1
|
Sun Z, Ke P, Shen Y, Ma K, Wang B, Lin D, Wang Y. MXRA7 is involved in monocyte-to-macrophage differentiation. Mol Immunol 2024; 171:12-21. [PMID: 38735126 DOI: 10.1016/j.molimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1β and IL-6) than with those M2-type molecules (TGF-β1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Peng Ke
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Benfang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China.
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
2
|
Lee SH, Ashcraft E, Yang W, Roberts KG, Gocho Y, Rowland L, Inaba H, Karol SE, Jeha S, Crews KR, Mullighan CG, Relling MV, Evans WE, Cheng C, Yang JJ, Pui CH. Prognostic and Pharmacotypic Heterogeneity of Hyperdiploidy in Childhood ALL. J Clin Oncol 2023; 41:5422-5432. [PMID: 37729596 PMCID: PMC10852380 DOI: 10.1200/jco.23.00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
PURPOSE High hyperdiploidy, the largest and favorable subtype of childhood ALL, exhibits significant biological and prognostic heterogeneity. However, factors contributing to the varied treatment response and the optimal definition of hyperdiploidy remain uncertain. METHODS We analyzed outcomes of patients treated on two consecutive frontline ALL protocols, using six different definitions of hyperdiploidy: chromosome number 51-67 (Chr51-67); DNA index (DI; DI1.16-1.6); United Kingdom ALL study group low-risk hyperdiploid, either trisomy of chromosomes 17 and 18 or +17 or +18 in the absence of +5 and +20; single trisomy of chromosome 18; double trisomy of chromosomes 4 and 10; and triple trisomy (TT) of chromosomes 4, 10, and 17. Additionally, we characterized ALL ex vivo pharmacotypes across eight main cytotoxic drugs. RESULTS Among 1,096 patients analyzed, 915 had B-ALL and 634 had pharmacotyping performed. In univariate analysis, TT emerged as the most favorable criterion for event-free survival (EFS; 10-year EFS, 97.3% v 86.8%; P = .0003) and cumulative incidence of relapse (CIR; 10-year CIR, 1.4% v 8.8%; P = .002) compared with the remaining B-ALL. In multivariable analysis, accounting for patient numbers using the akaike information criterion (AIC), DI1.16-1.6 was the most favorable criterion, exhibiting the best AIC for both EFS (hazard ratio [HR], 0.45; 95% CI, 0.23 to 0.88) and CIR (HR, 0.45; 95% CI, 0.21 to 0.99). Hyperdiploidy and subgroups with favorable prognoses exhibited notable sensitivities to asparaginase and mercaptopurine. Specifically, asparaginase sensitivity was associated with trisomy of chromosomes 16 and 17, whereas mercaptopurine sensitivity was linked to gains of chromosomes 14 and 17. CONCLUSION Among different definitions of hyperdiploid ALL, DI is optimal based on independent prognostic impact and also the large proportion of low-risk patients identified. Hyperdiploid ALL exhibited particular sensitivities to asparaginase and mercaptopurine, with chromosome-specific associations.
Collapse
Affiliation(s)
- Shawn H.R. Lee
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Emily Ashcraft
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G. Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Yoshihiro Gocho
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Lauren Rowland
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Seth E. Karol
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | | | - Mary V. Relling
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - William E. Evans
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Sun Z, Lin D, Shen Y, Ma K, Wang B, Liu H, Chen S, Wu D, Wang Y. Critical role of MXRA7 in differentiation blockade in human acute promyelocytic leukemia cells. Exp Hematol 2023; 125-126:45-54. [PMID: 37419299 DOI: 10.1016/j.exphem.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The biology of the matrix remodeling-associated 7 (MXRA7) gene has been ill defined. Bioinformatic analysis of public data sets revealed that MXRA7 messenger RNA (mRNA) was highly expressed in acute myeloid leukemia (AML), especially acute promyelocytic leukemia (APL). High expression of MXRA7 was associated with poor overall survival of patients with AML. We confirmed that MXRA7 expression was upregulated in patients with APL and cell lines. Knockdown or overexpression of MXRA7 did not affect the proliferation of NB4 cells directly. Knockdown of MXRA7 in NB4 cells promoted drug-induced cell apoptosis, whereas overexpression of MXRA7 had no obvious influence on drug-induced cell apoptosis. Lowering MXRA7 protein levels in NB4 cells promoted all-trans retinoic acid (ATRA)-induced cell differentiation possibly through decreasing the PML-RARα level and increasing PML and RARα levels. Correspondingly, overexpression of MXRA7 showed consistent results. We also demonstrated that MXRA7 altered the expression of genes involved in leukemic cell differentiation and growth. Knockdown of MXRA7 upregulated the expression levels of C/EBPB, C/EBPD, and UBE2L6, and downregulated the expression levels of KDM5A, CCND2, and SPARC. Moreover, knockdown of MXRA7 inhibited the malignancy of NB4 cells in a non-obese diabetic-severe combined immune-deficient mice model. In conclusion, this study demonstrated that MXRA7 influences the pathogenesis of APL via regulation of cell differentiation. The novel findings about the role of MXRA7 in leukemia not only shed light on the biology of this gene but also proposed this gene as a new target for APL treatment.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Hong Liu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Suning Chen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yiqiang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
4
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Sun Z, Wang B, Shen Y, Ma K, Wang T, Wang Y, Lin D. MXRA7 is involved in megakaryocyte differentiation and platelet production. BLOOD SCIENCE 2023; 5:160-169. [PMID: 37546710 PMCID: PMC10400050 DOI: 10.1097/bs9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Matrix remodeling is a critical process in hematopoiesis. The biology of MXRA7, as a matrix remodeling associated gene, has still not been reported in hematopoietic process. Public databases showed that MXRA7 expressed in hematopoietic stem cells, suggesting that it may be involved in hematopoiesis. We found that the amounts of megakaryocytes were lower in bone marrow and spleen from Mxra7-/- mice compared with that from wild-type mice. Knock-out of MXRA7 also reduced the amount of platelet in peripheral blood and affected the function of platelets. Knock-out of MXRA7 inhibited hematopoietic stem/progenitor cells differentiate to megakaryocytes possibly through down-regulating the expression of GATA-1 and FOG-1. Moreover, knockdown of MXRA7 in MEG-01 cells could inhibit the cell proliferation and cell apoptosis. Knockdown of MXRA7 inhibited the differentiation of MEG-01 cells and proplatelet formation through suppressing the ERK/MAPK signaling pathway and the expression of β-tubulin. In conclusion, the current study demonstrated the potential significance of MXRA7 in megakaryocyte differentiation and platelet production. The novel findings proposed a new target for the treatment of platelet-related diseases, and much more investigations are guaranteed to dissect the mechanisms of MXRA7 in megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Benfang Wang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Clinical Laboratory, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin 214400, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ting Wang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| |
Collapse
|
6
|
Piccaluga PP, Paolini S, Visani G. Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing. HEMATO 2023; 4:42-55. [DOI: 10.3390/hemato4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The prognosis of adult acute lymphoblastic leukemia (ALL) is variable but more often dismal. Indeed, its clinical management is challenging, current therapies inducing complete remission in 65–90% of cases, but only 30–40% of patients being cured. The major determinant of treatment failure is relapse; consequently, measurement of residual leukemic blast (minimal residual disease, MRD) has become a powerful independent prognostic indicator in adults. Numerous evidences have also supported the clinical relevance of MRD assessment for risk class assignment and treatment selection. MRD can be virtually evaluated in all ALL patients using different technologies, such as polymerase chain reaction amplification of fusion transcripts and clonal rearrangements of antigen receptor genes, flow cytometric study of leukemic immunophenotypes and, the most recent, high throughput sequencing (HTS). In this review, the authors focused on the latest developments on MRD monitoring with emphasis on the use of HTS, as well as on the clinical impact of MRD monitoring.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Biobank of Research and Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, IRCCS Azienda Opedaliera-Universitaria S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna School of Medicine, 40126 Bologna, Italy
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja, Nairobi P.O. Box 62000-00200, Kenya
| | - Stefania Paolini
- Biobank of Research and Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, IRCCS Azienda Opedaliera-Universitaria S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Giuseppe Visani
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, 61121 Pesaro, Italy
| |
Collapse
|
7
|
Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol 2022; 34:738-747. [PMID: 36017547 DOI: 10.1097/cco.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most recent advancements in the management of adult T-cell acute lymphoblastic leukemia (T-ALL), we summarize insights into molecular diagnostics, immunotherapy, targeted therapy and new techniques of drug sensitivity profiling that may support further therapeutic progress in T-ALL subsets. RECENT FINDINGS With current induction/consolidation chemotherapy and/or risk-oriented allogeneic stem cell transplantation programs up to 95% adult T-ALL patients achieve a remission and >50% (up to 80% in adolescents and young adults) are cured. The group of patients who fail upfront therapy, between 25% and 40%, is enriched in high-risk characteristics (unfavorable genetics, persistent minimal residual disease) and represents the ideal setting for the study of molecular mechanisms of disease resistance, and consequently explore novel ways of restoration of drug sensitivity and assess patient/subset-specific patterns of drug vulnerability to targeting agents, immunotherapy and cell therapy. SUMMARY The emerging evidence supports the contention that precision medicine may soon allow valuable therapeutic chances to adult patients with high-risk T-ALL. The ongoing challenge is to identify the best way to integrate all these new data into the therapeutic path of newly diagnosed patients, with a view to optimize the individual treatment plan and increase the cure rate.
