1
|
Barakos GP, Georgoulis V, Koumpis E, Hatzimichael E. Elucidating the Role of the T Cell Receptor Repertoire in Myelodysplastic Neoplasms and Acute Myeloid Leukemia. Diseases 2025; 13:19. [PMID: 39851483 PMCID: PMC11765071 DOI: 10.3390/diseases13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies. Myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) are hematological neoplasms that are characterized by immune evasion mechanisms, with immunotherapy giving only modest results thus far. Our review of TCR repertoire dynamics in these diseases reveals distinct patterns: MDS patients show increased TCR clonality with disease progression, while AML exhibits varied TCR signatures depending on disease stage and treatment response. Understanding these patterns has important clinical implications, as TCR repertoire metrics may serve as potential biomarkers for disease progression and treatment response, particularly in the context of immunotherapy and stem cell transplantation. These insights could guide patient stratification and treatment selection, ultimately improving therapeutic outcomes in MDS and AML.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Vasileios Georgoulis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| |
Collapse
|
2
|
De Cicco M, Lagreca I, Basso S, Barozzi P, Muscianisi S, Bianco A, Riva G, Di Vincenzo S, Pulvirenti C, Sapuppo D, Siciliano M, Rosti V, Candoni A, Zecca M, Forghieri F, Luppi M, Comoli P. Preclinical Validation of an Advanced Therapy Medicinal Product Based on Cytotoxic T Lymphocytes Specific for Mutated Nucleophosmin (NPM1 mut) for the Treatment of NPM1 mut-Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2731. [PMID: 37345068 DOI: 10.3390/cancers15102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.
Collapse
Affiliation(s)
- Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Stella Muscianisi
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alba Bianco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy
| | - Sara Di Vincenzo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Sapuppo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mariangela Siciliano
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| |
Collapse
|
3
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
4
|
Abstract
The outcomes associated with pediatric acute myeloid leukemia (AML) have improved over the last few decades, with the implementation of intensive chemotherapy, hematopoietic stem cell transplant, and improved supportive care. However, even with intensive therapy and the use of HSCT, both of which carry significant risks of short- and long-term side effects, approximately 30% of children are not able to be cured. The characterization of AML in pediatrics has evolved over time and it currently involves use of a variety of diagnostic tools, including flow cytometry and comprehensive genomic sequencing. Given the adverse effects of chemotherapy and the need for additional therapeutic options to improve outcomes in these patients, the genomic and molecular architecture is being utilized to inform selection of targeted therapies in pediatric AML. This review provides a summary of current, targeted therapy options in pediatric AML.
Collapse
|
5
|
Knorr DA, Goldberg AD, Stein EM, Tallman MS. Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics. Leuk Lymphoma 2019; 60:3350-3362. [PMID: 31335250 PMCID: PMC6928392 DOI: 10.1080/10428194.2019.1639167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
Abstract
Immunotherapy in the form of allogeneic stem cell transplantation (SCT) plays an instrumental role in the treatment of acute myeloid leukemia (AML), with non-transplant modalities of immunotherapy including checkpoint blockade now being actively explored. Here, we provide an overview of the graft versus leukemia (GVL) effect in AML as a window into understanding the prospects of AML immunotherapy. We explore the roles of various cell types in orchestrating anti-leukemic immunity, as well as those contributing to the unique immune suppressive state of myeloid diseases. We discuss specific approaches to engage the immune system, while noting the challenges of the AML antigen landscape and the barriers to immune modulation. We review the potential for immunomodulatory agents in combination with cellular therapies, donor lymphocyte infusion, and following SCT. Finally, to address the challenge of minimal residual disease (MRD) following chemotherapy, we propose combination epigenetic and immunotherapy for the eradication of MRD.
Collapse
Affiliation(s)
- David A. Knorr
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Aaron D. Goldberg
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan M. Stein
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin S. Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Aurelius J, Möllgård L, Kiffin R, Ewald Sander F, Nilsson S, Thorén FB, Hellstrand K, Martner A. Anthracycline-based consolidation may determine outcome of post-consolidation immunotherapy in AML. Leuk Lymphoma 2019; 60:2771-2778. [PMID: 30991860 DOI: 10.1080/10428194.2019.1599110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Consolidation chemotherapy in acute myeloid leukemia (AML) aims at eradicating residual leukemic cells and mostly comprises high-dose cytarabine with or without the addition of anthracyclines, including daunorubicin. Immunogenic cell death (ICD) may contribute to the efficacy of anthracyclines in solid cancer, but the impact of ICD in AML is only partly explored. We assessed aspects of ICD, as reflected by calreticulin expression, in primary human AML blasts and observed induction of surface calreticulin upon exposure to daunorubicin but not to cytarabine. We next assessed immune phenotypes in AML patients in complete remission (CR), following consolidation chemotherapy with or without anthracyclines. These patients subsequently received immunotherapy with histamine dihydrochloride (HDC) and IL-2. Patients who had received anthracyclines for consolidation showed enhanced frequencies of CD8+ TEM cells in blood along with improved survival. We propose that the choice of consolidation therapy prior to AML immunotherapy may determine clinical outcome.
