/ijms21218047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
Plasma cells (PC) are the main effectors of adaptive immunity, responsible for producing antibodies to defend the body against pathogens. They are the result of a complex highly regulated cell differentiation process, taking place in several anatomical locations and involving unique genetic events. Pathologically, PC can undergo tumorigenesis and cause a group of diseases known as plasma cell dyscrasias, including multiple myeloma (MM). MM is a severe disease with poor prognosis that is characterized by the accumulation of malignant PC within the bone marrow, as well as high clinical and molecular heterogeneity. MM patients frequently develop resistance to treatment, leading to relapse. Polycomb group (PcG) proteins are epigenetic regulators involved in cell fate and carcinogenesis. The emerging roles of PcG in PC differentiation and myelomagenesis position them as potential therapeutic targets in MM. Here, we focus on the roles of PcG proteins in normal and malignant plasma cells, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Emmanuel Varlet
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Sara Ovejero
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Jerome Moreaux
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- UFR Medicine, University of Montpellier, 34003 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence: ; Tel.: +33-04-6733-7903
| |
Collapse
|
9
|
Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma. Blood Adv 2020; 3:3214-3227. [PMID: 31698452 DOI: 10.1182/bloodadvances.2019000303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
A major driver of multiple myeloma (MM) is thought to be aberrant signaling, yet no kinase inhibitors have proven successful in the clinic. Here, we employed an integrated, systems approach combining phosphoproteomic and transcriptome analysis to dissect cellular signaling in MM to inform precision medicine strategies. Unbiased phosphoproteomics initially revealed differential activation of kinases across MM cell lines and that sensitivity to mammalian target of rapamycin (mTOR) inhibition may be particularly dependent on mTOR kinase baseline activity. We further noted differential activity of immediate downstream effectors of Ras as a function of cell line genotype. We extended these observations to patient transcriptome data in the Multiple Myeloma Research Foundation CoMMpass study. A machine-learning-based classifier identified surprisingly divergent transcriptional outputs between NRAS- and KRAS-mutated tumors. Genetic dependency and gene expression analysis revealed mutated Ras as a selective vulnerability, but not other MAPK pathway genes. Transcriptional analysis further suggested that aberrant MAPK pathway activation is only present in a fraction of RAS-mutated vs wild-type RAS patients. These high-MAPK patients, enriched for NRAS Q61 mutations, have inferior outcomes, whereas RAS mutations overall carry no survival impact. We further developed an interactive software tool to relate pharmacologic and genetic kinase dependencies in myeloma. Collectively, these predictive models identify vulnerable signaling signatures and highlight surprising differences in functional signaling patterns between NRAS and KRAS mutants invisible to the genomic landscape. These results will lead to improved stratification of MM patients in precision medicine trials while also revealing unexplored modes of Ras biology in MM.
Collapse
|
10
|
Liu Y, Yang N, Peng X, Liu G, Zhong H, Liu L. One-lincRNA and five-mRNA based signature for prognosis of multiple myeloma patients undergoing proteasome inhibitors therapy. Biomed Pharmacother 2019; 118:109254. [PMID: 31357080 DOI: 10.1016/j.biopha.2019.109254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is the second largest malignant tumor of the blood system. Proteasome inhibitors (PIs) currently are effective drugs for some myeloma patients, but their prognosis varies. We extracted the transcriptome expression data and clinical information of myeloma patients from MMRF CoMMpass database, and used the Random Survival Forest Variable Hunting (RSF-VH) algorithm to select 6 highly prognosis-related genes and to develop a 6-genes scoring model, by which the risk score predicted were significantly associated with the progress-free survival (PFS, P<0.001). The median PFS of the high-risk group is 21 months, while it is 29 months in the low-risk group. The scoring model was further validated in the testing cohort. Furthermore, Analysis revealed that the risk score performed better in predicting the multiple myeloma patients' prognosis than the existed staging system, including R-ISS. The risk score is independent with the most existed clinical risk indicators, and the prognostic effectiveness of 6-genes scoring model is homogenous in patients with different clinical observations. Further bioinformatic analysis revealed that the risk score is not only significantly associated with multiple myeloma-related pathways, including immune response, but also with the infiltration of many kinds of immune cells that associated with clinical malignancy. Collectively, the model we developed using one lincRNA and five mRNAs is a robust and effective indicator for myeloma patients' prognosis undergoing proteasome inhibitors therapy.
Collapse
Affiliation(s)
- Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Ning Yang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China
| | - Xueqing Peng
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Gang Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China.
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| |
Collapse
|
11
|
Herviou L, Cavalli G, Moreaux J. [EZH2 is therapeutic target for personalized treatment in multiple myeloma]. Bull Cancer 2018; 105:804-819. [PMID: 30041976 DOI: 10.1016/j.bulcan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that functions as the catalytic subunit of the polycomb repressive complex 2 (PRC2). PRC2 represses gene transcription through tri-methylation of lysine 27 of histone 3 (H3K27me3) by its catalytic subunit EZH2. EZH2 is also involved in normal B cell differentiation. EZH2 deregulation has been described in many cancer types including hematological malignancies. The oncogenic addiction of tumor cells to EZH2 represents a therapeutic target in several hematological malignancies and solid cancers. Specific small molecules have been recently developed to target cancer cells with EZH2 overexpression or activating mutation. Their therapeutic potential is currently under evaluation. In particular, EZH2 is overexpressed in multiple myeloma (MM), a neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow, with biological functions in the pathophysiology. This review summarizes the roles of EZH2 in B cell differentiation and pathologic hematological processes with a particular focus in multiple myeloma. We also discuss recent advances in the development of EZH2 inhibitors for the personalized treatment of patients with hematological malignancies.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Giacomo Cavalli
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France; CHU de Montpellier, department of biological hematology, 80, avenue Augustin-Fliche, 34090 Montpellier, France; Université Montpellier, UFR de médecine, 2, rue École de Médecine, CS 59001, 34060 Montpellier cedex 2, France.
| |
Collapse
|
12
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
13
|
microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med 2017; 49:e327. [PMID: 28496200 PMCID: PMC5454440 DOI: 10.1038/emm.2017.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU). A survey using a lentivirus library containing 572 precursor miRNAs revealed that five miRNAs promoted cell survival after 5-FU treatment in human hepatocellular carcinoma Hep3B cells. Among the five different clones, the clone expressing miR-200a-3p (Hep3B-miR-200a-3p) was further characterized as a 5-FU-resistant cell line. The cell viability and growth rate of Hep3B-miR-200a-3p cells were higher than those of control cells after 5-FU treatment. Ectopic expression of a miR-200a-3p mimic increased, while inhibition of miR-200a-3p downregulated, cell viability in response to 5-FU, doxorubicin, and CDDP (cisplatin). We also showed that dual-specificity phosphatase 6 (DUSP6) is a novel target of miR-200a-3p and regulates resistance to 5-FU. Ectopic expression of DUSP6 mitigated the pro-survival effects of miR-200a-3p. Taken together, these results lead us to propose that miR-200a-3p enhances anti-cancer drug resistance by decreasing DUSP6 expression.