Collapse
Affiliation(s)
- Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia
| |
Collapse
|
8
|
Wang CJ, Jia MZ, Deng LP, Li WJ, Zhang Q, Zhang TJ, Li SY, Cui L, Li ZG. Interaction between CASP8AP2 and ZEB2-CtBP2 Regulates the Expression of LEF1. Pediatr Hematol Oncol 2022; 39:549-560. [PMID: 35139734 DOI: 10.1080/08880018.2022.2033369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric B-cell acute lymphoblastic leukemia (B-ALL). This study aimed to investigate the molecular mechanism by which CASP8AP2 regulates LEF1 expression by interacting with CtBP2 and ZEB2 in Acute lymphoblastic lymphoma (ALL). There was an interaction between CASP8AP2, ZEB2, and CtBP2, and then the interaction between CtBP2 and ZEB2 was observed after downregulating the expression of CASP8AP2. The wild type (containing the ZEB2 binding site) or mutant (containing a mutant binding site) LEF1 gene promoter sequence was inserted into the pGL3-basic plasmid, and a dual-luciferase reporter gene detection system was used to observe how CASP8AP2, ZEB2, and CtBP2 regulate the transcription of the LEF1 gene. We conclude that CASP8AP2, CtBP2, and ZEB2 can all bind to the LEF1 gene promoter region and reduce the luciferase activity of the LEF1 promoter. Meanwhile, the interaction of ZEB2 and the LEF1 promoter was significantly weakened after downregulation of CASP8AP2. Knockdown of CASP8AP2 in the 697 cell lines resulted in the significant upregulation of the mRNA expression levels of the stemness-related genes CD44, JAG1, and SALL4. In conclusion, CASP8AP2 is vital for the interaction between CtBP2 and ZEB2, inhibiting LEF1 and stemness-related genes expression ALL.Supplemental data for this article is available online at https://doi.org/10.1080/08880018.2022.2033369 .
Collapse
Affiliation(s)
- Chan-Juan Wang
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ming-Zhu Jia
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li-Ping Deng
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei-Jing Li
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qing Zhang
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tong-Jia Zhang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
9
|
Kumari S, Ali MS, Singh J, Arora M, Verma D, Pandey AK, Benjamin M, Bakhshi S, Palanichamy JK, Sharma A, Singh I, Tanwar P, Singh AR, Pushpam D, Qamar I, Chopra A. Prognostic utility of key copy number alterations in T cell acute lymphoblastic leukemia. Hematol Oncol 2022; 40:577-587. [DOI: 10.1002/hon.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
- School of Biotechnology Gautam Buddha University Uttar Pradesh201312 India
| | - Md Shadab Ali
- Department of Pulmonary Medicine and Sleep Disorders All India Institute of Medical Sciences New Delhi New Delhi110029 India
| | - Jay Singh
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Mohit Arora
- Department of Biochemistry All India Institute of Medical Sciences New Delhi110029 India
| | - Deepak Verma
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Avanish Kumar Pandey
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Mercilena Benjamin
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Sameer Bakhshi
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | | | - Atul Sharma
- Department of Medical Oncology Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Inder Singh
- Department of Neurology All India Institute of Medical Sciences New Delhi New Delhi110029 India
| | - Pranay Tanwar
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Amar Ranjan Singh
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Deepam Pushpam
- Department of Medical Oncology Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| | - Imteyaz Qamar
- School of Biotechnology Gautam Buddha University Uttar Pradesh201312 India
| | - Anita Chopra
- Laboratory Oncology Unit Dr. BRA‐IRCH All India Institute of Medical Sciences New Delhi110029 India
| |
Collapse
|
10
|
NT5E gene and CD38 protein as potential prognostic biomarkers for childhood B-acute lymphoblastic leukemia. Purinergic Signal 2022; 18:211-222. [PMID: 35235138 DOI: 10.1007/s11302-022-09841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
The risk stratification of B-acute lymphoblastic leukemia (B-ALL) is based on clinical and biological factors. However, B-ALL has significant biological and clinical heterogeneity and 50% of B-ALL patients do not have defined prognostic markers. In this sense, the identification of new prognostic biomarkers is necessary. Considering different cohorts of childhood B-ALL patients, gene (DPP4/CD38/ENTPD1/NT5E) and protein (CD38/CD39/CD73) expressions of ectonucleotidases were analyzed in silico and ex vivo and the association with prognosis was established. In univariate analyses, expression of NT5E was significantly associated with worse progression-free survival (PFS) in bone marrow (BM) samples. In multivariate analyses, Kaplan-Meier analysis, and log-rank test, higher NT5E expression predicted unfavorable PFS in BM samples. Considering minimal residual disease (MRD), higher levels of cellularity were associated with the high NT5E expression at day 8 of induction therapy. In addition, we observed that white blood cells (WBC) of childhood B-ALL patients had more CD38 compared to the same cell population of healthy donors (HD). In fact, MRD > 0.1% patients had higher CD38 protein expression on WBC in comparison to HD. Noteworthy, we observed higher CD38 expression on WBC than blasts in MRD > 0.1% patients. We suggest that NT5E gene and CD38 protein expression, of the ectonucleotidases family, could provide interesting prognostic biomarkers for childhood B-ALL.
Collapse
|
11
|
Mansur MB, Furness CL, Nakjang S, Enshaei A, Alpar D, Colman SM, Minto L, Irving J, Poole BV, Noronha EP, Savola S, Iqbal S, Gribben J, Pombo-de-Oliveira MS, Ford TM, Greaves MF, van Delft FW. The genomic landscape of teenage and young adult T-cell acute lymphoblastic leukemia. Cancer Med 2021; 10:4864-4873. [PMID: 34080325 PMCID: PMC8290240 DOI: 10.1002/cam4.4024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Treatment on risk adapted intensive pediatric protocols has improved outcome for teenagers and young adults (TYA) with T-cell acute lymphoblastic leukemia (T-ALL). Understanding the biology of disease in this age group and the genetic basis of relapse is a key goal as patients with relapsed/refractory disease have poor outcomes with conventional chemotherapy and novel molecular targets are required. This study examines the question of whether TYA T-ALL has a specific biological-molecular profile distinct from pediatric or adult T-ALL. METHODS Genomic characterization was undertaken of a retrospective discovery cohort of 80 patients aged 15-26 years with primary or relapsed T-ALL, using a combination of Genome-Wide Human SNP Array 6.0, targeted gene mutation and promoter methylation analyses. Findings were confirmed by MLPA, real-time quantitative PCR, and FISH. Whole Exome Sequencing was performed in 4 patients with matched presentation and relapse to model clonal evolution. A prevalence analysis was performed on a final data set of 1,792 individual cases to identify genetic lesions with age specific frequency patterns, including 972 pediatric (1-14 years), 439 TYA (15-24 years) and 381 adult (≥25 years) cases. These cases were extracted from 19 publications with comparable genomic data identified through a PubMed search. RESULTS Genomic characterization of this large cohort of TYA T-ALL patients identified recurrent isochromosome 7q i(7q) in our discovery cohort (n = 3). Prevalence analysis did not identify any age specific genetic abnormalities. Genomic analysis of 6 pairs of matched presentation - relapsed T-ALL established that all relapses were clonally related to the initial leukemia. Whole exome sequencing analysis revealed recurrent, targetable, mutations disrupting NOTCH, PI3K/AKT/mTOR, FLT3, NRAS as well as drug metabolism pathways. CONCLUSIONS All genetic aberrations in TYA T-ALL occurred with an incidence similar or intermediate to that reported in the pediatric and adult literature, demonstrating that overall TYA T-ALL exhibits a transitional genomic profile. Analysis of matched presentation - relapse supported the hypothesis that relapse is driven by the Darwinian evolution of sub-clones associated with drug resistance (NT5C2 and TP53 mutations) and re-iterative mutation of known key T-ALL drivers, including NOTCH1.
