1
|
Ranjit S, Wang Y, Zhu J, Cheepala SB, Schuetz EG, Cho WJ, Xu B, Robinson CG, Wu G, Naren AP, Schuetz JD. ABCC4 impacts megakaryopoiesis and protects megakaryocytes against 6-mercaptopurine induced cytotoxicity. Drug Resist Updat 2024; 72:101017. [PMID: 37988981 PMCID: PMC10874622 DOI: 10.1016/j.drup.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.
Collapse
Affiliation(s)
- Sabina Ranjit
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Yao Wang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Jingwen Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Satish B Cheepala
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Erin G Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St Jude Children's Research Hospital, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | | | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA.
| |
Collapse
|
2
|
Tóth T, Alizadeh H, Polgár B, Csalódi R, Reglődi D, Tamás A. Diagnostic and Prognostic Value of PACAP in Multiple Myeloma. Int J Mol Sci 2023; 24:10801. [PMID: 37445974 DOI: 10.3390/ijms241310801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Collapse
Affiliation(s)
- Tünde Tóth
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Hematology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Renáta Csalódi
- Department of Hematology, Balassa János Hospital of Tolna County, 7100 Szekszárd, Hungary
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Abstract
Introduction: Immune thrombocytopenia (ITP) is an autoimmune disease. Even though there are many treatments available, some patients remain resistant to multiple treatments. Therefore, it is very important to develop new treatment options. Areas covered: Here, the authors summarize several current and emerging treatments developed for ITP in recent years. They include a summary of their mechanisms of action and clinical trial results. Expert opinion: At present, the first-line treatment of ITP is glucocorticoid and intravenous immunoglobulin (IVIg). Other traditional therapies include splenectomy, thrombopoietin (TPO), rituximab and other immunosuppressive agents. The several emerging treatments developed recently for ITP may change the treatment pattern in the future.
Collapse
Affiliation(s)
- Xueqing Dou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China
| |
Collapse
|
4
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
5
|
Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol 2018; 142:630-646. [DOI: 10.1016/j.jaci.2017.11.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
6
|
Ohtaki H, Yagura K, Xu Z. [New function of PACAP on hematopoiesis through PACAP specific receptor (PAC1R)]. Nihon Yakurigaku Zasshi 2018; 151:244-248. [PMID: 29887573 DOI: 10.1254/fpj.151.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide, and exists diverse physiological functions such as a cell protection, anti-inflammation, and neuronal proliferation and differentiation. There are many evidences that PACAP contributes to the neuronal developmental processes during embryonic periods and after the birth, and that PACAP is involved in the development in ectodermal origin including nervous system. However, few evidences have been reported that PACAP contributes to the development of the other germ layer. In here, we introduced our recent study that PACAP was involved in the hematopoiesis. Moreover, we have showed prospective functions of PACAP on the homeostatic and pathological conditions through the autonomic nerve innervation.
Collapse
Affiliation(s)
| | | | - Zhifang Xu
- Department of Anatomy, Showa Univerisity School of Medicine.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine
| |
Collapse
|
7
|
Eneman B, Elmonem MA, van den Heuvel LP, Khodaparast L, Khodaparast L, van Geet C, Freson K, Levtchenko E. Pituitary adenylate cyclase-activating polypeptide (PACAP) in zebrafish models of nephrotic syndrome. PLoS One 2017; 12:e0182100. [PMID: 28759637 PMCID: PMC5536324 DOI: 10.1371/journal.pone.0182100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes. We generated two models for congenital NS, a morpholino injected model targeting nphs1 (nephrin), which is mutated in the Finnish-type congenital NS. The second model was induced by exposure to the nephrotoxic compound adriamycin. Nephrin RNA expression was quantified and zebrafish embryos were live-screened for proteinuria and pericardial edema as evidence of renal impairment. Protein levels of PACAP and its binding-protein ceruloplasmin were measured and GFP-labeled thrombocytes were quantified. We also evaluated the effects of PACAP morpholino injection and the rescue effects of PACAP-38 peptide in both congenital NS models. Nephrin downregulation and pericardial edema were observed in both nephrin morpholino injected and adriamycin exposed congenital NS models. However, PACAP deficiency was demonstrated only in the adriamycin exposed condition. Ceruloplasmin levels and the number of GFP-labeled thrombocytes remained unchanged in both models. PACAP morpholino injections worsened survival rates and the edema phenotype in both congenital NS models while injection with human PACAP-38 could only rescue the adriamycin exposed model. We hereby report, for the first time, PACAP deficiency in a NS zebrafish model as a consequence of adriamycin exposure. However, distinct from the human congenital NS, both zebrafish models retained normal levels of ceruloplasmin and thrombocytes. We further extend the renoprotective effects of the PACAP-38 peptide against adriamycin toxicity in zebrafish.
Collapse
Affiliation(s)
- Benedicte Eneman
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Mohamed A. Elmonem
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laleh Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Chris van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
8
|
Wijgaerts A, Wittevrongel C, Thys C, Devos T, Peerlinck K, Tijssen MR, Van Geet C, Freson K. The transcription factor GATA1 regulates NBEAL2 expression through a long-distance enhancer. Haematologica 2017; 102:695-706. [PMID: 28082341 PMCID: PMC5395110 DOI: 10.3324/haematol.2016.152777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023] Open
Abstract
Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.
