1
|
Frascatani R, Colella M, Monteleone G. Hepcidin Is a Valuable Therapeutic Target for Colorectal Cancer. Cancers (Basel) 2024; 16:4068. [PMID: 39682254 DOI: 10.3390/cancers16234068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent neoplasms and a major cause of cancer death worldwide. Despite recent advances in treatment approaches, the prognosis of advanced CRC remains poor, thus indicating the necessity of more effective treatments for CRC patients. CRC cells produce high levels of hepcidin, a peptide hormone that binds to the membrane-bound ferroportin and promotes its internalization and degradation, thus sequestering iron into the cancer cells with the downstream effect of enhancing tumor growth. Additionally, CRC cell-expressed hepcidin prolongs cell survival and, by targeting both CD8+ T cells and myeloid cells, restrains the induction of an efficient immune response against tumor antigens. The greatest expression of hepcidin is found in patients with metastatic CRC, and CRC patients with high hepcidin content have a worse survival rate than those with low hepcidin content. In the present article, we review the data supporting the prominent role of hepcidin in colon tumorigenesis and discuss how hepcidin inhibitors can help treat CRC patients in the metastatic setting with particular regard to the impact of hepcidin modulation on immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
2
|
Arora S, Vachhani P, Bose P. Investigational drugs in early phase trials for myelofibrosis. Expert Opin Investig Drugs 2024; 33:1231-1244. [PMID: 39604120 PMCID: PMC11669310 DOI: 10.1080/13543784.2024.2434696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, cytopenias, and organomegaly. Four JAK inhibitors are US-FDA approved for treatment of MF. While these drugs reduce symptom burden and spleen size to varying degrees, they do not affect the natural disease course or decrease the risk of leukemic transformation. Therefore, there is a strong need for newer therapies to further advance the field and improve the outcomes of MF. In this review, we cover novel therapies for MF currently in early stages of development. AREAS COVERED We present the latest data from early phase clinical trials in MF using drugs with diverse therapeutic mechanisms, including novel JAK-STAT pathway inhibitors, epigenetic therapies, antifibrotic agents, and immunotherapeutic strategies. Additionally, we cover drugs targeted toward anemia improvement in MF. EXPERT OPINION Numerous agents representing diverse drug classes are in clinical development for MF. While deeper and durable improvements in splenomegaly, symptoms, and anemia are the main clinical objectives, a number of putative biomarkers are being assessed as measures of potential 'disease modification.' Although JAK inhibitor monotherapy represents the current standard, it is hoped that JAK inhibitor-based rational combinations and driver mutation-specific therapies will soon usher in a new era.
Collapse
Affiliation(s)
- Sankalp Arora
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Enns CA, Zhang RH, Jue S, Zhang AS. Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver. J Biol Chem 2024; 300:107927. [PMID: 39454953 PMCID: PMC11599459 DOI: 10.1016/j.jbc.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by the inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 KO mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard H Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Liu Q, Li J, Zong Q, Duan Z, Liu F, Duan W, Ruan M, Zhang H, Liu Y, Zhou Q, Wang Q. Interferon-induced polarization of M1 macrophages mediates antiviral activity against the hepatitis B virus via the hepcidin-ferroportin axis. Int Immunopharmacol 2024; 134:112219. [PMID: 38733823 DOI: 10.1016/j.intimp.2024.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUNDS & AIMS Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.