Collapse
Affiliation(s)
- Marcela B Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Division of Clinical Research, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Donat Alpar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sue M Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Lynne Minto
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julie Irving
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Beth V Poole
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Elda P Noronha
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suvi Savola
- Oncogenetics, MRC-Holland, Amsterdam, The Netherlands
| | - Sameena Iqbal
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Tony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Frederik W van Delft
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Cui L, Gao C, Wang CJ, Liu SG, Wu MY, Zhang RD, Li ZG. Low expression of CTBP2 and CASP8AP2 predicts risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a retrospective cohort study. Pediatr Hematol Oncol 2020; 37:732-746. [PMID: 32804017 DOI: 10.1080/08880018.2020.1798572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CtBP is a known corepressor abundantly expressed in cancer and regulates genes involved in cancer initiation, progression, and metastasis. This study aimed to investigate the prognostic significance of CTBP2 expression in a cohort of pediatric patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL). It further evaluated the role of combined CTBP2 and CASP8AP2 expression in risk of relapse of BCP-ALL. The expression of CTBP2 mRNA was retrospectively detected by a qRT-PCR approach in bone marrow samples from 104 children with newly diagnosed BCP-ALL. CASP8AP2 was assessed simultaneously in the 100 patients included in this study. The receiver operating characteristic (ROC) curve analysis determined the cut off levels for CTBP2 and CASP8AP2 expression with good predictive significance for relapse of BCP-ALL. Patients with low CTBP2 expression had inferior relapse-free survival (RFS) and event-free survival (EFS) when compared to patients with high-CTBP2 expression. The expression level of CTBP2 was significantly associated with CASP8AP2 expression (r = 0.449, P < 0.001). Patients were stratified into three groups according to the combined evaluation of the two gene expression, and patients with simultaneous low-expression had the worst outcome (6-year RFS: 64.6%±12.8%, P < 0.001). Multivariate analysis demonstrated the expression of CTBP2 and CASP8AP2, minimal residual disease (MRD) at day 33 remained as independent prognostic factors for RFS. Based on the final Cox hazards model, we proposed an algorithm to calculate the risk index, which was more precise for predicting relapse. In conclusion, low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Lei Cui
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chan-Juan Wang
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
13
|
Collins K, Cardinali JL, Mnayer LO, DiGiuseppe JA. CD49f protein expression varies among genetic subgroups of B lymphoblastic leukemia and is distinctly low in
KMT2A
‐rearranged cases. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:243-248. [DOI: 10.1002/cyto.b.21865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/09/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Katrina Collins
- Department of Pathology & Laboratory Medicine Hartford Hospital Hartford Connecticut
| | - Jolene L. Cardinali
- Department of Pathology & Laboratory Medicine Hartford Hospital Hartford Connecticut
| | - Laila O. Mnayer
- Department of Pathology & Laboratory Medicine Hartford Hospital Hartford Connecticut
| | - Joseph A. DiGiuseppe
- Department of Pathology & Laboratory Medicine Hartford Hospital Hartford Connecticut
| |
Collapse
|
14
|
Alsagaby SA. Omics-based insights into therapy failure of pediatric B-lineage acute lymphoblastic leukemia. Oncol Rev 2019; 13:435. [PMID: 31565196 PMCID: PMC6747058 DOI: 10.4081/oncol.2019.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of cancer seen in children and is characterized by a variable clinical course. Although there have been remarkable improvements in the therapy outcomes of pediatric B-ALL, treatment failure remains the leading-cause of death in 18% of the afflicted patients during the first 5 years after diagnosis. Molecular heterogeneities of pediatric B-ALL play important roles as determinants of the therapy response. Therefore, many of these molecular abnormalities have an established prognostic value in the disease. The present review discusses the omics-based revelations from epigenomics, genomics, transcriptomics and proteomics about treatment failure in pediatric B-ALL. Next it highlights the promise of the molecular aberration-targeted therapy to improve the treatment outcomes.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Saudi Arabia
| |
Collapse
|
15
|
Hussein NAEM, El-Toukhy MAEF, Kazem AH, Ali MES, Ahmad MAER, Ghazy HMR, El-Din AMG. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Neveen Abd El Moneim Hussein
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mervat Abd El-Fattah El-Toukhy
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amany Hussein Kazem
- Department of Pathology, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Mahmoud El-Said Ali
- Toxicology Department, Forensic Science College, Naif Arab University for Security Sciences, Saudi Arabia
| | | | - Hossam Mahmoud Rashad Ghazy
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Mohamed Gamal El-Din
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Lee J, Oh S, Sael L. GIFT: Guided and Interpretable Factorization for Tensors with an application to large-scale multi-platform cancer analysis. Bioinformatics 2018; 34:4151-4158. [PMID: 29931238 PMCID: PMC6289137 DOI: 10.1093/bioinformatics/bty490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/21/2022] Open
Abstract
Motivation Given multi-platform genome data with prior knowledge of functional gene sets, how can we extract interpretable latent relationships between patients and genes? More specifically, how can we devise a tensor factorization method which produces an interpretable gene factor matrix based on functional gene set information while maintaining the decomposition quality and speed? Results We propose GIFT, a Guided and Interpretable Factorization for Tensors. GIFT provides interpretable factor matrices by encoding prior knowledge as a regularization term in its objective function. We apply GIFT to the PanCan12 dataset (TCGA multi-platform genome data) and compare the performance with P-Tucker, our baseline method without prior knowledge constraint, and Silenced-TF, our naive interpretable method. Results show that GIFT produces interpretable factorizations with high scalability and accuracy. Furthermore, we demonstrate how results of GIFT can be used to reveal significant relations between (cancer, gene sets, genes) and validate the findings based on literature evidence. Availability and implementation The code and datasets used in the paper are available at https://github.com/leesael/GIFT. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Lee Sael
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, Payne-Turner D, Yoshihara H, Loh ML, Horan J, Buldini B, Basso G, Elitzur S, de Haas V, Zwaan CM, Yeoh A, Reinhardt D, Tomizawa D, Kiyokawa N, Lammens T, De Moerloose B, Catchpoole D, Hori H, Moorman A, Moore AS, Hrusak O, Meshinchi S, Orgel E, Devidas M, Borowitz M, Wood B, Heerema NA, Carrol A, Yang YL, Smith MA, Davidsen TM, Hermida LC, Gesuwan P, Marra MA, Ma Y, Mungall AJ, Moore RA, Jones SJM, Valentine M, Janke LJ, Rubnitz JE, Pui CH, Ding L, Liu Y, Zhang J, Nichols KE, Downing JR, Cao X, Shi L, Pounds S, Newman S, Pei D, Guidry Auvil JM, Gerhard DS, Hunger SP, Inaba H, Mullighan CG. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 2018; 562:373-379. [PMID: 30209392 PMCID: PMC6195459 DOI: 10.1038/s41586-018-0436-0] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
Collapse
Affiliation(s)
- Thomas B Alexander
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kirsten Dickerson
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John K Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroki Yoshihara
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - John Horan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Barbara Buldini
- Department of Women and Child Health, Hemato-Oncology Division, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Women and Child Health, Hemato-Oncology Division, University of Padova, Padova, Italy
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - C Michel Zwaan
- Prinses Maxima Centre, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Allen Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Daniel Catchpoole
- The Tumour Bank CCRU, The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Hiroki Hori
- Department of Pediatrics, Mie University, Tsu, Japan
| | - Anthony Moorman
- Wolfson Childhood Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew S Moore
- The University of Queensland Diamantina Institute & Children's Health, Brisbane, Queensland, Australia
| | - Ondrej Hrusak
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
- Children's Oncology Group, Arcadia, CA, USA
| | - Etan Orgel
- Children's Center for Cancer and Blood Disease, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | - Brent Wood
- University of Washington, Seattle, WA, USA