Collapse
Affiliation(s)
- Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Christine Wittevrongel
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Timothy Devos
- Department of Haematology, University Hospitals Leuven, Belgium
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Marloes R Tijssen
- NHS Blood and Transplant, Cambridge Biomedical Campus, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| |
Collapse
|
9
|
Eneman B, Levtchenko E, van den Heuvel B, Van Geet C, Freson K. Platelet abnormalities in nephrotic syndrome. Pediatr Nephrol 2016; 31:1267-79. [PMID: 26267676 DOI: 10.1007/s00467-015-3173-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023]
Abstract
Nephrotic syndrome (NS) is a common kidney disease associated with a significantly increased risk of thrombotic events. Alterations in plasma levels of pro- and anti-coagulant factors are involved in the pathophysiology of venous thrombosis in NS. However, the fact that the risk of both venous and arterial thrombosis is elevated in NS points to an additional role for blood platelets. Increased platelet counts and platelet hyperactivity have been observed in nephrotic children. Platelet hyperaggregability, increased release of active substances, and elevated surface expression of activation-dependent platelet markers have been documented. The mechanisms underlying those platelet alterations are multifactorial and are probably due to changes in plasma levels of platelet-interfering proteins and lipid changes, as a consequence of nephrosis. The causal relationship between platelet alterations seen in NS and the occurrence of thromboembolic phenomena remains unclear. Moreover, the efficiency of prophylactic treatment using antiplatelet agents for the prevention of thrombotic complications in nephrotic patients is also unknown. Thus, antiplatelet medication is currently not generally recommended for routine prophylactic therapy.
Collapse
Affiliation(s)
- Benedicte Eneman
- Pediatric Nephrology, Department of Pediatrics, University hospital of Leuven, Leuven, Belgium.
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium.
| | - Elena Levtchenko
- Pediatric Nephrology, Department of Pediatrics, University hospital of Leuven, Leuven, Belgium
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Bert van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Eneman B, van den Heuvel L, Freson K, Van Geet C, Willemsen B, Dijkman H, Levtchenko E. Distribution and Function of PACAP and Its Receptors in the Healthy and Nephrotic Kidney. Nephron Clin Pract 2016; 132:301-11. [PMID: 27050435 DOI: 10.1159/000445035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Plasma deficiency of pituitary adenylate cyclase-activating polypeptide (PACAP) was recently demonstrated in children with nephrotic syndrome (NS). Previous studies have reported an important protective effect of PACAP on kidney proximal tubules. The aim of this study was to explore the expression of PACAP and its receptors PAC1, VPAC1 and VPAC2 in the healthy and nephrotic kidney and to determine if PACAP has an effect on renal proximal tubular cells exposed to albumin. METHODS Expression of PACAP and its receptors was studied using kidney tissue from healthy and nephrotic children, and in 3 human renal cell lines (glomerular microvascular endothelial cells, podocytes and proximal tubular epithelial HK-2 cells). The functionality of the VPAC1 receptor was tested in HK-2 cells, measuring cyclic adenosine monophosphate levels after PACAP exposure. The influence of PACAP on cell viability and transforming growth factor-β1 (TGF-β1) expression was measured in HK-2 cells exposed to albumin, mimicking proteinuria related damage. RESULTS VPAC1 expression was detected in the tubular proximal epithelial cells and in the glomerular podocytes of renal tissue from healthy and nephrotic children. Increased staining for PACAP was found in the proximal tubules of renal sections from children with NS compared to healthy renal sections. Expression and functionality of VPAC1 were demonstrated in HK-2 cells. Finally, PACAP did not alter cell viability or TGF-β1 expression of HK-2 cells exposed to albumin. CONCLUSION VPAC1 is the predominant receptor in the human kidney. The enhanced presence of PACAP in proximal tubular epithelial cells in nephrotic kidneys points to the reabsorption of filtered PACAP. On short term, PACAP has no in vitro effect on cell viability and TGF-β1 expression of proximal tubular epithelial cells exposed to high concentrations of albumin.
Collapse
Affiliation(s)
- Benedicte Eneman
- Pediatric Nephrology, Department of Development and Regeneration, University Hospitals of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Turro E, Greene D, Wijgaerts A, Thys C, Lentaigne C, Bariana TK, Westbury SK, Kelly AM, Selleslag D, Stephens JC, Papadia S, Simeoni I, Penkett CJ, Ashford S, Attwood A, Austin S, Bakchoul T, Collins P, Deevi SVV, Favier R, Kostadima M, Lambert MP, Mathias M, Millar CM, Peerlinck K, Perry DJ, Schulman S, Whitehorn D, Wittevrongel C, De Maeyer M, Rendon A, Gomez K, Erber WN, Mumford AD, Nurden P, Stirrups K, Bradley JR, Raymond FL, Laffan MA, Van Geet C, Richardson S, Freson K, Ouwehand WH. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med 2016; 8:328ra30. [PMID: 26936507 DOI: 10.1126/scitranslmed.aad7666] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.