Collapse
|
14
|
The RB–IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity. Oncogene 2017; 36:5145-5157. [DOI: 10.1038/onc.2017.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
15
|
Baughn LB, Sachs Z, Noble-Orcutt KE, Mitra A, Van Ness BG, Linden MA. Phenotypic and functional characterization of a bortezomib-resistant multiple myeloma cell line by flow and mass cytometry. Leuk Lymphoma 2016; 58:1931-1940. [PMID: 27981867 DOI: 10.1080/10428194.2016.1266621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Multiple myeloma (MM) is an incurable malignant plasma cell neoplasm. Proteasome inhibitors including Bortezomib (Bz) are used to treat MM, and treatment failure due to drug resistance occurs. Bz-sensitive and -resistant MM cells have distinct immunophenotypic signatures that correlate with clinical outcome. These changes can be identified by fluorescence-based cytometry (FBC), however, FBC is rarely used in predicting Bz resistance. Mass cytometry (MC) is a recently developed variation of flow cytometry that detects heavy metal-ion tagged antibodies using time-of-flight mass spectrometry allowing for detection of up to 38 epitopes simultaneously in a single cell, without significant overlap, exceeding the dimensionality of FBC 3-4-fold. Here, we compared FBC and MC in the immunophenotypic characterization of Bz-sensitive and -resistant human MM cell line U266. We show that Bz-resistant cells are associated with the loss of CD56 and CD66a adhesion molecules as well as an activation signature.
Collapse
Affiliation(s)
- Linda B Baughn
- a Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics , Mayo Clinic , Rochester , MN , USA
| | - Zohar Sachs
- b Division of Hematology, Oncology, and Transplantation, Department of Medicine , Minneapolis , MN , USA
| | - Klara E Noble-Orcutt
- b Division of Hematology, Oncology, and Transplantation, Department of Medicine , Minneapolis , MN , USA
| | - Amit Mitra
- c Genetics Cell Biology and Development, Division of Hematopathology, Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| | - Brian G Van Ness
- c Genetics Cell Biology and Development, Division of Hematopathology, Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| | - Michael A Linden
- d Division of Hematopathology, Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
16
|
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat Commun 2016; 7:13197. [PMID: 28959951 PMCID: PMC5093340 DOI: 10.1038/ncomms13197] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/11/2016] [Indexed: 02/06/2023] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers.
Long non-coding RNAs are implicated in multiple aspects of tumourigenesis. Here, the authors generate a landscape of these macromolecules in a wide array of cancer types and examine which RNAs are transcriptionally altered in relation to somatic driver mutations in established coding cancer genes.
Collapse
|
17
|
Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S, Ciceri G, Galletti S, Milesi G, Manzoni M, Mazzoni M, Greco A, Tonon G, Musto P, Baldini L, Neri A. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget 2016; 6:24205-17. [PMID: 26090869 PMCID: PMC4695180 DOI: 10.18632/oncotarget.4434] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell (PC) malignancy. Whole-exome sequencing has identified therapeutically targetable mutations such as those in the mitogen-activated protein kinase (MAPK) pathway, which are the most prevalent MM mutations. We used deep sequencing to screen 167 representative patients with PC dyscrasias [132 with MM, 24 with primary PC leukemia (pPCL) and 11 with secondary PC leukemia (sPCL)] for mutations in BRAF, NRAS and KRAS, which were respectively found in 12%, 23.9% and 29.3% of cases. Overall, the MAPK pathway was affected in 57.5% of the patients (63.6% of those with sPCL, 59.8% of those with MM, and 41.7% of those with pPCL). The majority of BRAF variants were comparably expressed at transcript level. Additionally, gene expression profiling indicated the MAPK pathway is activated in mutated patients. Finally, we found that vemurafenib inhibition of BRAF activation in mutated U266 cells affected the expression of genes known to be associated with MM. Our data confirm and extend previous published evidence that MAPK pathway activation is recurrent in myeloma; the finding that it is mediated by BRAF mutations in a significant fraction of patients has potentially immediate clinical implications.
Collapse
Affiliation(s)
- Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Agnelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Simona Marzorati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Ciceri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Serena Galletti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mara Mazzoni
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Baldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Roh J, Shin SJ, Lee AN, Yoon DH, Suh C, Park CJ, Huh J, Park CS. RGS1 expression is associated with poor prognosis in multiple myeloma. J Clin Pathol 2016; 70:202-207. [DOI: 10.1136/jclinpath-2016-203713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
|
19
|
Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, Munday DC, Nevels M, Paulus C. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog 2016; 12:e1005748. [PMID: 27387064 PMCID: PMC4936752 DOI: 10.1371/journal.ppat.1005748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. Our previous work has shown that the human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) modulates host cell signaling pathways involving proteins of the signal transducer and activator of transcription (STAT) family. IE1 has also long been known to facilitate viral replication by activating transcription. In this report we demonstrate that IE1 is as significant a repressor as it is an activator of host gene expression. Many genes repressed by IE1 are normally induced via STAT3 signaling triggered by interleukin 6 (IL6) or related cytokines, whereas many genes activated by IE1 are normally induced via STAT1 signaling triggered by interferon gamma (IFNγ). Our results suggest that the repression of STAT3- and the activation of STAT1-responsive genes by IE1 are coupled. By targeting STAT3, IE1 rewires upstream STAT3 to downstream STAT1 signaling. Consequently, genes normally induced by IL6 are repressed while genes normally induced by IFNγ become responsive to IL6 in the presence of IE1. We also demonstrate that, by switching an IL6 to an IFNγ-like response, IE1 tempers viral replication. These results suggest an unanticipated dual role for IE1 in either promoting or limiting hCMV propagation and demonstrate how a key viral regulatory protein merges two central cellular signaling pathways to divert cytokine responses relevant to hCMV pathogenesis.
Collapse
Affiliation(s)
- Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Simone Lukas
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Marion Zenger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Tobias Reitberger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Daniela Danzer
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Theresa Übner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diane C. Munday
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| |
Collapse
|
20
|
Low HB, Zhang Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw 2016; 16:85-98. [PMID: 27162525 PMCID: PMC4853501 DOI: 10.4110/in.2016.16.2.85] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.; Immunology Programme, The Life Science Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.; Immunology Programme, The Life Science Institute, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
21
|
Taggart J, Ho TC, Amin E, Xu H, Barlowe TS, Perez AR, Durham BH, Tivnan P, Okabe R, Chow A, Vu L, Park SM, Prieto C, Famulare C, Patel M, Lengner CJ, Verma A, Roboz G, Guzman M, Klimek VM, Abdel-Wahab O, Leslie C, Nimer SD, Kharas MG. MSI2 is required for maintaining activated myelodysplastic syndrome stem cells. Nat Commun 2016; 7:10739. [PMID: 26898884 PMCID: PMC4764878 DOI: 10.1038/ncomms10739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are driven by complex genetic and epigenetic alterations. The MSI2 RNA-binding protein has been demonstrated to have a role in acute myeloid leukaemia and stem cell function, but its role in MDS is unknown. Here, we demonstrate that elevated MSI2 expression correlates with poor survival in MDS. Conditional deletion of Msi2 in a mouse model of MDS results in a rapid loss of MDS haematopoietic stem and progenitor cells (HSPCs) and reverses the clinical features of MDS. Inversely, inducible overexpression of MSI2 drives myeloid disease progression. The MDS HSPCs remain dependent on MSI2 expression after disease initiation. Furthermore, MSI2 expression expands and maintains a more activated (G1) MDS HSPC. Gene expression profiling of HSPCs from the MSI2 MDS mice identifies a signature that correlates with poor survival in MDS patients. Overall, we identify a role for MSI2 in MDS representing a therapeutic target in this disease. Several studies have recently demonstrated the role of the MSI2 RNA binding protein in normal and malignant haematopoietc stem cells. In this study, the authors show that MSI2 is required for maintaining myelodysplastic syndrome stem cells in mice and that MSI2 expression predicts poor prognosis in patients affected by this disease.