| | - Nyla A Heerema
- The Ohio State University School of Medicine, Columbus, OH, USA
| | - Andrew Carrol
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yung-Li Yang
- Department of Laboratory Medicine and Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Tanja M Davidsen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA
| | - Leandro C Hermida
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Marco A Marra
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yussanne Ma
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Lin D, Sun Z, Jin Z, Lei L, Liu Y, Hu B, Wang B, Shen Y, Wang Y. Matrix Remodeling Associated 7 Deficiency Alleviates Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Front Immunol 2018; 9:773. [PMID: 29720975 PMCID: PMC5915751 DOI: 10.3389/fimmu.2018.00773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Matrix remodeling associated 7 (MXRA7) was first noted to co-express with a group of matrix remodeling related genes, and its biological functions had remained unclear. In this study, we investigated the presumed function of MXRA7 in a carbon tetrachloride (CCl4)-induced acute liver injury model in mice. Wild-type, MXRA7−/− mice, and mice that were pulsed with hydrodynamic injection of vehicle or MXRA7-harboring plasmids were challenged with a single dose of CCl4 for injury induction. The sera, spleens, and livers were harvested from mice for assay of cytokines/chemokines expression, cellular responses, or histological features. We found that MXRA7 deficiency alleviated, and MXRA7 overexpression aggravated liver damage in CCl4-challenged mice. FACS analysis showed that MXRA7 deficiency reduced the recruitment of neutrophils through downregulation the expression of CXCL1 and CXCL2 in liver, decreased the number of CD8+ T cells in liver and spleen, suppressed the release of IFNγ and TNFα from T cells, and decreased IFNγ in serum and liver. Western blot assay demonstrated that MXRA7 deficiency suppressed the activation of MAPK pathway and AKT/NF-κB pathway, respectively. Lastly, MXRA7 deficiency or overexpression regulated the expression of two matrix remodeling-related genes (fibronectin and TIMP1) in the liver. We concluded that MXRA7 was an active player in CCl4-induced liver injury, hypothetically by mediating the inflammation or immune compartments and matrix remodeling processes. Further exploration of MXRA7 as a possible new therapeutic target for management of inflammation-mediated liver injury was discussed.
Collapse
Affiliation(s)
- Dandan Lin
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Zhenjiang Sun
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ziqi Jin
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Lei Lei
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Bo Hu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Liu FF, Wang KL, Deng LP, Liu X, Wu MY, Wang TY, Cui L, Li ZG. Transcription factor E2F3a regulates CASP8AP2 transcription and enhances sensitivity to chemotherapeutic drugs in acute lymphoblastic leukemia. Cancer Cell Int 2018; 18:40. [PMID: 29568235 PMCID: PMC5859744 DOI: 10.1186/s12935-018-0531-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/02/2018] [Indexed: 11/24/2022] Open
Abstract
Background Low expression of E2F3a and caspase 8 associated protein 2 (CASP8AP2) are associated with poor prognosis of childhood acute lymphoblastic leukemia (ALL). Methods Dual-luciferase reporter assay and wild type as well as four mutated types of reporter plasmids were used to demonstrate the activation of E2F3a on CASP8AP2 transcription. The direct binding of E2F3a with the promoter of CASP8AP2 was shown by Chromatin Immunoprecipitation (ChIP). Cell proliferation activity and cell cycle were determined by MTS and flow cytometry in leukemic cells after treating with common chemotherapeutic drugs vincristine and daunorubicin. Results In this study, we found that up-regulation of E2F3a in leukemic cells led to increased fraction of cells in S and G2/M phase, accelerated proliferation, and enhanced sensitivity to vincristine and daunorubicin. ChIP and luciferase assay indicated that E2F3a could directly bind to two fragments in the wild type of CASP8AP2 promotor (− 206 to − 69 and − 677 to − 507), and activate its transcription activity which was reduced in mutated promotors. The effect of E2F3a on chemotherapeutic sensitivity of leukemic cells could be reversed by down-regulating CASP8AP2. Conclusions E2F3a could promote transcription and expression of CASP8AP2. The effect of E2F3a on chemotherapeutic sensitivity of ALL cells was implemented by regulating CASP8AP2 expression to a great extent.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,3Present Address: Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603 Shandong Province China
| | - Kai-Ling Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,4Present Address: Department of Pediatrics, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua Nan Road, Tongzhou District, Beijing, 101149 China
| | - Li-Ping Deng
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Xiao Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Min-Yuan Wu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Tian-You Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Lei Cui
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Zhi-Gang Li
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Li WX, Li YK, Lin HT. Correlation between survivin polymorphism and acute leukemia of children. Exp Ther Med 2018; 15:2941-2945. [PMID: 29456699 PMCID: PMC5795526 DOI: 10.3892/etm.2018.5740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
The correlation between the variations in the polymorphic sites of survivin, rs9904341C/G and rs8073069C/G, and the pathogenesis of acute leukemia, as well as the guiding significance in clinical practice were investigated. We enrolled a total of 182 children with acute leukemia and 200 healthy children as the subjects. In accordance with the case-control method, the polymerase chain reaction was carried out for genetic typing of the two polymorphic sites, rs9904341C/G and rs8073069C/G. In the case group and the healthy group, the frequencies of C and G alleles in rs9904341C/G of survivin were 59.3 and 41.7%, and 46.7 and 50.3%, respectively, and the pairwise comparison showed statistically significant differences (P=0.008). Additionally, the frequencies of genotypes, C/C, C/G and G/G, were 38.5 and 41.7%; 19.8 and 26.5%; 16.5 and 27.0% in the case group and the healthy group, respectively, and the differences in comparisons showed statistical significance (P=0.033). The genotype frequency of C/C in the case group was 38.5%, significantly higher than that in the healthy group (26.5%). Compared with C/C, the risk coefficient of leukemia in patients with genotypes of C/G or G/G was significantly decreased. In the case group and the healthy group, the frequencies of C and G alleles in rs8073069C/G of survivin were 30.5 and 69.5%; 27.7 and 72.3%, respectively, and the pairwise comparison showed no statistically significant differences (P=0.404). Additionally, the frequencies of genotypes, C/C, C/G and G/G, were 11 and 39.0%; 50.0 and 9.0%; 37.5 and 53.5% in the case group and the healthy group, respectively, and the differences in comparisons showed no statistical significance (P=0.62). Compared with the genotype of C/C, we found that the risk of leukemia was not affected in patients with genotypes of C/G and G/G. In conclusion, the SNP of rs9904341C/G in survivin may be correlated with the risk of acute leukemia, and compared with C/C genotype, patients with C/G or G/G may have a decreased risk of acute leukemia. In survivin, rs8073069C/G may have no correlation with the risk of acute leukemia.
Collapse
Affiliation(s)
- Wei-Xi Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510000, P.R. China.,Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000, P.R. China
| | - Yong-Kun Li
- Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000, P.R. China
| | - Hai-Tao Lin
- Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
21
|
Mei Y, Li Z, Zhang Y, Zhang W, Hu H, Zhang P, Wu M, Huang D. Low miR-210 and CASP8AP2 expression is associated with a poor outcome in pediatric acute lymphoblastic leukemia. Oncol Lett 2017; 14:8072-8077. [PMID: 29250188 DOI: 10.3892/ol.2017.7229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
The prognostic significance of microRNA (miR)-210 and the caspase 8-associated protein 2 (CASP8AP2) gene in children with acute lymphoblastic leukemia (ALL) has been validated and CASP8AP2 has been demonstrated as a target of miR-210. In the present study, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine miR-210 and CASP8AP2 expression in 91 children with ALL. Associations between gene expression levels and the prognostic value of combined detection of the two indicators were analyzed. Results from a receiver operating characteristic curve demonstrated that threshold values of miR-210 and CASP8AP2 were 3.8243 and 0.4760, respectively. Although the expression of miR-210 and CASP8AP2 were not associated at the mRNA level in pediatric ALL, combined detection of the two predicted ALL prognosis with an increased accuracy. Furthermore, an equation was devised including minimal residual disease at day 33 and expression of miR-210 and CASP8AP2, which may enable bone marrow relapse to be predicted more precisely compared with the current risk stratification.