Collapse
Affiliation(s)
- Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Claire Lentaigne
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London W12 0HS, UK. Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, UK
| | - Tadbir K Bariana
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK. Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Sarah K Westbury
- School of Clinical Sciences, University of Bristol, Bristol BS2 8DZ, UK
| | - Anne M Kelly
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Dominik Selleslag
- Academisch Ziekenhuis Sint-Jan Brugge-Oostende, 8000 Brugge, Belgium
| | - Jonathan C Stephens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Sofia Papadia
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Sofie Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Antony Attwood
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Steve Austin
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Tamam Bakchoul
- Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Peter Collins
- Arthur Bloom Haemophilia Centre, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Rémi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children Hospital, 75012 Paris, France. INSERM U1170, 94805 Villejuif, France
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Mathias
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Carolyn M Millar
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London W12 0HS, UK. Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, UK
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - David J Perry
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Sol Schulman
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA 02215, USA
| | - Deborah Whitehorn
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Christine Wittevrongel
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | | | - Marc De Maeyer
- Biochemistry, Molecular and Structural Biology Section, University of Leuven, 3001 Leuven, Belgium
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Genomics England Ltd., London EC1M 6BQ, UK
| | - Keith Gomez
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK. Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Wendy N Erber
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia WA 6009, Australia
| | - Andrew D Mumford
- School of Clinical Sciences, University of Bristol, Bristol BS2 8DZ, UK. School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France
| | - Kathleen Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - John R Bradley
- National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Research and Development, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - F Lucy Raymond
- National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael A Laffan
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London W12 0HS, UK. Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, UK
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Sylvia Richardson
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. National Institute for Health Research (NIHR) BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK. Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
12
|
Xu Z, Ohtaki H, Watanabe J, Miyamoto K, Murai N, Sasaki S, Matsumoto M, Hashimoto H, Hiraizumi Y, Numazawa S, Shioda S. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor. Sci Rep 2016; 6:22373. [PMID: 26925806 PMCID: PMC4772629 DOI: 10.1038/srep22373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/15/2016] [Indexed: 11/24/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1+ were large in size, had oval nuclei, and merged with CD34+ cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1−/− mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1−/− and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1.
Collapse
Affiliation(s)
- Zhifang Xu
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.,Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.,Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Jun Watanabe
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.,Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kazuyuki Miyamoto
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Norimitsu Murai
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Shun Sasaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Minako Matsumoto
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Hiraizumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.,Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
13
|
A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127:2903-14. [PMID: 26912466 DOI: 10.1182/blood-2015-10-675629] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/16/2016] [Indexed: 12/25/2022] Open
Abstract
Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.
Collapse
|
14
|
Lin CH, Chiu L, Lee HT, Chiang CW, Liu SP, Hsu YH, Lin SZ, Hsu CY, Hsieh CH, Shyu WC. PACAP38/PAC1 signaling induces bone marrow-derived cells homing to ischemic brain. Stem Cells 2016; 33:1153-72. [PMID: 25523790 PMCID: PMC4409028 DOI: 10.1002/stem.1915] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 11/08/2022]
Abstract
Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell-based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow-derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia-inducible factor-1α (HIF-1α) activation upregulates pituitary adenylate cyclase-activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF-1α activation of the PACAP38-PAC1 signaling cascade followed by upregulation of cellular prion protein and α6-integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF-1α-activated PACAP38-PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke. Stem Cells2015;33:1153–1172
Collapse
Affiliation(s)
- Chen-Huan Lin
- Center for Neuropsychiatry and Translational Medicine Research Center, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cordeiro N, Wijkhuisen A, Savatier A, Moulharat N, Ferry G, Léonetti M. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells. J Immunol Methods 2015; 428:37-41. [PMID: 26657944 DOI: 10.1016/j.jim.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.
Collapse
Affiliation(s)
- Nelia Cordeiro
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | | | - Alexandra Savatier
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | - Natacha Moulharat
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Gilles Ferry
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Michel Léonetti
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France.
| |
Collapse
|
16
|
Rossant CJ, Carroll D, Huang L, Elvin J, Neal F, Walker E, Benschop JJ, Kim EE, Barry ST, Vaughan TJ. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes. MAbs 2015; 6:1425-38. [PMID: 25484064 DOI: 10.4161/mabs.34376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Generation of functional antibodies against integral membrane proteins such as the G-protein coupled receptor CXCR2 is technically challenging for several reasons, including limited epitope accessibility, the requirement for a lipid environment to maintain structure and their existence in dynamic conformational states. Antibodies to human CXCR2 were generated by immunization in vivo and by in vitro selection methods. Whole cell immunization of transgenic mice and screening of phage display libraries using CXCR2 magnetic proteoliposomes resulted in the isolation of antibodies with distinct modes of action. The hybridoma-derived antibody fully inhibited IL-8 and Gro-α responses in calcium flux and β-arrestin recruitment assays. The phage-display derived antibodies were allosteric antagonists that showed ligand dependent differences in functional assays. The hybridoma and phage display antibodies did not cross-compete in epitope competition assays and mapping using linear and CLIPS peptides confirmed that they recognized distinct epitopes of human CXCR2. This illustrates the benefits of using parallel antibody isolation approaches with different antigen presentation methods to successfully generate functionally and mechanistically diverse antagonistic antibodies to human CXCR2. The method is likely to be broadly applicable to other complex membrane proteins.