Collapse
Affiliation(s)
- Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Möllgård
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Ewald Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Fredrik Bergh Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Forghieri F, Riva G, Lagreca I, Barozzi P, Vallerini D, Morselli M, Paolini A, Bresciani P, Colaci E, Maccaferri M, Gilioli A, Nasillo V, Messerotti A, Pioli V, Arletti L, Giusti D, Bettelli F, Celli M, Donatelli F, Corradini G, Basso S, Gurrado A, Cellini M, Trenti T, Marasca R, Narni F, Martelli MP, Falini B, Potenza L, Luppi M, Comoli P. Characterization and dynamics of specific T cells against nucleophosmin-1 (NPM1)-mutated peptides in patients with NPM1-mutated acute myeloid leukemia. Oncotarget 2019; 10:869-882. [PMID: 30783516 PMCID: PMC6368236 DOI: 10.18632/oncotarget.26617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin(NPM1)-mutated protein, a leukemia-specific antigen, represents an ideal target for AML immunotherapy. We investigated the dynamics of NPM1-mutated-specific T cells on PB and BM samples, collected from 31 adult NPM1-mutated AML patients throughout the disease course, and stimulated with mixtures of 18 short and long peptides (9-18mers), deriving from the complete C-terminal of the NPM1-mutated protein. Two 9-mer peptides, namely LAVEEVSLR and AVEEVSLRK (13.9-14.9), were identified as the most immunogenic epitopes. IFNγ-producing NPM1-mutated-specific T cells were observed by ELISPOT assay after stimulation with peptides 13.9-14.9 in 43/85 (50.6%) PB and 34/80 (42.5%) BM samples. An inverse correlation between MRD kinetics and anti-leukemic specific T cells was observed. Cytokine Secretion Assays allowed to predominantly and respectively identify Effector Memory and Central Memory T cells among IFNγ-producing and IL2-producing T cells. Moreover, NPM1-mutated-specific CTLs against primary leukemic blasts or PHA-blasts pulsed with different peptide pools could be expanded ex vivo from NPM1-mutated AML patients or primed in healthy donors. We describe the spontaneous appearance and persistence of NPM1-mutated-specific T cells, which may contribute to the maintenance of long-lasting remissions. Future studies are warranted to investigate the potential role of both autologous and allogeneic adoptive immunotherapy in NPM1-mutated AML patients.
Collapse
Affiliation(s)
- Fabio Forghieri
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, Modena, Italy
| | - Ivana Lagreca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Patrizia Barozzi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Daniela Vallerini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Monica Morselli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Ambra Paolini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Paola Bresciani
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Elisabetta Colaci
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Monica Maccaferri
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Andrea Gilioli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Vincenzo Nasillo
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Andrea Messerotti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Valeria Pioli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Laura Arletti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Davide Giusti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Francesca Bettelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Melania Celli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Francesca Donatelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Giorgia Corradini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Antonella Gurrado
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Monica Cellini
- Department of Medical and Surgical Sciences, Section of Pediatric Hemato-Oncology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Franco Narni
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Maria Paola Martelli
- Institute of Hematology, Centro di Ricerca Emato-Oncologico, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology, Centro di Ricerca Emato-Oncologico, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
8
|
Calì B, Molon B, Viola A. Tuning cancer fate: the unremitting role of host immunity. Open Biol 2017; 7:rsob.170006. [PMID: 28404796 PMCID: PMC5413907 DOI: 10.1098/rsob.170006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.
Collapse
Affiliation(s)
- B Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,Venetian Institute of Molecular Medicine, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - A Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
9
|
Sander FE, Rydström A, Bernson E, Kiffin R, Riise R, Aurelius J, Anderson H, Brune M, Foà R, Hellstrand K, Thorén FB, Martner A. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget 2016; 7:7586-96. [PMID: 26863635 PMCID: PMC4884940 DOI: 10.18632/oncotarget.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Preventing relapse after chemotherapy remains a challenge in acute myeloid leukemia (AML). Eighty-four non-transplanted AML patients in first complete remission received relapse-preventive immunotherapy with histamine dihydrochloride and low-dose interleukin-2 in an international phase IV trial (ClinicalTrials.gov; NCT01347996). Blood samples were drawn during cycles of immunotherapy and analyzed for CD8+ (cytotoxic) T cell phenotypes in blood. During the first cycle of therapy, a re-distribution of cytotoxic T cells was observed comprising a reduction of T effector memory cells and a concomitant increase of T effector cells. The dynamics of T cell subtypes during immunotherapy prognosticated relapse and survival, in particular among older patients and remained significantly predictive of clinical outcome after correction for potential confounders. Presence of CD8+ T cells with specificity for leukemia-associated antigens identified patients with low relapse risk. Our results point to novel aspects of T cell-mediated immunosurveillance in AML and provide conceivable biomarkers in relapse-preventive immunotherapy.
Collapse
Affiliation(s)
- Frida Ewald Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rydström
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca Riise
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Anderson
- Department of Cancer Epidemiology, University of Lund, Lund, Sweden
| | - Mats Brune
- Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Robin Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Yeh AC, Ramaswamy S. Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer? Cancer Res 2015; 75:5014-22. [PMID: 26354021 DOI: 10.1158/0008-5472.can-15-1370] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022]
Abstract
Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biologic level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biologic insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance.
Collapse
Affiliation(s)
- Albert C Yeh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts. Harvard-Ludwig Center for Cancer Research, Boston, Massachusetts.
| |
Collapse
|
11
|
Prediction and identification of HLA-A*0201-restricted epitopes from leukemia-associated protein MLAA-22 which elicit cytotoxic T lymphocytes. Med Oncol 2014; 31:293. [PMID: 25355639 DOI: 10.1007/s12032-014-0293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in the control of leukemia. However, few effective CTL epitopes have been identified to date yet. We previously reported that MLAA-22, a protein composed of 631 amino acid residues, is a novel acute myeloid leukemia (AML)-associated antigen. In the present study, ten high-score 9-mer peptides, which were selected from MLAA-22 by using ProPred1 and SYFPEITHI bioinformatics tools, were screened to identify HLA-A*0201-restricted-specific CTL epitopes. Monocyte-derived dendritic cells were generated in vitro to be used as antigen-presenting cells for the induction of CTLs. We found that peptide MLAA-22(379-387) (LLPNAIYKV) exhibited the highest binding affinity to HLA-A*0201 among all peptide candidates in the peptide-T2 binding assay. The percentage of positive T2 cells treated with MLAA-22(379-387) was about 96.3%, which is even higher than that of the positive control peptide CML28(173-181) (95.1%). MLAA-22(379-387)-induced CTLs showed the most significant cytotoxic activity and apparent killing effects on the cell lines including THP-1 (human acute monocytic leukemia), A549, T2, U937, and MCF-7, and the specific lysis ratios were 83.8, 32.6, 64.4, 64.4, and 32.6%, respectively, when the effector to target ratio (E/T) was 20:1. Specific lysis (%) of MLAA1 was significantly increased (P < 0.05, P < 0.001, respectively) in THP-1 cell than those in other cancer cell lines and were 28.5, 67.8, and 83.8% at ratio 5:1, 10:1, and 20:1, respectively. Hence, MLAA-22(379-387) is a potential tumor-associated antigen target for AML immunotherapy.