Collapse
Affiliation(s)
- Yanyan Mei
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Zhigang Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Weiling Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Huimin Hu
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Pinwei Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Minyuan Wu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Dongsheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
22
|
Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol 2016; 173:545-59. [DOI: 10.1111/bjh.14017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Birgit Burkhardt
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Stephanie Mueller
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Tasneem Khanam
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Sherrie L. Perkins
- Department of Pathology; University of Utah Health Sciences Center, ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
| |
Collapse
|
23
|
Sitthi-Amorn J, Herrington B, Megason G, Pullen J, Gordon C, Hogan S, Koganti T, Hicks C. Transcriptome Analysis of Minimal Residual Disease in Subtypes of Pediatric B Cell Acute Lymphoblastic Leukemia. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:51-60. [PMID: 26056509 PMCID: PMC4444133 DOI: 10.4137/cmo.s17049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related death in children and adolescents. Minimal residual disease (MRD) is a strong, independent prognostic factor. The objective of this study was to identify molecular signatures distinguishing patients with positive MRD from those with negative MRD in different subtypes of ALL, and to identify molecular networks and biological pathways deregulated in response to positive MRD at day 46. We compared gene expression levels between patients with positive MRD and negative MRD in each subtype to identify differentially expressed genes. Hierarchical clustering was applied to determine their functional relationships. We identified subtype-specific gene signatures distinguishing patients with positive MRD from those with negative MRD. We identified the genes involved in cell cycle, apoptosis, transport, and DNA repair. We also identified molecular networks and biological pathways dysregulated in response to positive MRD, including Granzyme B, B-cell receptor, and PI3K signaling pathways.
Collapse
Affiliation(s)
- Jitsuda Sitthi-Amorn
- Division of Hematology Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Betty Herrington
- Division of Hematology Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gail Megason
- Division of Hematology Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jeanette Pullen
- Division of Hematology Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Catherine Gordon
- Division of Hematology Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shirley Hogan
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Tejaswi Koganti
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chindo Hicks
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA. ; Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
24
|
Manku G, Culty M. Dynamic changes in the expression of apoptosis-related genes in differentiating gonocytes and in seminomas. Asian J Androl 2015; 17:403-14. [PMID: 25677133 PMCID: PMC4430938 DOI: 10.4103/1008-682x.146101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/25/2023] Open
Abstract
Apoptosis is an integral part of the spermatogenic process, necessary to maintain a proper ratio of Sertoli to germ cell numbers and provide an adequate microenvironment to germ cells. Apoptosis may also represent a protective mechanism mediating the elimination of abnormal germ cells. Extensive apoptosis occurs between the first and second postnatal weeks, at the point when gonocytes, precursors of spermatogonial stem cells, should have migrated toward the basement membrane of the tubules and differentiated into spermatogonia. The mechanisms regulating this process are not well-understood. Gonocytes undergo phases of proliferation, migration, and differentiation which occur in a timely and closely regulated manner. Gonocytes failing to migrate and differentiate properly undergo apoptosis. Inadequate gonocyte differentiation has been suggested to lead to testicular germ cell tumor (TGCT) formation. Here, we examined the expression levels of apoptosis-related genes during gonocyte differentiation by quantitative real-time polymerase chain reaction, identifying 48 pro- and anti-apoptotic genes increased by at least two-fold in rat gonocytes induced to differentiate by retinoic acid, when compared to untreated gonocytes. Further analysis of the most highly expressed genes identified the pro-apoptotic genes Gadd45a and Cycs as upregulated in differentiating gonocytes and in spermatogonia compared with gonocytes. These genes were also significantly downregulated in seminomas, the most common type of TGCT, compared with normal human testicular tissues. These results indicate that apoptosis-related genes are actively regulated during gonocyte differentiation. Moreover, the down-regulation of pro-apoptotic genes in seminomas suggests that they could represent new therapeutic targets in the treatment of TGCTs.
Collapse
Affiliation(s)
- Gurpreet Manku
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Karrman K, Castor A, Behrendtz M, Forestier E, Olsson L, Ehinger M, Biloglav A, Fioretos T, Paulsson K, Johansson B. Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A. J Hematol Oncol 2015; 8:42. [PMID: 25903014 PMCID: PMC4412034 DOI: 10.1186/s13045-015-0138-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Background Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that arises in a multistep fashion through acquisition of several genetic aberrations, subsequently giving rise to a malignant, clonal expansion of T-lymphoblasts. The aim of the present study was to identify additional as well as cooperative genetic events in T-ALL. Methods A population-based pediatric T-ALL series comprising 47 cases was investigated by SNP array and deep sequencing analyses of 75 genes, in order to ascertain pathogenetically pertinent aberrations and to identify cooperative events. Results The majority (92%) of cases harbored copy number aberrations/uniparental isodisomies (UPIDs), with a median of three changes (range 0–11) per case. The genes recurrently deleted comprised CDKN2A, CDKN2B, LEF1, PTEN, RBI, and STIL. No case had a whole chromosome UPID; in fact, literature data show that this is a rare phenomenon in T-ALL. However, segmental UPIDs (sUPIDs) were seen in 42% of our cases, with most being sUPID9p that always were associated with homozygous CDKN2A deletions, with a heterozygous deletion occurring prior to the sUPID9p in all instances. Among the 75 genes sequenced, 14 (19%) were mutated in 28 (72%) of 39 analyzed cases. The genes targeted are involved in signaling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse; thus, such mutations can be secondary events. Conclusions Deep sequencing and SNP array analyses of T-ALL revealed lack of wUPIDs, a high proportion of sUPID9p targeting CDKN2A, NOTCH1 mutations in subclones, and recurrent mutations of genes involved in signaling transduction, epigenetic regulation, and transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0138-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristina Karrman
- Department of Clinical Genetics, University and Regional Laboratories, Region Skåne, SE-221 85, Lund, Sweden. .,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Anders Castor
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden.
| | - Mikael Behrendtz
- Department of Pediatrics, Linköping University Hospital, Linköping, Sweden.
| | - Erik Forestier
- Department of Medical Biosciences, Clinical Genetics, Umeå University, Umeå, Sweden.
| | - Linda Olsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Mats Ehinger
- Department of Pathology, University and Regional Laboratories, Region Skåne, Lund, Sweden.
| | - Andrea Biloglav
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Thoas Fioretos
- Department of Clinical Genetics, University and Regional Laboratories, Region Skåne, SE-221 85, Lund, Sweden. .,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Bertil Johansson
- Department of Clinical Genetics, University and Regional Laboratories, Region Skåne, SE-221 85, Lund, Sweden. .,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
26
|
Identification of differentially expressed genes associated with prognosis of B acute lymphoblastic leukemia. DISEASE MARKERS 2015; 2015:828145. [PMID: 25802479 PMCID: PMC4354728 DOI: 10.1155/2015/828145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
Abstract
Background. Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder with high mortality rates. The aim of this study was to validate the expression profile of 45 genes associated with signaling pathways involved in leukemia and to evaluate their association with the prognosis of B-ALL. Methods. 219 samples of peripheral blood mononuclear cells obtained from 73 B-ALL patients were studied at diagnosis, four, and eight weeks after starting treatment. Gene expression was analyzed by quantitative real-time polymerase chain reaction. Results. Normalized delta Cq values of 23 genes showed differences between B-ALL and controls at diagnosis time (P values < 0.05). There were significant associations between B-ALL patients relapse/death and the expression levels of IL2RA, SORT1, DEFA1, and FLT3 genes at least in one of the times evaluated (P values < 0.05 and odds ratio ranges: 3.73–27). The association between FLT3 deregulation and relapse/death was a constant in the times studied and their overexpression significantly increased the odds of relapse/death in a range of 3.73 and 6.05 among study population (P values < 0.05). Conclusions. Overexpression of FLT3 and DEFA1 genes retained independent prognostic significance for B-ALL outcome, reflected as increased risks of relapse/death among the study population.