Collapse
Affiliation(s)
- James Taggart
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tzu-Chieh Ho
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elianna Amin
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Haiming Xu
- Memorial Sloan Kettering Cancer Center, Cancer Biology Program, New York, New York 10065, USA
| | - Trevor S Barlowe
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alexendar R Perez
- Computational Biology Program Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Institute, New York, New York 10065, USA
| | - Benjamin H Durham
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York 10065, USA
| | - Patrick Tivnan
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rachel Okabe
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arthur Chow
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ly Vu
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sun Mi Park
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Camila Prieto
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christopher Famulare
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Minal Patel
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Christopher J Lengner
- Department of Animal Biology, Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Schools of Veterinary Medicine and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amit Verma
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gail Roboz
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Monica Guzman
- Division of Hematology and Medical Oncology, Department of Medicine and Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | - Virginia M Klimek
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Omar Abdel-Wahab
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York 10065, USA
| | - Christina Leslie
- Computational Biology Program Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Institute, New York, New York 10065, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Michael G Kharas
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
22
|
Nakanishi Y, Mizuno H, Sase H, Fujii T, Sakata K, Akiyama N, Aoki Y, Aoki M, Ishii N. ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor. Mol Cancer Ther 2015; 14:2831-9. [DOI: 10.1158/1535-7163.mct-15-0497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
|
23
|
Brendel C, Teichler S, Millahn A, Stiewe T, Krause M, Stabla K, Ross P, Huynh M, Illmer T, Mernberger M, Barckhausen C, Neubauer A. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation. PLoS One 2015; 10:e0123181. [PMID: 25901794 PMCID: PMC4406710 DOI: 10.1371/journal.pone.0123181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.
Collapse
Affiliation(s)
- Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Sabine Teichler
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Axel Millahn
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Michael Krause
- Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Kathleen Stabla
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Petra Ross
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Minh Huynh
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Thomas Illmer
- Medical Clinic I, University Clinic of Technical University Dresden, Dresden, Germany
| | - Marco Mernberger
- Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Christina Barckhausen
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps University of Marburg, and University Clinic Giessen and Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
24
|
Azrak SS, Ginel-Picardo A, Drosten M, Barbacid M, Santos E. Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications. BMC Genomics 2013; 14:731. [PMID: 24156637 PMCID: PMC4007593 DOI: 10.1186/1471-2164-14-731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Background 4-Hydroxy-tamoxifen (4OHT) triggers Cre-mediated K-Ras removal in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert] fibroblasts, generating growth-arrested “Rasless” MEFs which are able to recover their proliferative ability after ectopic expression of Ras oncoproteins or constitutively active BRAF or MEK1. Results Comparison of the transcriptional profiles of Rasless fibroblasts with those of MEFs lacking only H-Ras and N-Ras identified a series of differentially expressed mRNAs and microRNAs specifically linked to the disappearance of K-Ras from these cells. The rescue of cell cycle progression in Rasless cells by activated BRAF or MEK1 resulted in the reversal of most such transcriptional mRNA and microRNA alterations. Functional analysis of the differentially expressed mRNAs uncovered a significant enrichment in the components of pathways regulating cell division, DNA/RNA processing and response to DNA damage. Consistent with G1/S blockade, Rasless cells displayed repression of a series of cell cycle-related genes, including Cyclins, Cyclin-dependent kinases, Myc and E2F transcription targets, and upregulation of Cyclin-dependent kinase inhibitors. The profile of differentially expressed microRNAs included a specific set of oncomiR families and clusters (repressed miR-17 ~ 92, miR-106a ~ 363, miR-106b ~ 25, miR-212 ~ 132, miR-183 ~ 182, and upregulated miR-335) known for their ability to target a specific set of cellular regulators and checkpoint sensors (including Rb, E2F and Cdkns) able to modulate the interplay between the pro- and anti-proliferative or stress-response pathways that are reversibly altered in Rasless cells. Conclusions Our data suggest that the reversible proliferation phenotype of Rasless cells is the pleiotropic result of interplay among distinct pro- and anti-proliferative, and stress-response pathways modulated by a regulatory circuitry constituted by a specific set of differentially expressed mRNAs and microRNAs and preferentially targeting two cross-talking signalling axes: Myc-Rb-E2F-dependent and Cdkns-p53-dependent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Santos
- Centro de Investigacion del Cancer, IBMCC (CSIC-USAL), University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
25
|
Ma J, Yu X, Guo L, Lu SH. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol Lett 2013; 6:1624-1630. [PMID: 24260056 PMCID: PMC3834198 DOI: 10.3892/ol.2013.1605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
Dual-specificity phosphatase 6 (DUSP6), a specific negative feedback regulator of phosphorylated extracellular signal-regulated kinase, was found to play an important role in numerous types of solid tumors as a tumor suppressor. In this study, 64.2% (61/95) of esophageal squamous cell carcinoma (ESCC) specimens studied exhibited reduced DUSP6 protein expression, compared with 91% (81/89) of normal esophageal specimens that displayed moderate or strong DUSP6 protein expression in tissue microarray analysis. In total, 36.8% (7/19) of the tumor biopsies displayed at least two-fold downregulation of DUSP6 compared with their paired normal counterparts, by qPCR. Significant loss of DUSP6 was observed in EC9706 and KYSE150 ESCC cell lines by immunoblotting assay. Low DUSP6 protein expression was significantly associated with pathological grade in ESCC by immunohistochemistry (P<0.05). Treatment with 5-aza-2′-deoxycytidine restored DUSP6 expression in the two ESCC cell lines, and the expression varied according to the drug concentration. Methylation-specific PCR analysis showed methylation-specific products in the two ESCC cell lines. We observed significant differences in the early and total apoptotic proportion between the control and experimental groups of the two ESCC cell lines and their transfectants (P<0.001) by annexin/propidium iodide assay. The presence of cleaved PARP product, a marker of caspase-mediated apoptosis, expressed in the two pCMV-DUSP6 transfectants in marked contrast to the parental and pCMV-transfected EC9706 and KYSE150 cells, was observed by immunoblotting. Overall, our results support the role of DUSP6 as a novel candidate tumor suppressor gene in ESCC, which may be a potential prognostic marker for ESCC.