Collapse
|
12
|
Altvater B, Kailayangiri S, Theimann N, Ahlmann M, Farwick N, Chen C, Pscherer S, Neumann I, Mrachatz G, Hansmeier A, Hardes J, Gosheger G, Juergens H, Rossig C. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals. Cancer Immunol Immunother 2014; 63:1047-60. [PMID: 24973179 PMCID: PMC11028878 DOI: 10.1007/s00262-014-1574-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/16/2014] [Indexed: 11/24/2022]
Abstract
Disseminated or relapsed Ewing sarcoma (EwS) has remained fatal in the majority of patients. A promising approach to preventing relapse after conventional therapy is to establish tumor antigen-specific immune control. Efficient and specific T cell memory against the tumor depends on the expansion of rare T cells with native specificity against target antigens overexpressed by the tumor. Candidate antigens in EwS include six-transmembrane epithelial antigen of the prostate-1 (STEAP1), and the human cancer/testis antigens X-antigen family member 1 (XAGE1) and preferentially expressed antigen in melanoma (PRAME). Here, we screened normal donors and EwS patients for the presence of circulating T cells reactive with overlapping peptide libraries of these antigens by IFN-γ Elispot analysis. The majority of 22 healthy donors lacked detectable memory T cell responses against STEAP1, XAGE1 and PRAME. Moreover, ex vivo detection of T cells specific for these antigens in both blood and bone marrow were limited to a minority of EwS patients and required nonspecific T cell prestimulation. Cytotoxic T cells specific for the tumor-associated antigens were efficiently and reliably generated by in vitro priming using professional antigen-presenting cells and optimized cytokine stimulation; however, these T cells failed to interact with native antigen processed by target cells and with EwS cells expressing the antigen. We conclude that EwS-associated antigens fail to induce efficient T cell receptor (TCR)-mediated antitumor immune responses even under optimized conditions. Strategies based on TCR engineering could provide a more effective means to manipulating T cell immunity toward targeted elimination of tumor cells.
Collapse
MESH Headings
- Adolescent
- Adult
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Case-Control Studies
- Cell Line, Tumor
- Child
- Child, Preschool
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- K562 Cells
- Male
- Oxidoreductases/biosynthesis
- Oxidoreductases/immunology
- Oxidoreductases/pharmacology
- Sarcoma, Ewing/blood
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/pathology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Young Adult
Collapse
Affiliation(s)
- Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Nadine Theimann
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Martina Ahlmann
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Christiane Chen
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Sibylle Pscherer
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Ilka Neumann
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Gabriele Mrachatz
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Anna Hansmeier
- Department of Internal Medicine A, Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Jendrik Hardes
- Department of Orthopedic Surgery, University Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Georg Gosheger
- Department of Orthopedic Surgery, University Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Heribert Juergens
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Münster, Germany
| |
Collapse
|
13
|
Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS. Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 2014; 28:249-61. [PMID: 25228333 DOI: 10.1016/j.blre.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
Human leukocyte antigen-mismatched leukocyte infusions outside of the context of transplantation are a promising strategy for acute myeloid leukemia. Recent studies using such non-engrafting alloreactive cellular therapy (NEACT) revealed that survival of elderly patients increased from 10% to 39% when NEACT was given following chemotherapy, and that durable complete remissions were achieved in about a third of patients with relapsed or chemorefractory disease. We review the clinical reports of different NEACT approaches to date and describe how although T-cell and NK alloreactivity could generate immediate anti-leukemic effects, long-term disease control may be achieved by stimulating recipient-derived T-cell responses against tumor-associated antigens. Other variables likely impacting NEACT such as the release of pro-inflammatory cytokines from donor-host bidirectional alloreactivity and the choice of chemotherapeutics as well as future avenues for improving NEACT, such as optimizing the cell dose and potential synergies with adjuvant pharmacologic immune checkpoint blockade, are discussed.
Collapse
Affiliation(s)
- Elizabeth F Krakow
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Julie Bergeron
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Silvy Lachance
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Denis-Claude Roy
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| |
Collapse
|
14
|
Lankester AC, Locatelli F, Bader P, Rettinger E, Egeler M, Katewa S, Pulsipher MA, Nierkens S, Schultz K, Handgretinger R, Grupp SA, Boelens JJ, Bollard CM. Will post-transplantation cell therapies for pediatric patients become standard of care? Biol Blood Marrow Transplant 2014; 21:402-11. [PMID: 25064748 DOI: 10.1016/j.bbmt.2014.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/15/2014] [Indexed: 01/29/2023]
Abstract
Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative approach for many pediatric patients with hematologic malignancies and some nonmalignant disorders, some critical obstacles remain to be overcome, including relapse, engraftment failure, graft-versus-host disease (GVHD), and infection. Harnessing the immune system to induce a graft-versus-tumor effect or rapidly restore antiviral immunity through the use of donor lymphocyte infusion (DLI) has been remarkably successful in some settings. Unfortunately, however, the responses to DLI can be variable, and GVHD is common. Thus, manipulations to minimize GVHD while restoring antiviral immunity and enhancing the graft-versus-tumor effect are needed to improve outcomes after allogeneic HSCT. Cellular therapies, defined as treatment modalities in which hematopoietic or nonhematopoietic cells are used as therapeutic agents, offer this promise for improving outcomes post-HSCT. This review presents an overview of the field for pediatric cell therapies in the transplant setting and discusses how we can broaden applicability beyond phase I.