Collapse
|
27
|
Cui L, Gao C, Zhang RD, Jiao Y, Li WJ, Zhao XX, Liu SG, Yue ZX, Zheng HY, Deng GR, Wu MY, Li ZG, Jia HT. Low expressions of ARS2 and CASP8AP2 predict relapse and poor prognosis in pediatric acute lymphoblastic leukemia patients treated on China CCLG-ALL 2008 protocol. Leuk Res 2014; 39:115-23. [PMID: 25530566 DOI: 10.1016/j.leukres.2014.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
ARS2 protein is important to early development and cell proliferation, in which ARS2-CASP8AP2 interaction is implicated. However, the predictive significance of ARS2 in childhood acute lymphoblastic leukemia (ALL) is unknown. Here we evaluate the predictive values of ARS2 expression and combined ARS2 and CASP8AP2 expression in relapse. We showed that ARS2 expression in ALL bone marrow samples at initial diagnosis was markedly lower than that in complete remission (CR). Likewise, the levels of ARS2 expression in the patients suffering from relapse were significantly lower than that of patients in continuous CR. Furthermore, low expression of ARS2 was closely correlated to poor treatment response including poor prednisone response and high minimal residual disease (MRD), and the patients with high MRD (≥10(-4)) and low ARS2 were more subject to relapse. The multivariate analyses for relapse free survival and event free survival revealed that ARS2 expression remained an independent prognostic factor after adjusting other risk factors. In addition, combined assessment of ARS2 and CASP8AP2 expression was more accurate to predict relapse, based on which an algorithm composed of ARS2 and CASP8AP2 expression, prednisone response and MRD (day 78) was proposed. Together, ARS2 and CASP8AP2 expressions can precisely predict high-risk of relapse and ALL prognosis.
Collapse
Affiliation(s)
- Lei Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ying Jiao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei-Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guo-Ren Deng
- Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Gang Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Minamida Y, Someda M, Yonehara S. FLASH/casp8ap2 is indispensable for early embryogenesis but dispensable for proliferation and differentiation of ES cells. PLoS One 2014; 9:e108032. [PMID: 25238250 PMCID: PMC4169604 DOI: 10.1371/journal.pone.0108032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022] Open
Abstract
FLICE/caspase-8-associated huge protein (FLASH)/casp8ap2 is involved in various cellular functions, such as cell cycle progression, transcriptional regulation, the regulation of apoptosis, and the regulation of histone gene expression. The down-regulated expression of FLASH has been shown to inhibit cell cycle progression in the S phase in many kinds of mice and human cell lines and the inhibition of cell cycle progression may be attributed to the suppressed expression of replication-dependent histone genes. We here demonstrated that the induced knockout of FLASH never affected cell cycle progression in ES cells, in which the expression of core histone genes was decreased to levels similar to those in human KB cells sensitive to the knockdown of FLASH. In addition, the FLASH conditional knockout ES cells could differentiate normally into not only mesodermal and endodermal cells, but also trophoblasts. In order to investigate the function of FLASH in early embryogenesis in vivo, we also examined a FLASH mutant mouse, in which FLASH mutant allele did not express FLASH mRNA in embryos and most adult organs, except for the testis. FLASH mutant embryos died between E3.5 and E8.5. Furthermore, the in vitro cultivation of FLASH mutant embryos generated by in vitro fertilization showed embryonic lethality at the pre-implantation stage by inhibiting the hatching of embryos and their adherence to substrates. Taken together, these results indicate that FLASH plays an important role in early embryogenesis, but is not essential for either the proliferation or differentiation of ES cells.
Collapse
Affiliation(s)
- Yoshitaka Minamida
- Laboratory of Molecular and Cellular Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Japan
| | - Masataka Someda
- Laboratory of Molecular and Cellular Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Japan
| | - Shin Yonehara
- Laboratory of Molecular and Cellular Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Japan
- * E-mail:
| |
Collapse
|
29
|
Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2014; 15:201-7. [PMID: 24941917 DOI: 10.1007/s10969-014-9184-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.
Collapse
|
30
|
Curi DA, Iqbal A, Platanias LC. Pediatric acute lymphoblastic leukemia: the missing pieces in risk and survival. Leuk Lymphoma 2014; 55:2226-7. [DOI: 10.3109/10428194.2014.901512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Juárez-Velázquez R, Reyes-León A, Salas-Labadía C, Rivera-Luna R, Velasco-Hidalgo L, López-Hernández G, López-Santiago N, Paredes-Aguilera R, Domínguez-López A, Bernáldez R, Pérez-Vera P. Significance of CASP8AP2 and H2AFZ expression in survival and risk of relapse in children with acute lymphoblastic leukemia. Leuk Lymphoma 2014; 55:2305-11. [PMID: 24397596 DOI: 10.3109/10428194.2013.878458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Novel biomarkers for risk refinement and stratification in childhood acute lymphoblastic leukemia (ALL) are needed to optimize treatment results. We studied the expression of CASP8AP2 and H2AFZ associated with relapse and survival in bone marrow samples from newly diagnosed children with ALL. We found: (a) an increased risk for early relapse in those patients with low expression of CASP8AP2 (odds ratio [OR] 3.93, 95% confidence interval [CI] 1.40-11.02, p < 0.05) confirming its usefulness as a predictive risk marker, although H2AFZ did not present the same effect; (b) patients with low expressions of CASP8AP2 and H2AFZ had inferior survival rates (p < 0.001); (c) the predictive values regarding low expressions of H2AFZ and CASP8AP2 and high white blood cell count suggest that these features could help to identify more accurately patients at greater risk of relapse.
Collapse
Affiliation(s)
- Rocío Juárez-Velázquez
- Laboratorio de Cultivo de Tejidos, Instituto Nacional de Pediatría , México D.F. , México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SUMMARY Predictive/prognostic factors in acute leukemia continue to be sought, in order to refine treatment strategies. Minimal residual disease (MRD) testing has been shown to be a statistically significant factor by multivariate analysis in both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia. Its utility in guiding therapy has been more extensively studied in pediatric ALL, with some protocols having instituted MRD testing into therapeutic algorithms. The clinical impact of MRD testing in ALL and acute myeloid leukemia will be presented, including both molecular and flow cytometric methodologies, with a more focused discussion of the strategy, methodology and interpretation of MRD testing by multiparametric flow cytometry.
Collapse
Affiliation(s)
- Lorinda Soma
- University of Washington, Department of Laboratory Medicine, Division of Hematopathology, Room NW120, Box 357110, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Brent Wood
- University of Washington, Department of Laboratory Medicine, Division of Hematopathology, Room NW120, Box 357110, 1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
33
|
Pujari R, Eligar SM, Kumar N, Barkeer S, Reddy V, Swamy BM, Inamdar SR, Shastry P. Rhizoctonia bataticola lectin (RBL) induces caspase-8-mediated apoptosis in human T-cell leukemia cell lines but not in normal CD3 and CD34 positive cells. PLoS One 2013; 8:e79311. [PMID: 24244478 PMCID: PMC3828372 DOI: 10.1371/journal.pone.0079311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/20/2013] [Indexed: 01/06/2023] Open
Abstract
We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins- Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia.
Collapse
Affiliation(s)
- Radha Pujari
- National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
| | - Sachin M. Eligar
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | - Natesh Kumar
- National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
| | - Srikanth Barkeer
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | - Vishwanath Reddy
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | - Bale M. Swamy
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | | | - Padma Shastry
- National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
34
|
Li ZG, Jiao Y, Li WJ, Deng GR, Cui L, Gao C, Zhao XX, Wu MY, Jia HT. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res 2013; 37:1287-93. [PMID: 23953914 DOI: 10.1016/j.leukres.2013.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
DNA hypermethylation of Caspase 8 associated protein 2 (CASP8AP2) and its role in childhood acute lymphoblastic leukemia (ALL) is unclear. We analyzed methylation status of CpG sites upstream of CASP8AP2 gene in 86 children with ALL by bisulfite sequencing and quantitative PCR. Methylation percentage of two CpG sites at positions of -1189 and -1176 was inversely correlated with mRNA expression (Spearman correlation: -0.333, P=0.002). High methylation was associated with the existence of minimal residual disease (MRD) at day 78 (P=0.035), The patients in high methylation group had a poor treatment outcome. The combination of methylation level and MRD at day 33 might improve current risk stratification.