Collapse
Affiliation(s)
- Jianjuan Ma
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | | | | | | |
Collapse
|
26
|
Zhang H, Guo Q, Wang C, Yan L, Fu Y, Fan M, Zhao X, Li M. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell. Mol Cell Endocrinol 2013; 376:60-9. [PMID: 23419500 DOI: 10.1016/j.mce.2013.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/15/2022]
Abstract
Dual-specificity phosphatase 6 (Dusp6) is a negative feedback mechanism of fibroblast growth factors (FGFs)/mitogen-activated protein kinase (MAPK)/ERK1/2 signaling. The aim of this study was to explore the expression of Dusp6 in human endometrial adenocarcinomas and the role of Dusp6 expression in the growth regulation of endometrial adenocarcinoma cell. We found that Dusp6 was over-expressed in human endometrial adenocarcinomas. In Ishikawa cells, plasmid-driven Dusp6 expression efficiently blocked the activity of FGF2-induced MAPK/ERK1/2 signaling. Unexpectedly, Dusp6 expression significantly enhanced the growth of Ishikawa cells. In Dusp6 forced-expression cells, 17β-estradiol stimulation increased the cell growth by all most threefolds. In addition, progesterone treatment reduced the cell growth to about half both in Ishikawa cells with and without forced-Dusp6-expression. Dusp6 over-expression is involved in the pathogenesis and development of human endometrial adenocarcinomas. Dusp6 functions as a negative regulator of FGF2/ERK1/2 signaling but enhances the growth and 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hagan CR, Knutson TP, Lange CA. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res 2013; 41:8926-42. [PMID: 23921636 PMCID: PMC3799453 DOI: 10.1093/nar/gkt706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptors (PR) are transcription factors relevant to breast cancer biology. Herein, we describe an N-terminal common docking (CD) domain in PR-B, a motif first described in mitogen-activated protein kinases. Binding studies revealed PR-B interacts with dual-specificity phosphatase 6 (DUSP6) via the CD domain. Mutation of the PR-B CD domain (mCD) attenuated cell cycle progression and expression of PR-B target genes (including STAT5A and Wnt1); mCD PR-B failed to undergo phosphorylation on Ser81, a ck2-dependent site required for expression of these genes. PR-B Ser81 phosphorylation was dependent on binding with DUSP6 and required for recruitment of a transcriptional complex consisting of PR-B, DUSP6 and ck2 to an enhancer region upstream of the Wnt1 promoter. STAT5 was present at this site in the absence or presence of progestin. Furthermore, phospho-Ser81 PR-B was recruited to the STAT5A gene upon progestin treatment, suggestive of a feed-forward mechanism. Inhibition of JAK/STAT-signaling blocked progestin-induced STAT5A and Wnt1 expression. Our studies show that DUSP6 serves as a scaffold for ck2-dependent PR-B Ser81 phosphorylation and subsequent PR-B-specific gene selection in coordination with STAT5. Coregulation of select target genes by PR-B and STAT5 is likely a global mechanism required for growth promoting programs relevant to mammary stem cell biology and cancer.
Collapse
Affiliation(s)
- Christy R Hagan
- Departments of Medicine and Pharmacology, Cell Signaling Program; Masonic Cancer Center, University of Minnesota, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
28
|
Gebel S, Lichtner RB, Frushour B, Schlage WK, Hoang V, Talikka M, Hengstermann A, Mathis C, Veljkovic E, Peck M, Peitsch MC, Deehan R, Hoeng J, Westra JW. Construction of a computable network model for DNA damage, autophagy, cell death, and senescence. Bioinform Biol Insights 2013; 7:97-117. [PMID: 23515068 PMCID: PMC3596057 DOI: 10.4137/bbi.s11154] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including tobacco products in a systems toxicology setting such as the “21st Century Toxicology”, we are building a series of computable biological network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the molecular events that can be activated following exposure to environmental toxicants. Here we extend on previous work and report on the construction and evaluation of a mechanistic network model focused on DNA damage response and the four main cellular fates induced by stress: autophagy, apoptosis, necroptosis, and senescence. In total, the network consists of 34 sub-models containing 1052 unique nodes and 1538 unique edges which are supported by 1231 PubMed-referenced literature citations. Causal node-edge relationships are described using the Biological Expression Language (BEL), which allows for the semantic representation of life science relationships in a computable format. The Network is provided in .XGMML format and can be viewed using freely available network visualization software, such as Cytoscape.
Collapse
Affiliation(s)
- Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Koeln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Degl'Innocenti D, Romeo P, Tarantino E, Sensi M, Cassinelli G, Catalano V, Lanzi C, Perrone F, Pilotti S, Seregni E, Pierotti MA, Greco A, Borrello MG. DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocr Relat Cancer 2013; 20:23-37. [PMID: 23132790 DOI: 10.1530/erc-12-0078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid carcinomas derived from follicular cells comprise papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, poorly differentiated thyroid carcinoma (PDTC) and undifferentiated anaplastic thyroid carcinoma (ATC). PTC, the most frequent thyroid carcinoma histotype, is associated with gene rearrangements that generate RET/PTC and TRK oncogenes and with BRAF-V600E and RAS gene mutations. These last two genetic lesions are also present in a fraction of PDTCs. The ERK1/2 pathway, downstream of the known oncogenes activated in PTC, has a central role in thyroid carcinogenesis. In this study, we demonstrate that the BRAF-V600E, RET/PTC, and TRK oncogenes upregulate the ERK1/2 pathway's attenuator cytoplasmic dual-phase phosphatase DUSP6/MKP3 in thyroid cells. We also show DUSP6 overexpression at the mRNA and protein levels in all the analysed PTC cell lines. Furthermore, DUSP6 mRNA was significantly higher in PTC and PDTC in comparison with normal thyroid tissues both in expression profile datasets and in patients' surgical samples analysed by real-time RT-PCR. Immunohistochemical and western blot analyses showed that DUSP6 was also overexpressed at the protein level in most PTC and PDTC surgical samples tested, but not in ATC, and revealed a positive correlation trend with ERK1/2 pathway activation. Finally, DUSP6 silencing reduced the neoplastic properties of four PTC cell lines, thus suggesting that DUSP6 may have a pro-tumorigenic role in thyroid carcinogenesis.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Dual Specificity Phosphatase 6/genetics
- Dual Specificity Phosphatase 6/metabolism
- Female
- Gene Expression Profiling
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Gland/cytology
- Thyroid Gland/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Debora Degl'Innocenti
- Molecular Mechanisms Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Velho S, Vakiani E, Peng S, Bass AJ, Chu GC, Gierut J, Bugni JM, Der CJ, Philips M, Solit DB, Haigis KM. Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov 2012; 3:294-307. [PMID: 23274911 DOI: 10.1158/2159-8290.cd-12-0198] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-RAS is one member of a family of oncoproteins that are commonly mutated in cancer. Activating mutations in NRAS occur in a subset of colorectal cancers, but little is known about how the mutant protein contributes to the onset and progression of the disease. Using genetically engineered mice, we find that mutant N-RAS strongly promotes tumorigenesis in the context of inflammation. The protumorigenic nature of mutant N-RAS is related to its antiapoptotic function, which is mediated by activation of a noncanonical mitogen-activated protein kinase pathway that signals through STAT3. As a result, inhibition of MAP-ERK kinase selectively induces apoptosis in autochthonous colonic tumors expressing mutant N-RAS. The translational significance of this finding is highlighted by our observation that NRAS mutation correlates with a less favorable clinical outcome for patients with colorectal cancer. These data show for the first time the important role that N-RAS plays in colorectal cancer.