Collapse
Affiliation(s)
- Arjan C Lankester
- Division of Stem Cell Transplantation, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Istituto Di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico, Bambino Gesù, Rome, Italy
| | - Peter Bader
- Department of Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Frankfurt am Main, Germany
| | - Eva Rettinger
- Department of Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Frankfurt am Main, Germany
| | - Maarten Egeler
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Satyendra Katewa
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael A Pulsipher
- Primary Children's Hospital, Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute/University of Utah School of Medicine, Salt Lake City, Utah
| | - Stefan Nierkens
- Utrecht-Dendritic cells AgaiNst CancEr (U-DANCE), Lab Translational Immunology, Utrecht center for Diagnostic Advances in Immunology Research (U-DAIR), Lab Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirk Schultz
- BC Children's Hospital, Division of Oncology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rupert Handgretinger
- Department of Pediatric Hematology/Oncology, Children's University Hospital, University of Tübingen, Tübingen, Germany
| | - Stephan A Grupp
- Division of Oncology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaap Jan Boelens
- Department of Pediatrics, Blood and Marrow Transplantation Program, Utrecht-Dendritic cells AgaiNst CancEr (U-DANCE), Lab Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine M Bollard
- Departments of Pediatrics and Microbiology, Immunology and Tropical Medicine, Children's National Health System and George Washington University, Division of Pediatric Hematology-Oncology, Washington, DC
| | | |
Collapse
|
15
|
Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M, Garavaglia C, Sansano S, Piccolo F, Scelfo A, Häussinger D, Montagna D, Locatelli F, Bonini C, Bondanza A, Forcina A, Li Z, Ni G, Ciceri F, Jenö P, Xia C, Mori L, Dellabona P, Casorati G, De Libero G. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. ACTA ACUST UNITED AC 2014; 211:1363-77. [PMID: 24935257 PMCID: PMC4076585 DOI: 10.1084/jem.20140410] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - S Ramanjaneyulu Gundimeda
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Heiko Gsellinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sebastiano Sansano
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Francesco Piccolo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Scelfo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel Häussinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Daniela Montagna
- Laboratorio di Immunologia, Dipartimento di Pediatria, Università di Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Hospital, 00165 Rome, Italy
| | - Chiara Bonini
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Attilio Bondanza
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Forcina
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Zhiyuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanghui Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fabio Ciceri
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paul Jenö
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Chengfeng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| |
Collapse
|
16
|
Horowitz NA, Rowe JM. Histamine dihydrochloride for maintaining remission in acute myeloid leukemia. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.14.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Maintaining complete remission in patients with acute myeloid leukemia (AML) is a great challenge. Targeting the remaining malignant clones, using different regimens of chemotherapeutic agents did not prove to be fruitful. Host residual leukemia stem cells may be eradicated by donor immune cells in case of allogeneic stem cell transplantation. However, only a minority of AML patients may benefit from this procedure. IL-2 is very well known in its ability to enhance activation and proliferation of natural killer and T cells, albeit in the clinical setting this effect is suppressed by myeloid cells derived oxygen species. Histamine dihydrochloride can inhibit myeloid cells activity, therefore reaugment antileukemic natural killer/T-cell cytotoxic activity. This review summarizes different strategies to maintain complete remission in AML patients focusing on the use of histamine dihydrochloride/IL-2 treatment.
Collapse
Affiliation(s)
- Netanel A Horowitz
- Department of Hematology & Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Isreal
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Jacob M Rowe
- Department of Hematology & Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Isreal
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Martner A, Thorén FB, Aurelius J, Söderholm J, Brune M, Hellstrand K. Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Rev Hematol 2014; 3:381-91. [DOI: 10.1586/ehm.10.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
19
|
Martner A, Thorén FB, Aurelius J, Hellstrand K. Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev 2013; 27:209-16. [PMID: 23871358 DOI: 10.1016/j.blre.2013.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite that the initial phases of chemotherapy induce disappearance of leukemic cells in many patients with acute myeloid leukemia (AML), the prevention of life-threatening relapses in the post-remission phase remains a significant clinical challenge. Allogeneic bone marrow transplantation, which is available for a minority of patients, efficiently prevents recurrences of leukemia by inducing immune-mediated elimination of leukemic cells, and over the past decades, numerous immunotherapeutic protocols have been developed aiming to mimic the graft-versus-leukemia reaction for the prevention of relapse. Here we review past and present strategies for relapse control with focus on overcoming leukemia-related immunosuppression in AML. We envisage future treatment protocols, in which systemic immune activators, such as vaccines, dendritic cell-based therapies, engineered variants of IL-2, or IL-15, are combined with agents that counter immunosuppression mediated by, e.g., the PD/PDL interaction, CTLA-4, CD200, reactive oxygen species, IDO expression, CXCR4, or the KIR/class I interaction, based on characteristics of the prevailing malignant clone. This combinatorial approach may pave the way for individualized immunotherapy in AML.
Collapse
Affiliation(s)
- Anna Martner
- Sahlgrenska Cancer Center, University of Gothenburg, Box 405, 40530 Gothenburg, Sweden
| | | | | | | |
Collapse
|
20
|
Bigley AB, Spielmann G, LaVoy ECP, Simpson RJ. Can exercise-related improvements in immunity influence cancer prevention and prognosis in the elderly? Maturitas 2013; 76:51-6. [PMID: 23870832 DOI: 10.1016/j.maturitas.2013.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
Abstract
Cancer incidence increases with advancing age. Over 60% of new cancers and 70% of cancer deaths occur in individuals aged 65 years or older. One factor that may contribute to this is immunosenescence - a canopy term that is used to describe age-related declines in the normal functioning of the immune system. There are multiple age-related deficits in both the innate and adaptive systems that may play a role in the increased incidence of cancer. These include decreased NK-cell function, impaired antigen uptake and presentation by monocytes and dendritic cells, an increase in 'inflammaging', a decline in the number of naïve T-cells able to respond to evolving tumor cells, and an increase in functionally exhausted senescent cells. There is consensus that habitual physical exercise can offer protection against certain types of cancer; however the evidence linking immunological mechanisms, exercise, and reduced cancer risk remain tentative. Multiple studies published over the last two decades suggest that exercise can mitigate the deleterious effects of age on immune function, thus increasing anti-cancer immunity. The potential ameliorative effect of exercise on these mechanisms include evidence that physical activity is able to stimulate greater NK-cell activity, enhance antigen-presentation, reduce inflammation, and prevent senescent cell accumulation in the elderly. Here we discuss the role played by the immune system in preventing and controlling cancer and how aging may retard these anti-cancer mechanisms. We also propose a pathway by which exercise-induced alterations in immunosenescence may decrease the incidence of cancer and help improve prognosis in cancer patients.