Collapse
Key Words
- BSA, bovine serum albumin
- CDR, complementarity determining region
- CXCR2
- CXCR2, C-X-C Chemokine Receptor 2
- ECL, extracellular loops
- ENA-78, epithelial derived -neutrophil activating protein
- FBS, fetal bovine serum
- FMAT, Fluorescence Microvolume Assay Technology
- GCP-2, granulocyte activating protein
- GPCR
- GPCR, G-protein coupled receptor
- Gro-α, growth related oncogene- α
- Gro-β, growth related oncogene- β
- Gro-γ, growth related oncogene- γ
- IL-8, Interleukin-8
- Ig, Immunoglobulin
- NAP-2, neutrophil activating protein-2, CLIPS, Chemical Linkage of Peptides onto Scaffolds
- PBS, phosphate buffered saline
- epitope mapping
- human antibody
- immunization
- phage display
- proteoliposomes
- scFv, single chain Fv fragments
Collapse
|
17
|
Eneman B, Freson K, van den Heuvel L, van Hoyweghen E, Collard L, Vande Walle J, van Geet C, Levtchenko E. Pituitary adenylate cyclase-activating polypeptide deficiency associated with increased platelet count and aggregability in nephrotic syndrome. J Thromb Haemost 2015; 13:755-67. [PMID: 25758343 DOI: 10.1111/jth.12891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) was recently identified as an inhibitor of megakaryopoiesis and platelet aggregability. OBJECTIVE We studied PACAP levels in children with nephrotic syndrome (NS), which is associated with thrombocytosis, platelet hyperaggregability, and an increased risk of thrombosis. PATIENTS/METHODS In four children with congenital NS (CNS) and 24 children with idiopathic NS (INS), plasma and urine levels of PACAP and ceruloplasmin were measured, as were platelet counts and platelet aggregation responses to collagen. In CNS patients, in vitro megakaryopoiesis and nuclear factor-κB expression in platelet lysates were also measured. All tests were performed during the nephrotic state and the non-nephrotic state. RESULTS Urinary losses of PACAP and ceruloplasmin were observed during the nephrotic state, and disappeared during the non-nephrotic state. Plasma PACAP deficiency was more pronounced in CNS patients than in INS patients. Thrombocytosis was observed in all CNS patients and in 11 of 29 INS patients during the nephrotic state. During the PACAP-deficient state, in vitro megakaryopoiesis was increased for CNS patients, and this effect could be reversed by the addition of recombinant PACAP. Platelet hyperaggregability was observed during the nephrotic state in both CNS and INS patients. In INS patients, the addition of recombinant PACAP to patients' platelets was studied, and resulted in decreased aggregation during the nephrotic state. Platelet aggregation correlated inversely with plasma PACAP levels, but not with serum albumin levels. CONCLUSIONS We demonstrate urinary losses of PACAP and plasma PACAP deficiency in children with NS, associated with thrombocytosis and platelet hyperaggregability.
Collapse
Affiliation(s)
- B Eneman
- Pediatric Nephrology, Department of Development & Regeneration, University Hospital of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Espasandin YR, Glembotsky AC, Grodzielski M, Lev PR, Goette NP, Molinas FC, Marta RF, Heller PG. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms. J Thromb Haemost 2015; 13:631-42. [PMID: 25604267 DOI: 10.1111/jth.12850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Anagrelide represents a treatment option for essential thrombocythemia patients. It lowers platelet counts through inhibition of megakaryocyte maturation and polyploidization, although the basis for this effect remains unclear. Based on its rapid onset of action, we assessed whether, besides blocking megakaryopoiesis, anagrelide represses proplatelet formation (PPF) and aimed to clarify the underlying mechanisms. METHODS AND RESULTS Exposure of cord blood-derived megakaryocytes to anagrelide during late stages of culture led to a dose- and time-dependent inhibition of PPF and reduced proplatelet complexity, which were independent of the anagrelide-induced effect on megakaryocyte maturation. Whereas anagrelide was shown to phosphorylate cAMP-substrate VASP, two pharmacologic inhibitors of the cAMP pathway were completely unable to revert anagrelide-induced repression in megakaryopoiesis and PPF, suggesting these effects are unrelated to its ability to inhibit phosphodiesterase (PDE) 3. The reduction in thrombopoiesis was not the result of down-regulation of transcription factors which coordinate PPF, while the myosin pathway was identified as a candidate target, as anagrelide was shown to phosphorylate the myosin light chain and the PPF phenotype was partially rescued after inhibition of myosin activity with blebbistatin. CONCLUSIONS The platelet-lowering effect of anagrelide results from impaired megakaryocyte maturation and reduced PPF, both of which are deregulated in essential thrombocythemia. These effects seem unrelated to PDE3 inhibition, which is responsible for anagrelide's cardiovascular side-effects and antiplatelet activity. Further work in this field may lead to the potential development of drugs to treat thrombocytosis in myeloproliferative disorders with an improved pharmacologic profile.
Collapse
Affiliation(s)
- Y R Espasandin
- Departamento de Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Goubau C, Buyse GM, Van Geet C, Freson K. The contribution of platelet studies to the understanding of disease mechanisms in complex and monogenetic neurological disorders. Dev Med Child Neurol 2014; 56:724-31. [PMID: 24579816 DOI: 10.1111/dmcn.12421] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2014] [Indexed: 01/03/2023]
Abstract
Platelets, known for their role in primary haemostasis, prevent excessive bleeding after injury. The study of platelets has, therefore, traditionally focused on bleeding disorders. It has recently become evident, however, that platelet research can contribute to unravelling the disease mechanisms that underlie neuropathological disorders that have a subtle subclinical platelet phenotype. Platelets and neurosecretory cells have common gene expression profiles and share several biological features. This review provides a literature update on the use of platelets as easily accessible cells to study neurological disorders. We provide examples of the use of different platelet-based tests to understand the underlying pathophysiological mechanisms for both complex and monogenetic neuropathological disorders. In addition to the well-studied regulated granule secretion and serotonin metabolism, more recent studies have shown that defects in transcription factors, membrane transporters, G-protein signal transduction, and cytoskeletal proteins can be investigated using platelets to gain information on their role in neuropathology.