Collapse
Affiliation(s)
- Qian Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jianfei Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiyin Zong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Futing Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wanlu Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Mengqi Ruan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Hao Zhang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yan Liu
- Department of Microbiology, School of Basic Medical, Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Qin Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
6
|
Dogan DY, Urzica EI, Hornung I, Kastl P, Oguama D, Fette FM, Nguyen LH, Rosenbauer F, Zacharowski K, Klingmüller U, Gradhand E, von Knethen A, Popp R, Fleming I, Schrader L, Steinbicker AU. Hemojuvelin-mediated hepcidin induction requires both bone morphogenetic protein type I receptors ALK2 and ALK3. Blood Adv 2024; 8:2870-2879. [PMID: 38588481 PMCID: PMC11169963 DOI: 10.1182/bloodadvances.2023012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Hemojuvelin (HJV) is a glycosylphosphatidylinositol-anchored protein of the repulsive guidance molecule family acting as a bone morphogenetic protein (BMP) coreceptor to induce the hepatic iron regulatory protein hepcidin. Hepcidin causes ubiquitination and degradation of the sole known iron exporter ferroportin, thereby limiting iron availability. The detailed signaling mechanism of HJV in vivo has yet to be investigated. In the current manuscript, we used an established model of adeno-associated virus (AAV)-mediated liver-specific overexpression of HJV in murine models of hepatocyte-specific deficiency of the BMP type I receptors Alk2 or Alk3. In control mice, HJV overexpression increased hepatic Hamp messenger RNA (mRNA) levels, soluble HJV (sHJV), splenic iron content (SIC), as well as phosphorylated small mothers against decapentaplegic protein (pSMAD1/5/8) levels. In contrast, in Alk2fl/fl;Alb-Cre and Alk3fl/fl;Alb-Cre mice, which present with moderate and severe iron overload, respectively, the administration of AAV-HJV induced HJV and sHJV. However, it did not rescue the iron overload phenotypes of those mice. Serum iron levels were induced in Alk2fl/fl;Alb-Cre mice after HJV overexpression. In phosphate-buffered saline-injected Alk3fl/fl;Alb-Cre mice, serum iron levels and the expression of duodenal ferroportin remained high, whereas Hamp mRNA levels were decreased to 1% to 5% of the levels detected in controls. This was reduced even further by AAV-HJV overexpression. SIC remained low in mice with hepatocyte-specific Alk2 or Alk3 deficiency, reflecting disturbed iron homeostasis with high serum iron levels and transferrin saturation and an inability to induce hepcidin by HJV overexpression. The data indicate that ALK2 and ALK3 are both required in vivo for the HJV-mediated induction of hepcidin.
Collapse
Affiliation(s)
- Deniz Y. Dogan
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eugen I. Urzica
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Isabelle Hornung
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - David Oguama
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Franca M. Fette
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Lien H. Nguyen
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Elise Gradhand
- Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Andreas von Knethen
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
- German Centre for Cardiovascular Research Partner Site Rhein Main, Frankfurt, Germany
| | - Lisa Schrader
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Andrea U. Steinbicker
- Department of Anesthesiology, Goethe University Frankfurt, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
7
|
Marañón P, Rey E, Isaza SC, Wu H, Rada P, Choya-Foces C, Martínez-Ruiz A, Martín MÁ, Ramos S, García-Monzón C, Cubero FJ, Valverde ÁM, González-Rodríguez Á. Inhibition of ALK3-mediated signalling pathway protects against acetaminophen-induced liver injury. Redox Biol 2024; 71:103088. [PMID: 38401290 PMCID: PMC10902147 DOI: 10.1016/j.redox.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.