Collapse
Affiliation(s)
- Zhi-Gang Li
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vennemann A, Hofmann TG. SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2. Cell Cycle 2013; 12:1914-21. [PMID: 23673342 DOI: 10.4161/cc.24943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASH(K1792R), is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies.
Collapse
Affiliation(s)
- Astrid Vennemann
- German Cancer Research Center (DKFZ), Research Group Cellular Senescence, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | |
Collapse
|
36
|
Abstract
Abstract
After approximately 20 years of development and after several prospective clinical trials, the detection of minimal residual disease (MRD) has emerged as part of state-of-the-art diagnostics to guide the majority of contemporary treatment programs both in pediatric and adult acute lymphoblastic leukemia (ALL). For ALL, several methods of MRD analysis are available, but 2 are widely applicable. One is based on the detection of aberrant expression of leukemia specific antigens by flow cytometry and the other one uses the specific rearrangements of the TCR or Ig genes, which can be detected by quantitative PCR in the DNA of leukemic cells. In some cases with known fusion genes such as BCR/ABL, RT-PCR can be used as a third method of identifying leukemic cells by analyzing RNA in patient samples. Clinical application of such sophisticated tools in the stratification and treatment of ALL requires reliable, reproducible, and quality-assured methods to ensure patient safety.
Collapse
|
37
|
Zhou MH, Gao L, Jing Y, Xu YY, Ding Y, Wang N, Wang W, Li MY, Han XP, Sun JZ, Wang LL, Yu L. Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia. Ann Hematol 2012; 91:1235-43. [PMID: 22373549 DOI: 10.1007/s00277-012-1431-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
ETV6 is an important hematopoietic regulatory factor and ETV6 gene rearrangement is involved in a wide variety of hematological malignancies. In this study, we sought to investigate the incidence of ETV6-associated fusion genes in B- and T-lineage acute lymphoblastic leukemia (ALL) by multiplex-nested reverse transcription-polymerase chain reaction (RT-PCR) in 176 adult ALL patients. Total RNA was extracted from bone marrow samples of ALL patients including 136 B- and 40 T-lineage ALL, and ETV6 fusion genes were detected by multiplex-nested RT-PCR. Changes of ETV6 fusion gene mRNA transcript levels were examined by real-time RT-PCR. We detected a total of 15 ETV6 gene rearrangements with a positive rate of 8.5%, involving seven ETV6-associated fusion genes in 13 B-ALL (13/136, 9.6%) and 2 T-ALL patients (2/40, 5.0%). ETV6-RUNX1 were observed in six cases (3.4%), ETV6-JAK2 in three cases (1.7%), ETV6-ABL1 in two cases (1.1%), and ETV6-ABL2, ETV6-NCOA2, ETV6-SYK, and PAX5-ETV6 each in one case (0.6%). ETV6-JAK2 was found in both B-ALL and T-ALL patients. Furthermore, real-time quantitative RT-PCR assays showed that the ETV6-RUNX1 mRNA transcript levels decreased during conventional chemotherapy or hematopoietic stem cell transplantation. This study shows that multiplex-nested RT-PCR is an effective and accurate tool to identify ETV6 rearrangements in adult ALL, which provides some clues into the diagnosis and prognosis of ALL but also molecular markers for the detection of minimal residual disease in adult ALL.
Collapse
Affiliation(s)
- Min-hang Zhou
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Campana D. Should minimal residual disease monitoring in acute lymphoblastic leukemia be standard of care? Curr Hematol Malig Rep 2012; 7:170-7. [PMID: 22373809 DOI: 10.1007/s11899-012-0115-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In acute lymphoblastic leukemia (ALL), the advent of methods to measure disease not detectable by morphology, ie, minimal residual disease (MRD), has set a new standard to define remission. The clinical importance of MRD has been demonstrated by numerous studies using either flow cytometry or polymerase chain reaction and involving thousands of patients. Results are in remarkable agreement on the association between MRD persistence and risk of subsequent relapse, regardless of the MRD detection method used. More recent data indicate that MRD can also be informative in specific subgroups of ALL patients, such as infants or those with T-lineage ALL. Hence, MRD is now being used in clinical trials to inform treatment decisions and guide patients' clinical management. This article reviews MRD methodologies and clinical applications with emphasis on recently reported technical advances and prognostic associations, and the practical issues related to the implementation of MRD monitoring in the clinic.
Collapse
Affiliation(s)
- Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophys Res Commun 2012; 422:578-85. [DOI: 10.1016/j.bbrc.2012.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
|
40
|
Cheng C. Integration of diverse statistical evidence of gene-trait association in systems biology studies. Chem Biodivers 2012; 9:935-44. [PMID: 22589094 PMCID: PMC3517157 DOI: 10.1002/cbdv.201100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The rapid advancement of high-throughput genomic assay technologies has generated large amounts of diverse genomic data in disparate human populations and diseases. These data provide a unique opportunity for biomedical investigators to systematically study multifaceted aspects of genes' involvement in the biological processes underlying important traits from the systems biology perspective. An important component in such a study is the inference that integrates diverse lines of statistical evidence for gene-trait association from the observed trait values and the massive numbers of measured genomic features. A novel integrated statistical analysis procedure is developed in this paper and is illustrated by an application in studying childhood leukemia.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
41
|
Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 2012; 15:39-49. [PMID: 22335920 DOI: 10.1016/j.drup.2012.01.006] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of clinical drug resistance is still one of the most challenging factors in cancer treatment effectiveness. Until more recently, the assumption has been that random genetic lesions are sufficient to explain the progression of malignancy and escape from chemotherapy. Here we propose an additional perspective, one in which the tumor cells despite the malignant genome could find a microenvironment either within the tumor or as a dormant cell to remain polar and blend into an organized context. Targeting this dynamic interplay could be considered a new avenue to prevent therapeutic resistance, and may even provide a promising effective cancer treatment.
Collapse
Affiliation(s)
- Ana Luísa Correia
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977, Berkeley, CA 94720, USA
| | | |
Collapse
|
42
|
Gao C, Cheng C. A Phenotype-Driven Dimension Reduction (PhDDR) approach to integrated genomic association analyses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:6837-40. [PMID: 22255909 DOI: 10.1109/iembs.2011.6091686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An immediate challenge in integrated genomic analysis involving several types of genomic factors all measured genome-wide is the ultra-high dimensionality. Screening all possible relationships among the genomic factors is an NP-hard problem; therefore in practice proper dimension reduction is necessary. In this paper we develop the Phenotype-Driven Dimension Reduction (PhDDR) approach to the analysis of gene co-expressions, and discuss its extensions to integration of other genetic factors. This approach is then illustrated by an application to gene co-expression analysis of treatment response of childhood leukemia.
Collapse
Affiliation(s)
- Cuilan Gao
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
43
|
Ehrhardt H, Wachter F, Maurer M, Stahnke K, Jeremias I. Important role of caspase-8 for chemosensitivity of ALL cells. Clin Cancer Res 2011; 17:7605-13. [PMID: 22010212 DOI: 10.1158/1078-0432.ccr-11-0513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Sensitivity of tumor cells toward chemotherapy mainly determines the prognosis of patients suffering from acute lymphoblastic leukemia (ALL); nevertheless, underlying mechanisms regulating chemosensitivity remain poorly understood. Here, we aimed at characterizing the role of caspase-8 for chemosensitivity of B- and T-ALL cells. EXPERIMENTAL DESIGN Primary tumor cells from children with ALL were evaluated for expression levels of the caspase-8 protein, were amplified in nonobese diabetic/severe combined immunodeficient mice, transfected with siRNA, and evaluated for their chemosensitivity in vitro. RESULTS Effective cell death in B- and T-ALL cells depended on the presence of caspase-8 for the majority of cytotoxic drugs routinely used in antileukemia treatment. Caspase-8 was activated independently from extrinsic apoptosis signaling. Accordingly in primary ALL cells, the expression level of caspase-8 protein correlated with cell death sensitivity toward defined cytotoxic drugs in vitro. In the subgroup of primary ALL cells, with low expression of caspase-8, methotrexate (MTX) upregulated the expression of caspase-8 mediated by the transcription factor p53, suggesting epigenetic silencing of caspase-8. RNA interference in patient-derived B- and T-ALL cells revealed that effective cell death induction by most routine drug combinations involving MTX depended on the presence of caspase-8. CONCLUSION Our results indicate that caspase-8 is crucial for the high antileukemic efficiency of numerous routine cytotoxic drugs. Reexpression of epigenetically downregulated caspase-8 represents a promising approach to increase efficiency of antileukemic therapy.