Collapse
Affiliation(s)
- Austin B Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3855 Holman Street, Houston, TX 77204, USA.
| | | | | | | |
Collapse
|
21
|
Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR, Shpall EJ, Melenhorst JJ, Leen AM, Barrett AJ, Bollard CM. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 2013; 27:1538-47. [PMID: 23528871 DOI: 10.1038/leu.2013.66] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Abstract
Adoptive immunotherapy with ex vivo expanded T cells is a promising approach to prevent or treat leukemia. Myeloid leukemias express tumor-associated antigens (TAA) that induce antigen-specific cytotoxic T lymphocyte (CTL) responses in healthy individuals. We explored the feasibility of generating TAA-specific CTLs from stem cell donors of patients with myeloid leukemia to enhance the graft-versus-leukemia effect after stem cell transplantation. CTL lines were manufactured from peripheral blood of 10 healthy donors by stimulation with 15mer peptide libraries of five TAA (proteinase 3 (Pr3), preferentially expressed antigen in melanoma, Wilms tumor gene 1 (WT1), human neutrophil elastase (NE) and melanoma-associated antigen A3) known to be expressed in myeloid leukemias. All CTL lines responded to the mix of five TAA and were multi-specific as assessed by interferon-γ enzyme-linked immunospot. Although donors showed individual patterns of antigen recognition, all responded comparably to the TAAmix. Immunogenic peptides of WT1, Pr3 or NE could be identified by epitope mapping in all donor CTL lines. In vitro experiments showed recognition of partially human leukocyte antigen (HLA)-matched myeloid leukemia blasts. These findings support the development of a single clinical grade multi-tumor antigen-specific T-cell product from the stem cell source, capable of broad reactivity against myeloid malignancies for use in donor-recipient pairs without limitation to a certain HLA-type.
Collapse
Affiliation(s)
- G Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Serrano-López J, Sanchez-Garcia J, Serrano J, Alvarez-Rivas MA, Garcia-Castellano JM, Roman-Gomez J, Rosa ODL, Herrera-Arroyo C, Torres-Gomez A. Nonleukemic myeloid dendritic cells obtained from autologous stem cell products elicit antileukemia responses in patients with acute myeloid leukemia. Transfusion 2011; 51:1546-55. [DOI: 10.1111/j.1537-2995.2010.03042.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wemeau M, Kepp O, Tesnière A, Panaretakis T, Flament C, De Botton S, Zitvogel L, Kroemer G, Chaput N. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010; 1:e104. [PMID: 21368877 PMCID: PMC3032293 DOI: 10.1038/cddis.2010.82] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experiments performed in mice revealed that anthracyclines stimulate immunogenic cell death that is characterized by the pre-apoptotic exposure of calreticulin (CRT) on the surface of dying tumor cells. Here, we determined whether CRT exposure at the cell surface (ecto-CRT) occurs in human cancer in response to anthracyclines in vivo, focusing on acute myeloid leukemia (AML), which is currently treated with a combination of aracytine and anthracyclines. Most of the patients benefit from the induction chemotherapy but relapse within 1–12 months. In this study, we investigated ecto-CRT expression on malignant blasts before and after induction chemotherapy. We observed that leukemic cells from some patients exhibited ecto-CRT regardless of chemotherapy and that this parameter was not modulated by in vivo chemotherapy. Ecto-CRT correlated with the presence of phosphorylated eIF2α within the blasts, in line with the possibility that CRT exposure results from an endoplasmic reticulum stress response. Importantly, high levels of ecto-CRT on malignant myeloblasts positively correlated with the ability of autologous T cells to secrete interferon-γ on stimulation with blast-derived dendritic cell. We conclude that the presence of ecto-CRT on leukemia cells facilitates cellular anticancer immune responses in AML patients.