Collapse
Affiliation(s)
- Patricia Marañón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
| | - Esther Rey
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Stephania C Isaza
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Sonia Ramos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Carmelo García-Monzón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
8
|
Ahmadi Badi S, Bereimipour A, Rohani P, Khatami S, Siadat SD. Interplay between gut microbiota and the master iron regulator, hepcidin, in the pathogenesis of liver fibrosis. Pathog Dis 2024; 82:ftae005. [PMID: 38555503 PMCID: PMC10990161 DOI: 10.1093/femspd/ftae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION There is a proven role for hepcidin and the composition of gut microbiota and its derivatives in the pathophysiology of liver fibrosis. AREA COVERED This review focuses on the literature search regarding the effect of hepcidin and gut microbiota on regulating liver physiology. We presented the regulating mechanisms of hepcidin expression and discussed the possible interaction between gut microbiota and hepcidin regulation. Furthermore, we investigated the importance of the hepcidin gene in biological processes and bacterial interactions using bioinformatics analysis. EXPERT OPINION One of the main features of liver fibrosis is iron accumulation in hepatic cells, including hepatocytes. This accumulation can induce an oxidative stress response, inflammation, and activation of hepatic stellate cells. Hepcidin is a crucial regulator of iron by targeting ferroportin expressed on hepatocytes, macrophages, and enterocytes. Various stimuli, such as iron load and inflammatory signals, control hepcidin regulation. Furthermore, a bidirectional relationship exists between iron and the composition and metabolic activity of gut microbiota. We explored the potential of gut microbiota to influence hepcidin expression and potentially manage liver fibrosis, as the regulation of iron metabolism plays a crucial role in this context.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, 1963737611, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, 1416753955, Iran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, 1416753955, Iran
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, 1963737611, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, 1963737611, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran,1963737611, Iran
| |
Collapse
|
9
|
WU JIANFA, LIAO QIANYI, ZHANG LI, WU SUQIN, LIU ZHOU. TGF-β-regulated different iron metabolism processes in the development and cisplatin resistance of ovarian cancer. Oncol Res 2023; 32:373-391. [PMID: 38186569 PMCID: PMC10765122 DOI: 10.32604/or.2023.031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
The impact of different iron metabolism processes (DIMP) on ovarian cancer remains unclear. In this study, we employed various gene chips and databases to investigate the role of DIMP in the initiation and development of ovarian cancer. cBioPortal was used to determine mutations in DIMP-associated genes in ovarian cancer. Kaplan-Meier plotter was used to examine the influence of DIMP on the prognosis of ovarian cancer. By analyzing 1669 serous ovarian cancer cases, we identified a range of mutations in iron metabolism genes, notably in those coding for the transferrin receptor (19%), melanotransferrin (19%), and ceruloplasmin (10%) in the iron import process, and glucose-6-phosphate isomerase (9%), hepcidin antimicrobial peptide (9%), metal regulatory transcription factor 1 (8%), and bone morphogenetic protein 6 (8%) in the iron regulation process. Compared to the unaltered group, the group with gene alterations exhibited a higher tumor mutation burden count (43 vs. 54) and more advanced histologic grade (78.19% vs. 87.90%). Compared to the normal ovarian counterparts, a reduction in expression was observed in 9 out of the 14 genes involved in iron utilization and 4 out of the 5 genes involved in iron export in ovarian cancer; in contrast, an increase in expression was observed in 2 out of the 3 genes involved in iron storage in ovarian cancer. Furthermore, in cisplatin-resistant cells compared to cisplatin-sensitive ones, the expression of all genes in iron storage and 13 out of 14 genes in iron import was decreased, while that of 8 out of the 10 genes in iron utilization was increased. In addition, survival curve analysis indicated that a higher expression in the majority of genes in the iron import process (12/21), or a reduced expression in most genes in the iron export process (4/5) correlated with poor progression-free survival. Additionally, TGF-β could regulate the expression of most iron metabolism-associated genes; particularly, expression of genes involved in the iron storage process (2/2) was inhibited after TGF-β1 or TGF-β2 treatment. In conclusion, DIMP plays multifaceted roles in the initiation, chemo-resistance, and prognosis of ovarian cancer. Therapeutically targeting DIMP may pave the way for more tailored treatment approaches for ovarian cancer.