Collapse
Affiliation(s)
- Yufang Wang
- Molecular Pathology Unit, Center for Cancer Research and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129 , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arora D, Köthe S, van den Eijnden M, Hooft van Huijsduijnen R, Heidel F, Fischer T, Scholl S, Tölle B, Böhmer SA, Lennartsson J, Isken F, Müller-Tidow C, Böhmer FD. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun Signal 2012; 10:19. [PMID: 22784513 PMCID: PMC3464674 DOI: 10.1186/1478-811x-10-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/24/2012] [Indexed: 12/25/2022] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation.
Collapse
Affiliation(s)
- Deepika Arora
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells. Toxicol Appl Pharmacol 2012; 258:199-207. [DOI: 10.1016/j.taap.2011.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/30/2011] [Accepted: 11/03/2011] [Indexed: 01/20/2023]
|
33
|
Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2:216-31. [PMID: 21779495 DOI: 10.1177/1947601911408081] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
H-ras, N-ras, and K-ras are canonical ras gene family members frequently activated by point mutation in human cancers and coding for 4 different, highly related protein isoforms (H-Ras, N-Ras, K-Ras4A, and K-Ras4B). Their expression is nearly ubiquitous and broadly conserved across eukaryotic species, although there are quantitative and qualitative differences of expression depending on the tissue and/or developmental stage under consideration. Extensive functional studies have determined during the last quarter century that these Ras gene products are critical components of signaling pathways that control eukaryotic cell proliferation, survival, and differentiation. However, because of their homology and frequent coexpression in various cellular contexts, it remained unclear whether the different Ras proteins play specific or overlapping functional roles in physiological and pathological processes. Initially, their high degree of sequence homology and the observation that all Ras isoforms share common sets of downstream effectors and upstream activators suggested that they were mostly redundant functionally. In contrast, the notion of functional specificity for each of the different Ras isoforms is supported at present by an increasing body of experimental observations, including 1) the fact that different ras isoforms are preferentially mutated in specific types of tumors or developmental disorders; 2) the different transforming potential of transfected ras genes in different cell contexts; 3) the distinct sensitivities exhibited by the various Ras family members for modulation by different GAPs or GEFs; 4) the demonstration that different Ras isoforms follow distinct intracellular processing pathways and localize to different membrane microdomains or subcellular compartments; 5) the different phenotypes displayed by genetically modified animal strains for each of the 3 ras loci; and 6) the specific transcriptional networks controlled by each isoform in different cellular settings.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
34
|
Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S, Martens JW, Hooning MJ, Kerin M, Zelterman D, Zhu Y, Tuck D, Harris L, Miller N, Slack F, Weidhaas J. A 3'-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol 2011; 12:377-86. [PMID: 21435948 DOI: 10.1016/s1470-2045(11)70044-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND We previously identified a functional variant in a let-7 microRNA (miRNA) complementary site in the 3'-untranslated region of the KRAS oncogene (rs61764370) which is associated with cancer. We aimed to investigate the association of this KRAS variant with breast cancer and tumour biology. METHODS We assessed frequency distributions of the KRAS variant in 415 patients with histologically confirmed breast cancer and 457 controls from Connecticut, USA (study group 1) and association of this variant with breast-cancer subtypes in 690 Irish women with known oestrogen receptor (ER), progesterone receptor (PR), and HER2 statuses, and 360 controls (study group 2). We pooled data for study groups 1 and 2 with a cohort of 140 women with triple-negative breast cancer and 113 controls to assess the association of the KRAS variant with triple-negative breast cancer risk, and genome-wide mRNA and specific miRNA expression in patients with triple-negative breast cancer. FINDINGS Although frequency distributions of the KRAS variant in study group 1 did not differ between all genotyped individuals, eight (33%) of 24 premenopausal women with ER/PR-negative cancer had the KRAS variant, compared with 27 (13%) of 201 premenopausal controls (p=0.015). In study group 2, the KRAS variant was significantly enriched in women with triple-negative breast cancer (19 [21%] of 90 cases) compared with 64 (13%) of 478 for luminal A, 13 (15%) of 87 for luminal B, and two (6%) of 35 for HER2-positive subgroups (p=0.044). Multivariate analysis in the pooled study groups showed that the KRAS variant was associated with triple-negative breast cancer in premenopausal women (odds ratio 2.307, 95% CI 1.261-4.219, p=0.0067). Gene-expression analysis of triple-negative breast-cancer tumours suggested that KRAS-variant positive tumours have significantly altered gene expression, and are enriched for the luminal progenitor and BRCA1 deficiency signatures. miRNA analysis suggested reduced levels of let-7 miRNA species in KRAS-variant tumours. INTERPRETATION The KRAS variant might be a genetic marker for development of triple-negative breast cancer in premenopausal women, and altered gene and miRNA expression signatures should enable molecular and biological stratification of patients with this subgroup of breast cancer. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Trupti Paranjape
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06880, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Investigating the effect of paralogs on microarray gene-set analysis. BMC Bioinformatics 2011; 12:29. [PMID: 21261946 PMCID: PMC3037853 DOI: 10.1186/1471-2105-12-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 01/24/2011] [Indexed: 11/28/2022] Open
Abstract
Background In order to interpret the results obtained from a microarray experiment, researchers often shift focus from analysis of individual differentially expressed genes to analyses of sets of genes. These gene-set analysis (GSA) methods use previously accumulated biological knowledge to group genes into sets and then aim to rank these gene sets in a way that reflects their relative importance in the experimental situation in question. We suspect that the presence of paralogs affects the ability of GSA methods to accurately identify the most important sets of genes for subsequent research. Results We show that paralogs, which typically have high sequence identity and similar molecular functions, also exhibit high correlation in their expression patterns. We investigate this correlation as a potential confounding factor common to current GSA methods using Indygene http://www.cbio.uct.ac.za/indygene, a web tool that reduces a supplied list of genes so that it includes no pairwise paralogy relationships above a specified sequence similarity threshold. We use the tool to reanalyse previously published microarray datasets and determine the potential utility of accounting for the presence of paralogs. Conclusions The Indygene tool efficiently removes paralogy relationships from a given dataset and we found that such a reduction, performed prior to GSA, has the ability to generate significantly different results that often represent novel and plausible biological hypotheses. This was demonstrated for three different GSA approaches when applied to the reanalysis of previously published microarray datasets and suggests that the redundancy and non-independence of paralogs is an important consideration when dealing with GSA methodologies.