Collapse
Affiliation(s)
- Christophe Goubau
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
20
|
Begonja AJ, Gambaryan S, Schulze H, Patel-Hett S, Italiano JE, Hartwig JH, Walter U. Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis. Exp Hematol 2012; 41:91-101.e4. [PMID: 22981933 DOI: 10.1016/j.exphem.2012.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/24/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
The cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) regulate the activity of protein kinase A (PKA) and protein kinase G (PKG), respectively. This process helps maintain circulating platelets in a resting state. Here we studied the role of cAMP and cGMP in the regulation of megakaryocyte (MK) differentiation and platelet formation. Cultured, platelet-producing MKs were differentiated from fetal livers harvested from 13.5 days postcoital mouse embryos. MK development was accompanied by a dramatic increase in cAMP production and expression of soluble guanylate cyclase, PKG, and PKA as well as their downstream targets vasodilator-stimulated phosphoprotein (VASP) and MENA. Stimulation of prostaglandin E(1) receptor/adenylyl cyclase or soluble guanylate cyclase/PKG in cultured MKs increased VASP phosphorylation, indicating that these components share a common signaling pathway. To dissect out the role of cyclic nucleotides in MK differentiation, cAMP/PKA and cGMP/PKG signaling were alternately blocked in cultured MKs. Down-regulation of cAMP pathway effectors decreased MK numbers and ploidy. Notably, cGMP levels increased at the beginning of MK development and returned to basal levels in parallel with MK maturation. However, inhibition of cGMP pathway effectors had no effect on MK development. In addition, platelet release from mature MKs was enhanced by cGMP and inhibited by cAMP. Our data suggest that cAMP plays an important role in MK differentiation, while cAMP and cGMP have opposite effects on platelet production. Identifying the signaling pathways that underpin MK development and proplatelet formation will provide greater insights into thrombopoiesis and may potentially yield useful therapeutic targets.
Collapse
Affiliation(s)
- Antonija Jurak Begonja
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Rubinstein JD, Elagib KE, Goldfarb AN. Cyclic AMP signaling inhibits megakaryocytic differentiation by targeting transcription factor 3 (E2A) cyclin-dependent kinase inhibitor 1A (CDKN1A) transcriptional axis. J Biol Chem 2012; 287:19207-15. [PMID: 22514271 DOI: 10.1074/jbc.m112.366476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling via the intracellular second messenger cyclic AMP (cAMP) has long been implicated in the repression of megakaryocytic differentiation. However, the mechanisms by which cAMP signaling impairs megakaryopoiesis have never been elucidated. In a human CD34(+) cell culture model, we show that the adenylyl cyclase agonist forskolin inhibits megakaryocytic differentiation in a protein kinase A-dependent manner. Using this system to screen for downstream effectors, we identified the transcription factor E2A as a key target in a novel repressive signaling pathway. Specifically, forskolin acting through protein kinase A-induced E2A down-regulation and enforced expression of E2A overrode the inhibitory effects of forskolin on megakaryopoiesis. The dependence of megakaryopoiesis on critical thresholds of E2A expression was confirmed in vivo in haploinsufficient mice and ex vivo using shRNA knockdown in human progenitors. Using a variety of approaches, we further identified p21 (encoded by CDKN1A) as a functionally important megakaryopoietic regulator residing downstream of E2A. These results thus implicate the E2A-CDKN1A transcriptional axis in the control of megakaryopoiesis and reveal the lineage-selective inhibition of this axis as a likely mechanistic basis for the inhibitory effects of cAMP signaling.
Collapse
Affiliation(s)
- Jeremy D Rubinstein
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | | | |
Collapse
|
22
|
Louwette S, Labarque V, Wittevrongel C, Thys C, Metz J, Gijsbers R, Debyser Z, Arnout J, Van Geet C, Freson K. Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system. FASEB J 2012; 26:2125-36. [PMID: 22308195 DOI: 10.1096/fj.11-198739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RGS18 was originally identified as a R4 subfamily member of regulators of G-protein signaling (RGS) with specific expression in hematopoietic progenitors, myeloerythroid cells, and megakaryocytes, though its physiological role in hematopoiesis remained unknown. Here, we show that lentiviral RGS18 overexpression during differentiation of mouse Sca1(+) hematopoietic stem cells induced a 50% increase of megakaryocyte proliferation. RGS18 depletion in zebrafish results in thrombocytopenia, as 66 to 88% of the embryos lack thrombocytes after injection of an ATG or splice-blocking morpholino, respectively. These embryos have no defects in early hematopoiesis, erythropoiesis, or leukocyte number and migration. In addition, all RGS18 depleted embryos have curly tails and an almost absent response to acoustic stimuli. In situ hybridization in zebrafish, Xenopus, and mouse embryos shows RGS18 expression in thrombocytes and/or hematological tissues but also in brain and otic vesicles. RGS18 interferes with development of cilia in hair cells of the inner ear and neuromast cells. On the basis of literature evidence that RGS-R4 members interact with the G-protein-modulated Wnt/calcium pathway, Wnt5b- but not Wnt5a-depleted embryos phenocopy all RGS18 knockdown effects. In summary, our study is the first to show that RGS18 regulates megakaryopoiesis but also reveals its unexpected role in ciliogenesis, at least in lower vertebrates, via interference with Wnt signaling.