Collapse
Affiliation(s)
- Harald Ehrhardt
- Helmholtz Center Munich–German Research Center for Environmental Health, Department of Gene Vectors, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Jiao Y, Cui L, Gao C, Li W, Zhao X, Liu S, Wu M, Deng G, Li Z. CASP8AP2 is a promising prognostic indicator in pediatric acute lymphoblastic leukemia. Leuk Res 2011; 36:67-71. [PMID: 21696825 DOI: 10.1016/j.leukres.2011.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 12/16/2022]
Abstract
The prognostic significance of caspase 8 associated protein 2 (CASP8AP2) in pediatric ALL is controversial. We determined a cut-off of CASP8AP2 expression in bone marrow samples of 39 newly diagnosed patients, and found a significantly poor bone marrow relapse-free survival (p=0.019) in low-expression group and verified it in another cohort of 106 patients (p=0.002). Furthermore, as an independent prognostic factor, CASP8AP2 expression was correlated to minimal residual disease (MRD), and incorporating it with MRD would help to identify patients at greater risk of bone marrow relapse. We also developed an algorithm comprised of clinical risk and CASP8AP2 expression, which could predict bone marrow relapse more accurately.
Collapse
Affiliation(s)
- Ying Jiao
- Key Laboratory of Major Diseases in Children, Ministry of Education & National Key Discipline of Pediatrics, Ministry of Education & Department of Hematology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The molecular response of cancer cells to hypoxia is the focus of intense research. In the last decade, research into microRNAs (miRNAs), small RNAs which have a role in regulation of mRNA and translation, has grown exponentially. miR-210 has emerged as the predominant miRNA regulated by hypoxia. Elucidation of its targets points to a variety of roles for this, and other hypoxia-regulated miRNAs (HRMs), in tumour growth and survival. miR-210 expression correlates with poor survival in cancer patients, and shows promise for future use as a tumour marker or therapeutic agent. The role of miR-210 and other HRMs in cancer biology is the subject of this review.
Collapse
|
46
|
Acute lymphoblastic leukemia cells that survive combination chemotherapy in vivo remain sensitive to allogeneic immune effects. Leuk Res 2010; 35:800-7. [PMID: 21074852 DOI: 10.1016/j.leukres.2010.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/01/2010] [Accepted: 10/20/2010] [Indexed: 11/20/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation is often performed for patients with acute lymphoblastic leukemia (ALL) whose disease has relapsed after chemotherapy treatment. However, graft versus leukemia (GVL) effects in ALL are generally weak and the mechanisms of this weakness are unknown. These studies tested the hypothesis that ALL cells that have survived conventional chemotherapy in vivo acquire relative resistance to the allogeneic GVL effect. C57BL/6 mice were injected with murine pre-B ALL lines driven by human mutations and then were treated with combination chemotherapy. ALL cells surviving therapy were analysed in vitro and in vivo for acquisition of resistance to chemotherapy, radiation, cytolytic T cells, NK cells, LAK cells and cytokines. In vivo drug treatment did lead to leukemia population with more rapid proliferation and also decreased sensitivity to vincristine, doxorubicin and radiation. However, drug treatment did not produce ALL populations that were less sensitive to GVL effects in vitro or in vivo.
Collapse
|
47
|
Multiplex reverse transcription-polymerase chain reaction as diagnostic molecular screening of 4 common fusion chimeric genes in Taiwanese children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2010; 32:e323-30. [PMID: 20930648 DOI: 10.1097/mph.0b013e3181ed1655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The classification of B-lineage acute lymphoblastic leukemia (ALL) by specific chromosomal translocations has prognostic implications for risk-directed therapy. Reverse transcription-polymerase chain reaction (RT-PCR) assay is a useful tool for detecting fusion transcripts from common chromosomal translocations of ALL cells. METHODS Multiplex RT-PCR and nested-PCR assays were used to detect ALL-type BCR-ABL1 transcripts of the t(9;22), TCF-PBX1 transcripts of t(1;19), the MLL-AF4 transcripts of t(4;11), and 2 variants of ETV6-RUNX1 of the cryptic t(12;21) in 148 leukemic samples upon diagnosis. The patients received risk-directed protocols of the Taiwan Pediatric Oncology Group-ALL-2002 that consisted of multiple chemotherapeutic agents of different intensities. Event-free survival (EFS) and overall survival (OS) rates were analyzed for genetic abnormalities detected by multiplex PCR and conventional cytogenetic analysis by the Kaplan-Meier method, and compared with the Mantel-Haenszel test. The Cox proportional hazards model was implemented to identify independent prognostic factors for EFS and OS. RESULTS In this cohort of Taiwanese children, the relative frequencies of the 4 translocations of B-lineage ALL were 8% with ALL-type t(9;22)/BCR-ABL1, 4% with (1;19)/TCF-PBX1, 2% with t(4;11)/MLL-AF4, and 17.6% with t(12;21)/ETV6-RUNX1. Patients with t(12;21)/ETV6-RUNX1 fusion, hyperdiploidy, and t(1;19)/TCF-PBX1 fusion had the most favorable outcomes, whereas those with the t(9;22)/BCR-ABL1 fusion or t(4;11) and other MLL gene rearrangement had poor prognosis (P<0.001 for EFS and OS). BCR-ABL1, MLL gene rearrangement, and very high-risk group were independent prognostic factors after Cox regression analysis. CONCLUSIONS The biological factors of leukemia cells are associated with treatment outcomes in childhood ALL. Multiplex RT-PCR assay is an efficient and sensitive diagnostic tool that may improve the ability to accurately and rapidly risk-stratify children with ALL.
Collapse
|
48
|
Immunologic minimal residual disease detection in acute lymphoblastic leukemia: a comparative approach to molecular testing. Best Pract Res Clin Haematol 2010; 23:347-58. [PMID: 21112034 DOI: 10.1016/j.beha.2010.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The generation of antisera directed against leukocyte differentiation antigens opened the possibility of studying minimal residual disease (MRD) in patients with acute lymphoblastic leukemia (ALL). During the three decades that followed the pioneering studies in this field, great progress has been made in the development of a wide array of monoclonal antibodies and of flow cytometric techniques for rare event detection. This advance was accompanied by an increasingly greater understanding of the immunophenotypic features of leukemic and normal lymphoid cells, and of the antigenic differences that make MRD studies possible. In parallel, molecular methods for MRD detection were established. The systematic application of immunologic and molecular techniques to study MRD in clinical samples has demonstrated the clinical significance of MRD in patients, leading to the use of MRD to regulate treatment intensity in many contemporary protocols. In this article, we discuss methodologic issues related to the immunologic monitoring of MRD and the evidence supporting its clinical significance, and compare the advantages and limitations of this approach to those of molecular monitoring of MRD.
Collapse
|
49
|
Campana D. Progress of minimal residual disease studies in childhood acute leukemia. Curr Hematol Malig Rep 2010; 5:169-76. [PMID: 20467922 DOI: 10.1007/s11899-010-0056-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Submorphologic (ie, minimal) residual disease (MRD) can be monitored in virtually all children and adolescents with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) using methods such as flow cytometric detection of leukemic immunophenotypes or polymerase chain reaction amplification of fusion transcripts, gene mutations, and clonal rearrangements of antigen-receptor genes. Numerous studies have demonstrated the clinical importance of measuring MRD, spurring the design of clinical trials in which MRD is used for risk assignment and treatment selection. Emerging results from these trials suggest that the adverse prognostic impact of low levels of MRD during the early phases of therapy can be diminished by treatment intensification. This article discusses the methods used for detecting MRD in childhood AML and ALL, the data obtained in studies correlating MRD with treatment outcome, the results of the initial trials using MRD, and the practical aspects related to the design of MRD-based clinical studies.
Collapse
Affiliation(s)
- Dario Campana
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
50
|
Hogan LE, Raetz EA. Dying to predict outcome. Pediatr Blood Cancer 2010; 55:5-6. [PMID: 20486162 DOI: 10.1002/pbc.22563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laura E Hogan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|