Collapse
|
36
|
Bermudez O, Jouandin P, Rottier J, Bourcier C, Pagès G, Gimond C. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J Cell Physiol 2010; 226:276-84. [PMID: 20665674 DOI: 10.1002/jcp.22339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DUSP6/MKP-3 is a cytoplasmic dual-specificity phosphatase specific for the MAP kinases ERK1/2. Previous data have shown that the MEK/ERK axis exerts a retro-control on its own signaling through transcriptional and post-translational regulation of DUSP6. We first confirm the key role of MEK/ERK in maintaining the levels of dusp6 mRNA, while PI3K/mTOR, p38 MAPK, and JNK signaling pathways had no significant effects. We further show that regulation of dusp6 mRNA stability plays a critical role in ERK-dependent regulation of dusp6 expression. Luciferase reporter constructs indicated that MEK/ERK signaling increased the half-life of dusp6 mRNA in a 3'untranslated region (3'UTR)-dependent manner. In addition, hypoxia, a hallmark of tumor growth, was found to increase both endogenous levels of dusp6 mRNA and the stability of the luciferase reporter constructs containing its 3'UTR, in a HIF-1-dependent manner. Nevertheless, a basal ERK activity was required for the response to hypoxia. Finally, Tristetraprolin (TTP), a member of the TIS11 CCCH zinc finger protein family, and PUM2, an homolog of drosophila pumilio, two proteins regulating mRNA stability reduced the levels of endogenous dusp6 mRNA and the activity of the dusp6/3'UTR luciferase reporter constructs. This study shows that post-transcriptional regulation is a key process in the control of DUSP6 expression.
Collapse
Affiliation(s)
- Olga Bermudez
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
37
|
Wattenberg EV. Modulation of protein kinase signaling cascades by palytoxin. Toxicon 2010; 57:440-8. [PMID: 21070801 DOI: 10.1016/j.toxicon.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Although known for its acutely toxic action, palytoxin has also been identified as a type of carcinogenic agent called a tumor promoter. In general tumor promoters do not damage DNA, but instead contribute to carcinogenesis by disrupting the regulation of cellular signaling. The identification of palytoxin as a tumor promoter, together with the recognition that the Na(+), K(+)-ATPase is its receptor, led to research on how palytoxin triggers the modulation of signal transduction pathways. This review focuses on mitogen activated protein (MAP) kinases as mediators of palytoxin-stimulated signaling. MAP kinases are a family of serine/threonine kinases that relay a variety of signals to the cellular machinery that regulates cell fate and function. The studies discussed in this review investigated how palytoxin stimulates MAP kinase activity and, in turn, how MAP kinases mediate the response of cells to palytoxin.
Collapse
Affiliation(s)
- Elizabeth V Wattenberg
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Mayo Mail Code #807, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
Bermudez O, Pagès G, Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol 2010; 299:C189-202. [PMID: 20463170 DOI: 10.1152/ajpcell.00347.2009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular signaling by mitogen-activated protein (MAP) kinases (MAPK) is involved in many cellular responses and in the regulation of various physiological and pathological conditions. Tight control of the localization and duration of extracellular-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), or p38 MAPK activity is thus a fundamental aspect of cell biology. Several members of the dual-specificity phosphatase (DUSPs) family are able to dephosphorylate MAPK isoforms with different specificity, cellular, and tissue localization. Understanding how these phosphatases are themselves regulated during development or in physiological and pathological conditions is therefore fundamental. Over the years, gene deletion and knockdown studies have completed initial in vitro studies and shed a new light on the global and specific roles of DUSPs in vivo. Whereas DUSP1, DUSP2, and DUSP10 appear as crucial players in the regulation of immune responses, other members of the family, like the ERK-specific DUSP6, were shown to play a major role in development. Recent findings on the involvement of DUSPs in cancer progression and resistance will also be discussed.
Collapse
Affiliation(s)
- O Bermudez
- Institute of Developmental Biology and Cancer, CNRS, UMR 6543, Université Nice-Sophia, Nice, France
| | | | | |
Collapse
|
39
|
Smith G, Bounds R, Wolf H, Steele RJC, Carey FA, Wolf CR. Activating K-Ras mutations outwith 'hotspot' codons in sporadic colorectal tumours - implications for personalised cancer medicine. Br J Cancer 2010; 102:693-703. [PMID: 20147967 PMCID: PMC2837563 DOI: 10.1038/sj.bjc.6605534] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Response to EGFR-targeted therapies in colorectal cancer patients has been convincingly associated with Kirsten-Ras (K-Ras) mutation status. Current mandatory mutation testing for patient selection is limited to the K-Ras ‘hotspot’ codons 12 and 13. Methods: Colorectal tumours (n=106) were screened for additional K-Ras mutations, phenotypes compared in transformation and Ras GTPase activating assays and gene and pathway changes induced by individual K-Ras mutants identified by microarray analysis. Taqman-based gene copy number and FISH analyses were used to investigate K-Ras gene amplification. Results: Four additional K-Ras mutations (Leu19Phe (1 out of 106 tumours), Lys117Asn (1 out of 106), Ala146Thr (7 out of 106) and Arg164Gln (1 out of 106)) were identified. Lys117Asn and Ala146Thr had phenotypes similar to the hotspot mutations, whereas Leu19Phe had an attenuated phenotype and the Arg164Gln mutation was phenotypically equivalent to wt K-Ras. We additionally identified a new K-Ras gene amplification event, present in approximately 2% of tumours. Conclusions: The identification of mutations outwith previously described hotspot codons increases the K-Ras mutation burden in colorectal tumours by one-third. Future mutation screening to facilitate optimal patient selection for treatment with EGFR-targeted therapies should therefore be extended to codon 146, and in addition should consider the unique molecular signatures associated with individual K-Ras mutations.
Collapse
Affiliation(s)
- G Smith
- Biomedical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | |
Collapse
|
40
|
Davies ML, Xu S, Lyons-Weiler J, Rosendorff A, Webber SA, Wasil LR, Metes D, Rowe DT. Cellular factors associated with latency and spontaneous Epstein-Barr virus reactivation in B-lymphoblastoid cell lines. Virology 2010; 400:53-67. [PMID: 20153012 DOI: 10.1016/j.virol.2010.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/10/2009] [Accepted: 01/04/2010] [Indexed: 01/13/2023]
Abstract
EBV-immortalized B-lymphoblastoid cell lines are used as models for cellular transformation and as antigen-presenting cells in immunological assays. LCLs vary in surface markers and other phenotypic properties, but it is not known how this heterogeneity relates to the EBV life cycle. To explore correlations, we examined 62 LCLs for cellular and viral phenotypes. LCLs generated from pediatric and adult donors could similarly be categorized as either low in EBV copy number or fluctuating within a high range. High-copy status accompanied higher lytic viral gene expression and lower latent gene expression. Inhibiting lytic EBV replication did not affect cellular phenotype or lytic switch protein expression, indicating that an LCL's lytic permissivity was a stable property. Among the cellular genes overexpressed in permissive LCLs were unfolded protein response genes and plasma cell markers. Among genes overexpressed in non-permissive LCLs were transcription factors involved in maintaining B cell lineage, in particular EBF1. This study suggests previously undetected mechanisms by which cellular pathways influence the lytic reactivation of EBV.
Collapse
Affiliation(s)
- Michael L Davies
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 435 Parran Hall, 130 DeSoto Street, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc Natl Acad Sci U S A 2009; 106:22433-8. [PMID: 20018727 DOI: 10.1073/pnas.0912386106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used microarrays and transcriptional profiling of peripheral blood to investigate the host response of 29 individuals who contracted typhoid fever in the Mekong Delta region of Vietnam. Samples were taken over a nine month period encompassing acute disease, convalescence, and recovery. We found that typhoid fever induced a distinct and highly reproducible signature in the peripheral blood that changed during treatment and convalescence, returning in the majority of cases to the "normal" profile as measured in healthy uninfected controls. Unexpectedly, there was a strong, distinct signature of convalescence present at day 9 after infection that remained virtually unchanged one month after acute infection and in some cases persisted as long as nine months despite a complete clinical recovery in all patients. Patients who retain the convalescent signature may be genetically or temporarily incapable of developing an effective immune response and may be more susceptible to reinfection, relapse, or the establishment of a carrier state.