Collapse
Affiliation(s)
- Sophie Louwette
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herr DR. Potential use of G protein-coupled receptor-blocking monoclonal antibodies as therapeutic agents for cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:45-81. [PMID: 22608557 DOI: 10.1016/b978-0-12-394308-8.00002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The therapeutic use of monoclonal antibodies (mAbs) is the fastest growing area of pharmaceutical development and has enjoyed significant clinical success since approval of the first mAb drug in1984. However, despite significant effort, there are still no approved therapeutic mAbs directed against the largest and most attractive family of drug targets: G protein-coupled receptors (GPCRs). GPCRs regulate essentially all cellular processes, including those that are fundamental to cancer pathology, such as proliferation, survival/drug resistance, migration, differentiation, tissue invasion, and angiogenesis. Many different GPCR isoforms are enhanced or dysregulated in multiple tumor types, and several GPCRs have known oncogenic activity. With approximately 350 distinct GPCRs in the genome, these receptors provide a rich landscape for the design of effective, targeted therapies for cancer, a uniquely heterogeneous disease family. While the generation of selective, efficacious mAbs has been problematic for these structurally complex integral membrane proteins, progress in the development of immunotherapeutics has been made by several independent groups. This chapter provides an overview of the roles of GPCRs in cancer and describes the current state of the art of GPCR-targeted mAb drugs.
Collapse
Affiliation(s)
- Deron R Herr
- Expression Drug Designs, LLC, San Marcos, California, USA
| |
Collapse
|
24
|
Hermann RJ, Van der Steen T, Vomhof-Dekrey EE, Al-Badrani S, Wanjara SB, Failing JJ, Haring JS, Dorsam GP. Characterization and use of a rabbit-anti-mouse VPAC1 antibody by flow cytometry. J Immunol Methods 2011; 376:20-31. [PMID: 22079255 DOI: 10.1016/j.jim.2011.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide receptor-1 signaling in lymphocytes has been shown to regulate chemotaxis, proliferation, apoptosis and differentiation. During T cell activation, VPAC1 mRNA is downregulated, but the effect on its protein levels is less clear. A small number of studies have reported measurement of human VPAC1 by flow cytometry, but murine VPAC1 reagents are unavailable. Therefore, we set out to generate a reliable and highly specific α-mouse VPAC1 polyclonal antibody for use with flow cytometry. After successfully generating a rabbit α-VPAC1 polyclonal antibody (α-mVPAC1 pAb), we characterized its cross-reactivity and showed that it does not recognize other family receptors (mouse VPAC2 and PAC1, and human VPAC1, VPAC2 and PAC1) by flow cytometry. Partial purification of the rabbit α-VPAC1 sera increased the specific-activity of the α-mVPAC1 pAb by 20-fold, and immunofluorescence microscopy (IF) confirmed a plasma membrane subcellular localization for mouse VPAC1 protein. To test the usefulness of this specific α-mVPAC1 pAb, we showed that primary, resting mouse T cells express detectable levels of VPAC1 protein, with little detectable signal from activated T cells, or CD19 B cells. These data support our previously published data showing a downregulation of VPAC1 mRNA during T cell activation. Collectively, we have established a well-characterized, and highly species specific α-mVPAC1 pAb for VPAC1 surface measurement by IF and flow cytometry.
Collapse
Affiliation(s)
- Rebecca J Hermann
- Department of Chemistry and Molecular Biology and the Center for Protease Research, North Dakota State University, Fargo, ND 58108-6050, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Di Michele M, Peeters K, Loyen S, Thys C, Waelkens E, Overbergh L, Hoylaerts M, Van Geet C, Freson K. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) impairs the regulation of apoptosis in megakaryocytes by activating NF-κB: a proteomic study. Mol Cell Proteomics 2011; 11:M111.007625. [PMID: 21972247 DOI: 10.1074/mcp.m111.007625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor VPAC1 are negative regulators of megakaryopoiesis and platelet function, but their downstream signaling pathway that inhibits this process still remained unknown. A combined proteomic, transcriptomic, and bioinformatic approach was here used to elucidate the molecular mechanisms underlying PACAP signaling via VPAC1 in megakaryocytes. Two-dimensional difference gel electrophoresis and tandem MS were applied to detect differentially expressed proteins in megakaryocytic CHRF cells stimulated with PACAP. The majority of the 120 proteins modulated by PACAP belong to the class of "cell cycle and apoptosis" proteins. The up- or down-regulated expression of some proteins was confirmed by immunoblot and immunohistochemical analysis. A meta-analysis of our data and 12 other published studies was performed to evaluate signaling pathways involved in different cellular models of PACAP response. From 2384 differentially expressed genes/proteins, 83 were modulated by PACAP in at least three independent studies and Ingenuity Pathway Analysis further identified apoptosis as the highest scored network with NF-κB as a key-player. PACAP inhibited serum depletion-induced apoptosis of CHRF cells via VPAC1 stimulation. In addition, PACAP switched on NF-κB dependent gene expression since higher nuclear levels of the active NF-κB p50/p65 heterodimer were found in CHRF cells treated with PACAP. Finally, a quantitative real time PCR apoptosis array was used to study RNA from in vitro differentiated megakaryocytes from a PACAP overexpressing patient, leading to the identification of 15 apoptotic genes with a 4-fold change in expression and Ingenuity Pathway Analysis again revealed NF-κB as the central player. In conclusion, our findings suggest that PACAP interferes with the regulation of apoptosis in megakaryocytes, probably via stimulation of the NF-κB pathway.