Collapse
Affiliation(s)
- M Wemeau
- Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Canderan G, Gruarin P, Montagna D, Fontana R, Melloni G, Traversari C, Dellabona P, Casorati G. An efficient strategy to induce and maintain in vitro human T cells specific for autologous non-small cell lung carcinoma. PLoS One 2010; 5:e12014. [PMID: 20711505 PMCID: PMC2918513 DOI: 10.1371/journal.pone.0012014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The efficient expansion in vitro of cytolytic CD8+ T cells (CTLs) specific for autologous tumors is crucial both for basic and translational aspects of tumor immunology. We investigated strategies to generate CTLs specific for autologous Non-Small Cell Lung Carcinoma (NSCLC), the most frequent tumor in mankind, using circulating lymphocytes. Principal Findings Classic Mixed Lymphocyte Tumor Cultures with NSCLC cells consistently failed to induce tumor-specific CTLs. Cross-presentation in vitro of irradiated NSCLC cells by autologous dendritic cells, by contrast, induced specific CTL lines from which we obtained a high number of tumor-specific T cell clones (TCCs). The TCCs displayed a limited TCR diversity, suggesting an origin from few tumor-specific T cell precursors, while their TCR molecular fingerprints were detected in the patient's tumor infiltrating lymphocytes, implying a role in the spontaneous anti-tumor response. Grafting NSCLC-specific TCR into primary allogeneic T cells by lentiviral vectors expressing human V-mouse C chimeric TCRα/β chains overcame the growth limits of these TCCs. The resulting, rapidly expanding CD4+ and CD8+ T cell lines stably expressed the grafted chimeric TCR and specifically recognized the original NSCLC. Conclusions This study defines a strategy to efficiently induce and propagate in vitro T cells specific for NSCLC starting from autologous peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Glenda Canderan
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Gruarin
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Montagna
- Laboratory of Immunology, Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Raffaella Fontana
- Cancer Gene Therapy Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Melloni
- Department of Thoracic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- * E-mail: (PD); (GC)
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- * E-mail: (PD); (GC)
| |
Collapse
|
25
|
Emergence of BCR-ABL–specific cytotoxic T cells in the bone marrow of patients with Ph+ acute lymphoblastic leukemia during long-term imatinib mesylate treatment. Blood 2010; 115:1512-8. [PMID: 20007806 DOI: 10.1182/blood-2009-06-230391] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Imatinib mesylate has been demonstrated to allow the emergence of T cells directed against chronic myeloid leukemia cells. A total of 10 Philadelphia chromosome–positive acute lymphoblastic leukemia patients receiving high-dose imatinib mesylate maintenance underwent long-term immunological monitoring (range, 2-65 months) of p190BCR-ABL–specific T cells in the bone marrow and peripheral blood. p190BCR-ABL–specific T lymphocytes were detected in all patients, more frequently in bone marrow than in peripheral blood samples (67% vs 25%, P < .01) and resulted significantly associated with lower minimal residual disease values (P < .001), whereas absent at leukemia relapse. Specific T cells were mainly effector memory CD8+ and CD4+ T cells, producing interferon-γ, tumor necrosis factor-α, and interleukin-2 (median percentage of positive cells: 3.34, 3.04, and 3.58, respectively). Cytotoxic subsets able to lyse BCR-ABL–positive leukemia blasts also were detectable. Whether these autologous p190BCR-ABL–specific T cells may be detectable under other tyrosine-kinase inhibitors, expanded ex vivo, and exploited for immunotherapy remains to be addressed.
Collapse
|
26
|
McGowan PM, Kirstein JM, Chambers AF. Micrometastatic disease and metastatic outgrowth: clinical issues and experimental approaches. Future Oncol 2009; 5:1083-98. [PMID: 19792975 DOI: 10.2217/fon.09.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metastasis from the primary tumor to distant organs is the principal cause of mortality in patients with cancer. While prognostic factors can predict which patients are likely to have their cancer recur, these are not perfect predictors, and some patient's cancers recur even decades after apparently successful treatment. This phenomenon is referred to as dormancy. Data from experimental studies have revealed two categories of metastatic dormancy: cellular dormancy, with solitary cancer cells in cell-cycle arrest; and micrometastatic dormancy, characterized by a balanced state of proliferation and apoptosis, but with no net increase in size. Development of new models and imaging techniques to track the fate of dormant cancer cells is beginning to shed some light on dormancy. Elucidation of the molecular pathways involved in dormancy will advance clinical understanding and may suggest new avenues for treatment to inhibit the revival of these dormant cells, thereby reducing cancer mortality rates.
Collapse
Affiliation(s)
- Patricia M McGowan
- Department Medical Biophysics, University of Western Ontario, London, ON, Canada.
| | | | | |
Collapse
|
27
|
Thorén FB, Romero AI, Brune M, Hellstrand K. Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia. Expert Opin Biol Ther 2009; 9:1217-23. [PMID: 19653866 DOI: 10.1517/14712590903130566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Although most patients achieve complete remission (CR) after chemotherapy, the majority suffer from subsequent leukemic relapse, which is associated with poor long-term survival. Thus, new therapies to maintain CR are highly warranted. After the completion of chemotherapy, AML patients have a minimal burden of leukemic cells, which are reportedly susceptible to cytotoxic lymphocytes such as NK cells and T cells. A therapy that boosts the function of these effector cells therefore has the potential to eradicate the malignant clone in AML and prevent relapse, Here, we briefly review the literature on the role of the immune system in AML and introduce the rationale for the use of histamine dihydrochloride (HDC) in conjuction with low-dose IL-2 as relapse-preventive immunotherapy for this disease.
Collapse
Affiliation(s)
- Fredrik B Thorén
- The Sahlgrenska Academy at University of Gothenburg, Department of Hematology, Göteborg, Sweden
| | | | | | | |
Collapse
|
28
|
Romero AI, Thorén FB, Aurelius J, Askarieh G, Brune M, Hellstrand K. Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand J Immunol 2009; 70:194-205. [PMID: 19703009 DOI: 10.1111/j.1365-3083.2009.02303.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The initial chemotherapy in acute myeloid leukaemia (AML) comprises a first phase of induction and a second phase of consolidation. In the majority of patients, the induction treatment leads to complete remission (CR), defined as microscopic disappearance of leukaemic disease along with the return of normal haematopoiesis. However, despite the introduction of more efficacious consolidation regimens, a worryingly large proportion of AML patients in CR will subsequently experience relapses with poor prospects of long-term survival. A relapse is assumed to be the result of expansion of residual leukaemic cells that have escaped the initial chemotherapy. The anti-leukaemic functions of T cells and natural killer (NK) cells has formed the background to the use of interleukin-2 (IL-2), a T- and NK cell-activating cytokine, with the aim to eliminate residual leukaemia and hence reduce the relapse rate in AML, but the clinical trials using IL-2 monotherapy have yielded disappointment. A recent phase III study has demonstrated that post-consolidation treatment with the combination of histamine dihydrochloride (HDC) and IL-2 significantly prevents relapse in AML patients. Here we account for the preclinical background to the use of HDC/IL-2 in AML along with a review of clinical results.