Collapse
|
42
|
Castellano E, Guerrero C, Núñez A, De Las Rivas J, Santos E. Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle. Genome Biol 2009; 10:R123. [PMID: 19895680 PMCID: PMC3091317 DOI: 10.1186/gb-2009-10-11-r123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/06/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Using oligonucleotide microarrays, we compared transcriptional profiles corresponding to the initial cell cycle stages of mouse fibroblasts lacking the small GTPases H-Ras and/or N-Ras with those of matching, wild-type controls. RESULTS Serum-starved wild-type and knockout ras fibroblasts had very similar transcriptional profiles, indicating that H-Ras and N-Ras do not significantly control transcriptional responses to serum deprivation stress. In contrast, genomic disruption of H-ras or N-ras, individually or in combination, determined specific differential gene expression profiles in response to post-starvation stimulation with serum for 1 hour (G0/G1 transition) or 8 hours (mid-G1 progression). The absence of N-Ras caused significantly higher changes than the absence of H-Ras in the wave of transcriptional activation linked to G0/G1 transition. In contrast, the absence of H-Ras affected the profile of the transcriptional wave detected during G1 progression more strongly than did the absence of N-Ras. H-Ras was predominantly functionally associated with growth and proliferation, whereas N-Ras had a closer link to the regulation of development, the cell cycle, immunomodulation and apoptosis. Mechanistic analysis indicated that extracellular signal-regulated kinase (ERK)-dependent activation of signal transducer and activator of transcription 1 (Stat1) mediates the regulatory effect of N-Ras on defense and immunity, whereas the pro-apoptotic effects of N-Ras are mediated through ERK and p38 mitogen-activated protein kinase signaling. CONCLUSIONS Our observations confirm the notion of an absolute requirement for different peaks of Ras activity during the initial stages of the cell cycle and document the functional specificity of H-Ras and N-Ras during those processes.
Collapse
Affiliation(s)
- Esther Castellano
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL), University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| | | | | | | | | |
Collapse
|
43
|
Maglietta R, Distaso A, Piepoli A, Palumbo O, Carella M, D'Addabbo A, Mukherjee S, Ancona N. On the reproducibility of results of pathway analysis in genome-wide expression studies of colorectal cancers. J Biomed Inform 2009; 43:397-406. [PMID: 19796710 DOI: 10.1016/j.jbi.2009.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 12/22/2022]
Abstract
One of the major problems in genomics and medicine is the identification of gene networks and pathways deregulated in complex and polygenic diseases, like cancer. In this paper, we address the problem of assessing the variability of results of pathways analysis identified in different and independent genome wide expression studies, in which the same phenotypic conditions are assayed. To this end, we assessed the deregulation of 1891 curated gene sets in four independent gene expression data sets of subjects affected by colorectal cancer (CRC). In this comparison we used two well-founded statistical models for evaluating deregulation of gene networks. We found that the results of pathway analysis in expression studies are highly reproducible. Our study revealed 53 pathways identified by the two methods in all the four data sets analyzed with high statistical significance and strong biological relevance with the pathology examined. This set of pathways associated to single markers as well as to whole biological processes altered constitutes a signature of the disease which sheds light on the genetics bases of CRC.
Collapse
Affiliation(s)
- Rosalia Maglietta
- Istituto di Studi sui Sistemi Intelligenti per l'Automazione, CNR, Via Amendola 122/D-I, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zeliadt NA, Mauro LJ, Wattenberg EV. Reciprocal regulation of extracellular signal regulated kinase 1/2 and mitogen activated protein kinase phosphatase-3. Toxicol Appl Pharmacol 2008; 232:408-17. [PMID: 18771677 DOI: 10.1016/j.taap.2008.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/17/2008] [Accepted: 08/07/2008] [Indexed: 02/06/2023]
Abstract
Mitogen activated protein kinase phosphatase-3 (MKP-3) is a putative tumor suppressor. When transiently overexpressed, MKP-3 dephosphorylates and inactivates extracellular signal regulated kinase (ERK) 1/2. Little is known about the roles of endogenous MKP-3, however. We previously showed that MKP-3 is upregulated in cell lines that express oncogenic Ras. Here we tested the roles of endogenous MKP-3 in modulating ERK1/2 under conditions of chronic stimulation of the Ras/Raf/MEK1/2/ERK1/2 pathway by expression of oncogenic Ras. We used two cell lines: H-ras MCF10A, breast epithelial cells engineered to express H-Ras, and DLD-1, colon cancer cells that express endogenous Ki-Ras. First, we found that MKP-3 acts in a negative feedback loop to suppress basal ERK1/2 when oncogenic Ras stimulates the Ras/Raf/MEK1/2/ERK1/2 cascade. ERK1/2 was required to maintain elevated MKP-3, indicative of a negative feedback loop. Accordingly, knockdown of MKP-3, via siRNA, increased ERK1/2 phosphorylation. Second, by using siRNA, we found that MKP-3 helps establish the sensitivity of ERK1/2 to extracellular activators by limiting the duration of ERK1/2 phosphorylation. Third, we found that the regulation of ERK1/2 by MKP-3 is countered by the complex regulation of MKP-3 by ERK1/2. Potent ERK1/2 activators stimulated the loss of MKP-3 within 30 min due to an ERK1/2-dependent decrease in MKP-3 protein stability. MKP-3 levels recovered within 120 min due to ERK1/2-dependent resynthesis. Preventing MKP-3 resynthesis, via siRNA, prolonged ERK1/2 phosphorylation. Altogether, these results suggest that under the pressure of oncogenic Ras expression, MKP-3 reins in ERK1/2 by serving in ERK1/2-dependent negative feedback pathways.
Collapse
Affiliation(s)
- Nicholette A Zeliadt
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Mayo Mail Code #807, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
45
|
Abstract
There are ten mitogen-activated protein kinase (MAPK) phosphatases (MKPs) that act as negative regulators of MAPK activity in mammalian cells and these can be subdivided into three groups. The first comprises DUSP1/MKP-1, DUSP2/PAC1, DUSP4/MKP-2 and DUSP5/hVH-3, which are inducible nuclear phosphatases. With the exception of DUSP5, these MKPs display a rather broad specificity for inactivation of the ERK, p38 and JNK MAP kinases. The second group contains three closely related ERK-specific and cytoplasmic MKPs encoded by DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4. The final group consists of three MKPs DUSP8/hVH-5, DUSP10/MKP-5 and DUSP16/MKP-7 all of which preferentially inactivate the stress-activated p38 and JNK MAP kinases. Abnormal MAPK signalling will have important consequences for processes critical to the development and progression of human cancer. In addition, MAPK signalling also plays a key role in determining the response of tumour cells to conventional cancer therapies. The emerging roles of the dual-specificity MKPs in the regulation of MAPK activities in normal tissues has highlighted the possible pathophysiological consequences of either loss (or gain) of function of these enzymes as part of the oncogenic process. This review summarises the current evidence implicating the dual-specificity MKPs in the initiation and development of cancer and also on the outcome of treatment.