Collapse
Affiliation(s)
| | - Karen Peeters
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Serena Loyen
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Chantel Thys
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | | | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology, Leuven, Belgium
| | - Marc Hoylaerts
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Christel Van Geet
- Center for Molecular and Vascular Biology, Leuven, Belgium; Department of Pediatrics, University Hospital Leuven, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
26
|
Hutchings CJ, Koglin M, Marshall FH. Therapeutic antibodies directed at G protein-coupled receptors. MAbs 2010; 2:594-606. [PMID: 20864805 DOI: 10.4161/mabs.2.6.13420] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in over-expressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development.
Collapse
|
27
|
Peeters K, Loyen S, Van kerckhoven S, Stoffels K, Hoylaerts MF, Van Geet C, Freson K. Thrombopoietic effect of VPAC1 inhibition during megakaryopoiesis. Br J Haematol 2010; 151:54-61. [DOI: 10.1111/j.1365-2141.2010.08327.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Chu A, Caldwell JS, Chen YA. Identification and characterization of a small molecule antagonist of human VPAC(2) receptor. Mol Pharmacol 2010; 77:95-101. [PMID: 19854890 DOI: 10.1124/mol.109.060137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) and their class II G protein-coupled receptors VPAC(1), VPAC(2), and PAC(1) play important roles in human physiology. No small molecule modulator has ever been reported for the VIP/PACAP receptors, and there is a lack of specific VPAC(2) antagonists. Via high-throughput screening of 1.67 million compounds, we discovered a single small molecule antagonist of human VPAC(2), compound 1. Compound 1 inhibits VPAC(2)-mediated cAMP accumulation with an IC(50) of 3.8 microM and the ligand-activated beta-arrestin2 binding with an IC(50) of 2.3 microM. Compound 1 acts noncompetitively in Schild analysis. It is a specific VPAC(2) antagonist with no detectable agonist or antagonist activities on VPAC(1) or PAC(1). Compound 2, a close structural analog of compound 1, was also found to be weakly active. To our surprise, compound 1 is completely inactive on the closely related mouse VPAC(2). Chimera experiments indicate that compounds 1 and 2 bind to the seven transmembrane (7TM) region of the receptor as opposed to the N-terminal extracellular domain, where the natural ligand binds. Compound 1, being the first small molecular antagonist that is specific for VPAC(2), and the only VPAC(2) antagonist molecule known to date that allosterically interacts with the 7TM region, will be a valuable tool in further study of VPAC(2) and related receptors. This study also highlights the opportunities and challenges facing small molecule drug discovery for class II peptide G protein-coupled receptors.
Collapse
Affiliation(s)
- Alan Chu
- GPCR Platform, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | | | | |
Collapse
|
29
|
Lijnen HR, Freson K, Hoylaerts MF. Effect of VPAC1 Blockade on Adipose Tissue Formation and Composition in Mouse Models of Nutritionally Induced Obesity. J Obes 2010; 2010:359527. [PMID: 20721340 PMCID: PMC2915750 DOI: 10.1155/2010/359527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/18/2010] [Indexed: 01/04/2023] Open
Abstract
Background. The pituitary adenylate cyclase activating polypeptide (PACAP) may affect adipogenesis and adipose tissue formation through interaction with its G-protein-coupled receptor VPAC1. Methods. We have used a monoclonal antibody (MAb 23A11) blocking VPAC1 in mouse models of nutritionally induced obesity. Results. Administration of MAb 23A11 (25 mg/kg body weight i.p. twice weekly) to 5-week old male C57Bl/6 mice kept on a high-fat diet for 15 weeks had no significant effect on weight gain, nor on subcutaneous (SC) or gonadal (GON) adipose tissue mass, as compared to the control MAb 1C8. However, adipocyte hypertrophy was observed in SC adipose tissue of MAb 23A11 treated mice. In a second study, 24 weeks old obese mice were treated for 5 weeks with MAb 23A11, without effect on body weight or fat mass, as compared to treatment with MAb 1C8. In addition, MAb 23A11 had no significant effect on glucose tolerance or insulin resistance in lean or obese C57Bl/6 mice. Conclusion. Blocking VPAC1 does not significantly affect adipose tissue formation in mouse models of diet-induced obesity, although it may be associated with mild adipocyte hypertrophy.