Collapse
Affiliation(s)
- A I Romero
- Department of Infectious Diseases, University of Gothenburg, S-41346 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Brinkrolf P, Landmeier S, Altvater B, Chen C, Pscherer S, Rosemann A, Ranft A, Dirksen U, Juergens H, Rossig C. A high proportion of bone marrow T cells with regulatory phenotype (CD4+CD25hiFoxP3+) in Ewing sarcoma patients is associated with metastatic disease. Int J Cancer 2009; 125:879-86. [PMID: 19480009 DOI: 10.1002/ijc.24461] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunosuppressive CD4+CD25(hi)FoxP3+ T cells (T(reg) cells) have been found at increased densities within the tumor microenvironment in many malignancies and interfere with protective antitumor immune responses. Osseous Ewing sarcomas (ESs) are thought to derive from a bone marrow (BM) mesenchymal cell of origin, and microscopic marrow involvement defines a subpopulation of patients at a high risk of relapse. We hypothesized that BM-resident T cells may contribute to a permissive milieu for immune escape of ESs. Using 6-color-flow cytometry, we investigated the pattern of immune cell subset distribution including NK cells, gammadelta T cells, central and effector memory CD8+ and CD4+ T cells as well as T cells with regulatory phenotype (T(reg) cells) in BM obtained at diagnosis from 45 primary or relapsed ES patients treated within standardized protocols. Although patients at relapse had an inverted CD4:CD8 T-cell ratio, neither CD8+ effector/memory T-cell subsets nor T(reg) cells significantly differed from patients at diagnosis. No significant associations of innate and effector/memory T-cell subpopulations with known risk factors were found, including age, gender, tumor site, primary metastases and histological tumor response. By contrast, T(reg) cells were found at significantly higher frequencies in patients with primary metastatic disease compared with localized ESs (5.0 vs. 3.3%, p = 0.01). Thus, increased BM T(reg) cells in patients with metastasized ES may reflect an immune escape mechanism that contributes to the development of metastatic disease. Immunotherapeutic strategies will have to adequately consider the regulatory milieu within areas of Ewing tumor-immune interactions.
Collapse
Affiliation(s)
- Peter Brinkrolf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Daguindau E, Lioure B, Buzyn A, Robin M, Faucher C, Kuentz M, Tiberghien P, Deconinck E. Evidence for anti-tumour effect of allogeneic haematopoietic SCT in cases without sustained donor engraftment. Bone Marrow Transplant 2009; 45:177-80. [PMID: 19430502 DOI: 10.1038/bmt.2009.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Remissions of haematological malignancies have been reported after allo-SCT, despite donor cell rejection, suggesting that sustained allogeneic engraftment is not mandatory to obtain a lasting anti-tumour effect. To evaluate the potential benefit from transient post-allo-SCT alloreactivity, we took advantage of the Société Française de Greffe de Moëlle et Thérapie Cellulaire (SFGM-TC) registry to colligate 14 patients with an efficient and long-lasting allogeneic (GVL) effect after allo-SCT for haematological malignancies, despite transient or absent engraftment. None received a second allogeneic graft after autologous recovery. The median duration of remission after autologous reconstitution was 118 (12-252) months. Although we cannot exclude the possibility that some patients were cured before allo-SCT, this retrospective analysis does strongly suggest that an efficient GVL effect can be observed without sustained donor engraftment, and that the transient presence of donor T cells might be sufficient to induce a powerful GVL effect.
Collapse
Affiliation(s)
- E Daguindau
- Service d'Hématologie, Centre Hospitalier Universitaire Jean Minjoz, Besançon France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Brown VI, Seif AE, Reid GSD, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 2009; 42:84-105. [PMID: 18716718 DOI: 10.1007/s12026-008-8038-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the outcome for pediatric patients with lymphoproliferative disorders (LPD) or lymphoid malignancies, such as acute lymphoblastic leukemia (ALL), has improved dramatically, patients often suffer from therapeutic sequelae. Additionally, despite intensified treatment, the prognosis remains dismal for patients with refractory or relapsed disease. Thus, novel biologically targeted treatment approaches are needed. These targets can be identified by understanding how a loss of lymphocyte homeostasis can result in LPD or ALL. Herein, we review potential molecular and cellular therapeutic strategies that (i) target key signaling networks (e.g., PI3K/AKT/mTOR, JAK/STAT, Notch1, and SRC kinase family-containing pathways) which regulate lymphocyte growth, survival, and function; (ii) block the interaction of ALL cells with stromal cells or lymphoid growth factors secreted by the bone marrow microenvironment; or (iii) stimulate innate and adaptive immune responses.
Collapse
Affiliation(s)
- Valerie I Brown
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, ARC 902, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras. Blood 2009; 113:4440-8. [PMID: 19182207 DOI: 10.1182/blood-2008-09-181677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.
Collapse
|
33
|
Atta EH, de Azevedo AM, Maiolino A, Coelho CJBP, Sarcinelli SMP, de Alvarenga Máximo C, Marra VLN. High CD8+ lymphocyte dose in the autograft predicts early absolute lymphocyte count recovery after peripheral hematopoietic stem cell transplantation. Am J Hematol 2009; 84:21-8. [PMID: 19006229 DOI: 10.1002/ajh.21314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Early lymphocyte recovery (ELR) after autologous peripheral hematopoietic stem cell transplantation (ASCT) is an independent predictor for survival in patients with hematological and non-hematological cancers. Sixty-five ASCT for hematological cancers were retrospectively analyzed to identify the factors associated with ELR and to assess the impact of different mobilization regimens on the pre-collection absolute lymphocyte count (ALC). The CD8+ lymphocyte dose in the autograft and the pre-mobilization ALC were independently associated with ELR (P < 0.001 and P = 0.008, respectively). CD8+ lymphocyte doses higher than 0.1 x 10(9)/kg were strongly associated with ELR [P < 0.001, odds ratio 25.22, 95% confidence interval (CI) 4.98-127.69] and this cutoff may be used to predict ELR (P = 0.001, area under the curve 0.75, 95% CI 0.62-0.88). Mobilization with granulocyte colony-stimulating factor (G-CSF) alone, the pre-collection ALC and the number of apheresis sessions were independently associated with the CD8+ lymphocyte dose (P = 0.04, P = 0.001, and P < 0.001, respectively). The number of aphereses was the variable with the strongest correlation to the CD8+ lymphocyte dose (r(s) = 0.68, P < 0.001). Median pre-mobilization ALC was higher than pre-collection ALC in the subgroup of patients without ELR mobilized with chemotherapy followed by G-CSF (1090 vs. 758 lymphocytes/microL; P < 0.001). This reduction was not significant in the subgroup with ELR mobilized with chemotherapy plus G-CSF (1920 vs. 1539/microL, respectively; P = 0.23). These results suggest that the CD8+ lymphocyte dose in the autograft is critical for ELR after ASCT and also demonstrates that mobilization with chemotherapy followed by G-CSF significantly decreases the pre-collection ALC, especially in patients with low pre-mobilization ALC.