Collapse
Affiliation(s)
- Stephen M Keyse
- Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
46
|
Mahtouk K, Hose D, De Vos J, Moreaux J, Jourdan M, Rossi JF, Rème T, Goldschmidt H, Klein B. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications. Clin Cancer Res 2008; 13:7289-95. [PMID: 18094409 DOI: 10.1158/1078-0432.ccr-07-1758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a B-cell neoplasia characterized by the proliferation of a clone of malignant plasma cells in the bone marrow. We review here the input of gene expression profiling of myeloma cells and of their tumor microenvironment to develop new tumor classifiers, to better understand the biology of myeloma cells, to identify some mechanisms of drug sensitivity and resistance, to identify new myeloma growth factors, and to depict the complex interactions between tumor cells and their microenvironment. We discuss how these findings may improve the clinical outcome of this still incurable disease.
Collapse
Affiliation(s)
- Karène Mahtouk
- CHU Montpellier, Institut de Recherche en Biothérapies, Hôpital Saint-Eloi, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li X, Pennisi A, Zhan F, Sawyer JR, Shaughnessy JD, Yaccoby S. Establishment and exploitation of hyperdiploid and non-hyperdiploid human myeloma cell lines. Br J Haematol 2007; 138:802-11. [PMID: 17760811 PMCID: PMC2748973 DOI: 10.1111/j.1365-2141.2007.06742.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The establishment of clinically relevant human myeloma cell lines is central for our understanding of myeloma pathogenesis and development of novel therapies for the disease. Unfortunately, most available lines were generated from extramedullary sites, harbored multiple genetic abnormalities and categorized as non-hyperdiploid. In contrast, hyperdiploid myeloma cell lines, which represent more than 50% of patients, are rare. We established procedures for establishment of stroma-dependent myeloma lines by passaging primary myeloma cells, in severe combined immunodeficient-human (SCID-hu) or SCID-rab mice followed by maintenance in co-culture with stromal cells. We described the establishment and characterization of two hyperdiploid (LD and CF) and two non-hyperdiploid (JB and BN) cell lines. Using our animal models, we also established bortezomib-sensitive and -resistant BN lines. These cell lines were cellularly, phenotypically and molecularly characterized using flow cytometry immunophenotyping, DNA content, G-band and multicolor spectral karyotyping (SKY) and global gene expression profiling. All four cell lines were infected with lentiviral-expressing luciferase for detection of tumour cells at high sensitivity level and for monitoring myeloma growth in co-cultures and in vivo by live animal imaging. These myeloma cell lines and the procedures used for their establishment provide essential tools for studying myeloma biology and therapy.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
48
|
Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood 2007; 111:806-15. [PMID: 17934070 DOI: 10.1182/blood-2007-07-101139] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is characterized by accumulation and dissemination of malignant plasma cells (PCs) in the bone marrow (BM). Gene expression profiling of 2 MM cell lines (OH-2 and IH-1) indicated that expression of PRL-3, a metastasis-associated tyrosine phosphatase, was induced by several mitogenic cytokines. Cytokine-driven PRL-3 expression could be shown in several myeloma cell lines at both the mRNA and protein levels. There was significantly higher expression of the PRL-3 gene in PCs from patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma (SMM), and myeloma than in PCs from healthy persons. Among 7 MM subgroups identified by unsupervised hierarchical cluster analysis, PRL-3 gene expression was significantly higher in the 3 groups denoted as "proliferation," "low bone disease," and "MMSET/FGFR3." PRL-3 protein was detected in 18 of 20 BM biopsies from patients with MM. Silencing of the PRL-3 gene by siRNA reduced cell migration in the MM cell line INA-6, but had no detectable effect on proliferation and cell-cycle phase distribution of the cells. In conclusion, PRL-3 is a gene product specifically expressed in malignant plasma cells and may have a role in migration of these cells.
Collapse
|
49
|
Agudo-Ibáñez L, Núñez F, Calvo F, Berenjeno IM, Bustelo XR, Crespo P. Transcriptomal profiling of site-specific Ras signals. Cell Signal 2007; 19:2264-76. [PMID: 17714917 PMCID: PMC2085357 DOI: 10.1016/j.cellsig.2007.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
Ras proteins are distributed in distinct plasma-membrane microdomains and endomembranes. The biochemical signals generated by Ras therein differ qualitatively and quantitatively, but the extent to which this spatial variability impacts on the genetic program switched-on by Ras is unknown. We have used microarray technology to identify the transcriptional targets of localization-specific Ras subsignals in NIH3T3 cells expressing H-RasV12 selectively tethered to distinct cellular microenvironments. We report that the transcriptomes resulting from site-specific Ras activation show a significant overlap. However, distinct genetic signatures can also be found for each of the Ras subsignals. Our analyses unveil 121 genes uniquely regulated by Ras signals emanating from plasma-membrane microdomains. Interestingly, not a single gene is specifically controlled by lipid raft-anchored Ras. Furthermore, only 9 genes are exclusive for Ras signals from endomembranes. Also, we have identified 31 genes common to the site-specific Ras subsignals capable of inducing cellular transformation. Among these are the genes coding for Vitamin D receptor and for p120-GAP and we have assessed their impact in Ras-induced transformation. Overall, this report reveals the complexity and variability of the different genetic programs orchestrated by Ras from its main sublocalizations.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Fátima Núñez
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Fernando Calvo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Inmaculada M. Berenjeno
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Piero Crespo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
- * Corresponding author. Tel.: +34 942 200959; fax: +34 942 201945. E-mail address: (P. Crespo)
| |
Collapse
|
50
|
Intini D, Agnelli L, Ciceri G, Ronchetti D, Fabris S, Nobili L, Lambertenghi-Deliliers G, Lombardi L, Neri A. Relevance of Ras gene mutations in the context of the molecular heterogeneity of multiple myeloma. Hematol Oncol 2007; 25:6-10. [PMID: 17036375 DOI: 10.1002/hon.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ras gene mutations are a recurrent genetic lesion in multiple myeloma (MM). Here, we report a mutation analysis of N- and K-Ras genes in purified plasma cell populations from a panel of 81 newly diagnosed MM patients stratified according to the most frequent genetic and molecular features associated with the neoplasia. Ras gene mutations, mostly involving the N-Ras gene, were detected in 20% of the patients. Ras mutations did not correlate with the presence of chromosome 13q deletion, trisomy of chromosome 11, 1q amplification or hyperdiploidy. In addition, despite an appreciable association with tumours overexpressing Cyclin D1, Ras mutations did not correlate at significant levels with any of the proposed groups in the TC classification, based on the presence of the major IgH chromosomal translocations and expression of Cyclin D genes. Finally, transcription analyses revealed the presence of differentially expressed transcripts in human multiple myeloma cell lines carrying the Ras gene mutations but not in primary tumours. Overall, these data suggest that Ras gene mutations are not likely to represent a master lesion in MM but its relevance needs to be considered in the context of other genetic abnormalities.
Collapse
Affiliation(s)
- Daniela Intini
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|