Collapse
Affiliation(s)
- H. Roger Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
- *H. Roger Lijnen:
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
| | - Marc F. Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
| |
Collapse
|
30
|
Goldfarb AN. Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb. J Cell Biochem 2009; 107:377-82. [PMID: 19350569 DOI: 10.1002/jcb.22142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcription factors originally identified as drivers of erythroid differentiation subsequently became linked to megakaryopoiesis, reflecting the shared parentage of red cells and platelets. The divergent development of megakaryocytic and erythroid progenitors relies on signaling pathways that impose lineage-specific transcriptional programs on non-lineage-restricted protein complexes. One such signaling pathway involves RUNX1, a transcription factor upregulated in megakaryocytes and downregulated in erythroid cells. In this pathway, RUNX1 engages the erythro-megakaryocytic master regulator GATA-1 in a megakaryocytic transcriptional complex whose activity is highly dependent on the P-TEFb kinase complex. The implications of this pathway for normal and pathological megakaryopoiesis are discussed.
Collapse
Affiliation(s)
- Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
31
|
Bluteau D, Lordier L, Di Stefano A, Chang Y, Raslova H, Debili N, Vainchenker W. Regulation of megakaryocyte maturation and platelet formation. J Thromb Haemost 2009; 7 Suppl 1:227-34. [PMID: 19630806 DOI: 10.1111/j.1538-7836.2009.03398.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Each day in every human, approximately 1 x 10(11) platelets are produced by the cytoplasmic fragmentation of megakaryocytes (MK), their marrow precursor cells. Platelets are the predominating factor in the process of hemostasis and thrombosis. Recent studies have shown that platelets also play a hitherto unsuspected role in several other processes such as inflammation, innate immunity, neoangiogenesis and tumor metastasis. The late phases of MK differentiation identified by polyploidization, maturation and organized fragmentation of the cytoplasm leading to the release of platelets in the blood stream represent a unique model of differentiation. The molecular and cellular mechanisms regulating platelet biogenesis are better understood and may explain several platelet disorders. This review focuses on MK polyploidization, and platelet formation, and discusses their alteration in some platelet disorders.
Collapse
Affiliation(s)
- D Bluteau
- INSERM, U790, 39 rue Camille Desmoulins, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Van Geet C, Izzi B, Labarque V, Freson K. Human platelet pathology related to defects in the G-protein signaling cascade. J Thromb Haemost 2009; 7 Suppl 1:282-6. [PMID: 19630817 DOI: 10.1111/j.1538-7836.2009.03399.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Platelets are highly responsive to signals from their environment. The sensing and processing of some of these stimuli are mediated by G-protein signal transduction cascades. It is well established that proteins involved in signal transduction may be targets for naturally occurring mutations resulting in human diseases. The best-studied molecules in platelets in relation to disease are the G-protein coupled receptors being the most platelet-specific. Many of the other signal transduction genes are often not only present in platelets but also in other tissues. Therefore, the clinical phenotype of signaling defects in platelets, apart from the membrane receptor defects, is seldom isolated to a hemostatic phenotype. Moreover, as platelets are easily accessible cells, and one of the best-studied models regarding signaling, platelets are easily applicable to investigate defects in ubiquitously expressed genes. Apart from a discussion on classical thrombopathies, this review will also deal with the less commonly known relation between platelet signaling defects and disorders with a broader clinical phenotype.
Collapse
Affiliation(s)
- C Van Geet
- Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | | | |
Collapse
|
33
|
Peeters K, Stassen JM, Collen D, Van Geet C, Freson K. Emerging treatments for thrombocytopenia: Increasing platelet production. Drug Discov Today 2008; 13:798-806. [DOI: 10.1016/j.drudis.2008.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/29/2022]
|
34
|
Nam C, Case AJ, Hostager BS, O'Dorisio MS. The role of vasoactive intestinal peptide (VIP) in megakaryocyte proliferation. J Mol Neurosci 2008; 37:160-7. [PMID: 18663606 DOI: 10.1007/s12031-008-9119-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/02/2008] [Indexed: 11/28/2022]
Abstract
Megakaryocytopoiesis is a multistage process that involves differentiation of hematopoietic stem cells through the myeloid lineage, ultimately producing megakaryocytes and platelets. Vasoactive intestinal peptide (VIP) stimulates adenylate cyclase and induces differentiation in multiple cell types; VIP is expressed in hematopoietic stem cells and in megakaryocytes, but its function in these cells has not yet been delineated. The present study was designed to investigate whether the type 1 VIP receptor, VPAC1, mediates VIP effects on megakaryocytopoiesis. The human megakaryoblastic leukemia cell line (CMK) was transfected with VPAC1 and the transgene expression was confirmed by qualitative polymerase chain reaction and immunohistochemistry. The rate of proliferation and the patterns of differentiation were then compared for CMK and CMK/VPAC1 through multiple growth cycles. Upregulation of VPAC1 expression resulted in a decreased proliferation rate (p = 0.0003) and enhanced differentiation with CMK/VPAC1 cells having twice the cell surface area of control CMK cells (p = 0.001), thus increasing potential for proplatelet formation. These results suggest that VIP acts in an autocrine fashion via VPAC1 to inhibit megakaryocyte proliferation and induce proplatelet formation.
Collapse
Affiliation(s)
- Chaneun Nam
- Department of Pediatrics, Division of Hematology/Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | |
Collapse
|
35
|
Agonistic Behavior of PACAP6-38 on Sensory Nerve Terminals and Cytotrophoblast Cells. J Mol Neurosci 2008; 36:270-8. [DOI: 10.1007/s12031-008-9089-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
|