Collapse
Affiliation(s)
- Elias Hallack Atta
- Hematopoietic Stem Cell Transplantation Program, Hemorio, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Treating donor mice with rhIL-11 and rhG-CSF promotes transplant-tolerance and preserves the effects of GVL after allogeneic bone marrow transplantation. Leuk Res 2009; 33:123-8. [PMID: 18653235 DOI: 10.1016/j.leukres.2008.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/23/2008] [Accepted: 06/03/2008] [Indexed: 11/21/2022]
|
35
|
Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008; 118:1991-2001. [PMID: 18523649 DOI: 10.1172/jci35180] [Citation(s) in RCA: 465] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the impact of tumor immunology on the clinical management of most cancers is still negligible, there is increasing evidence that anticancer immune responses may contribute to the control of cancer after conventional chemotherapy. Thus, radiotherapy and some chemotherapeutic agents, in particular anthracyclines, can induce specific immune responses that result either in immunogenic cancer cell death or in immunostimulatory side effects. This anticancer immune response then helps to eliminate residual cancer cells (those that fail to be killed by chemotherapy) or maintains micrometastases in a stage of dormancy. Based on these premises, in this Review we address the question, How may it be possible to ameliorate conventional therapies by stimulating the anticancer immune response? Moreover, we discuss the rationale of clinical trials to evaluate and eventually increase the contribution of antitumor immune responses to the therapeutic management of neoplasia.
Collapse
|
36
|
Teng MWL, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 2008; 84:988-93. [PMID: 18515327 DOI: 10.1189/jlb.1107774] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This brief review discusses the role of the immune system in tumor development, covering a history of cancer immunity and a summary of the concept of cancer immunoediting, including its three phases: elimination, equilibrium, and escape. The latter half of this review then focuses specifically on the equilibrium phase, making note of previous work, suggesting that immunity might maintain cancer in a dormant state, and concluding with a description of a tractable mouse model unequivocally demonstrating that immunity can indeed hold preformed cancer in check. These findings form a framework for future studies aimed at validating immune-mediated cancer dormancy in humans with the hopes of devising new, immunotherapeutic strategies to treat established cancer.
Collapse
|
37
|
Barbaric D, Corthals SL, Jastaniah WA, Asalanian S, Shimizu H, Reid GSD, Schultz KR. Detection of WT1-specific T cells in paediatric acute lymphoblastic leukaemia patients in first remission. Br J Haematol 2008; 141:271-3. [DOI: 10.1111/j.1365-2141.2008.07001.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Bibliography. Current world literature. Hematology and oncology. Curr Opin Pediatr 2008; 20:107-13. [PMID: 18197049 DOI: 10.1097/mop.0b013e3282f572b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Mittal S, Marshall NA, Barker RN, Vickers MA. Immunomodulation against leukemias and lymphomas: a realistic future treatment? Crit Rev Oncol Hematol 2007; 65:101-8. [PMID: 17719232 DOI: 10.1016/j.critrevonc.2007.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/09/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy offers the potential for cure of malignancy without the side effects too commonly seen with conventional chemotherapy. The efficacy of allogenic transplantation and monoclonal antibodies in hematological malignancies illustrate this principle and are now part of routine care. Newer cell based and molecular approaches aimed at stimulating cytotoxic activity against host derived tumor associated antigens are able to 'boost' anti-tumor immunity as judged by immunological assays in vitro. Although clinically meaningful responses were originally less evident, more promising results are now being reported. Our growing understanding of tumor immunology provide rationales for further improvements in the field.
Collapse
Affiliation(s)
- S Mittal
- Department of Clinical Haematology, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, United Kingdom
| | | | | | | |
Collapse
|
40
|
Abstract
The ability of the immune system to identify and destroy nascent tumors, and to thereby function as a primary defense against cancer, has been debated for many decades. Recent findings by a number of investigators in both mouse models of cancer and humans with cancer now offer compelling evidence that particular immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor suppressor mechanisms. This work provides the basis for further study of natural immunity to cancer and for rational use of this information in the design of immunotherapies in combination with other conventional cancer treatments.
Collapse
Affiliation(s)
- Jeremy B Swann
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne 8006, Victoria, Australia
| | | |
Collapse
|
41
|
Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomed Pharmacother 2007; 61:306-14. [PMID: 17368821 DOI: 10.1016/j.biopha.2007.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/24/2007] [Indexed: 12/22/2022] Open
Abstract
Persistence of residual leukaemia cells in acute and chronic myeloid leukaemia will eventually lead to a relapse of the disease. Dendritic cell-based vaccines might constitute a therapeutic option for leukaemia patients to control or eradicate minimal residual disease. Dendritic cells have the unique property to stimulate naïve T cells. In a majority of the myeloid leukaemia patients these cells can be generated directly from leukaemia cells, although several factors hamper the feasibility of this approach. Other options are being explored to make active specific DC-based immunotherapy in leukaemia more broadly applicable. This review summarises data on active specific DC-based immunotherapy in acute and chronic myeloid leukaemia and discusses current optimisation strategies.
Collapse
Affiliation(s)
- Theresia M Westers
- Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|