Collapse
Affiliation(s)
- JIANFA WU
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - QIANYI LIAO
- Department of Gynecology, Gongshan People’s Hospital, Nujiang Lisu Autonomous Prefecture, China
| | - LI ZHANG
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - SUQIN WU
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - ZHOU LIU
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Paluschinski M, Kordes C, Vucur M, Buettner V, Roderburg C, Xu HC, Shinte PV, Lang PA, Luedde T, Castoldi M. Differential Modulation of miR-122 Transcription by TGFβ1/BMP6: Implications for Nonresolving Inflammation and Hepatocarcinogenesis. Cells 2023; 12:1955. [PMID: 37566034 PMCID: PMC10416984 DOI: 10.3390/cells12151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFβ1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Veronika Buettner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Haifeng C. Xu
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Prashant V. Shinte
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Philipp A. Lang
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| |
Collapse
|
11
|
Jiang Y, Guo Y, Feng X, Yang P, Liu Y, Dai X, Zhao F, Lei D, Li X, Liu Y, Li Y. Iron metabolism disorder regulated by BMP signaling in hypoxic pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166589. [PMID: 36343841 DOI: 10.1016/j.bbadis.2022.166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUNDS AND AIMS Unexplained iron deficiency is associated with poorer survival in patients with pulmonary hypertension (PH). Bone morphogenetic protein (BMP) signaling and BMP protein type II receptor (BMPR2) expression are important in the pathogenesis of PH. BMP6 in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. This study aimed to investigate the effects of BMP signaling on iron metabolism and its implication in hypoxia-induced PH. METHODS AND RESULTS PH was induced in Sprague-Dawley Rats under hypoxia for 4 weeks. Compared with the control group, right ventricular systolic pressure and right ventricle hypertrophy index were both markedly increased, and serum iron level was significantly decreased with iron metabolic disorder in the hypoxia group. In cultured human pulmonary artery endothelial cells (HPAECs), hypoxia increased oxidative stress and apoptosis, which were reversed by supplementation with Fe agent. Meanwhile, iron chelator deferoxamine triggered oxidative stress and apoptosis in HPAECs, and treatment with antioxidant alleviated iron-deficiency-induced apoptosis by reducing reactive oxygen species production. Expression of hepcidin, BMP6 and hypoxia-inducible factor (HIF)-1α were significantly upregulated, while expression of BMPR2 was downregulated in hepatocytes in the hypoxia group, both in vivo and in vitro. Expression of hepcidin and HIF-1α were significantly increased by BMP6, while pretreatment with siRNA-BMPR2 augmented the enhanced expression of hepcidin and HIF-1α induced by BMP6. CONCLUSIONS Iron deficiency promoted oxidative stress and apoptosis in HPAECs in hypoxia-induced PH, and enhanced expression of hepcidin regulated by BMP6/BMPR2 signaling may contribute to iron metabolic disorder.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuexiang Feng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuejing Dai
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feilong Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Dongyu Lei
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
12
|
Pérez-Cruz M, Iliopoulou BP, Hsu K, Wu HH, Erkers T, Swaminathan K, Tang SW, Bader CS, Kambham N, Xie B, Dekruyff RH, Freeman GJ, Meyer E. Immunoregulatory effects of RGMb in gut inflammation. Front Immunol 2022; 13:960329. [PMID: 36420263 PMCID: PMC9676481 DOI: 10.3389/fimmu.2022.960329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Graft-versus-host disease (GvHD) is a major complication after allogeneic hematopoietic cell transplantation (HCT). Current strategies to prevent GvHD with immunosuppressive drugs carry significant morbidity and may affect the graft-versus-tumor (GVT) effect. Inflammatory bowel disease (IBD) is an intestinal inflammatory condition that affects more than 2 million people in the United States. Current strategies to prevent colitis with immunosuppressive drugs carry significant morbidity. Recently, Repulsive Guidance Molecule b (RGMb) has been identified as part of a signaling hub with neogenin and BMP receptors in mice and humans. In addition, RGMb binds BMP-2/4 in mice and humans as well as PD-L2 in mice. RGMb is expressed in the gut epithelium and by antigen presenting cells, and we found significantly increased expression in mouse small intestine after total body irradiation HCT conditioning. We hypothesized that RGMb may play a role in GvHD and IBD pathogenesis by contributing to mucosal inflammation. Using major-mismatched HCT mouse models, treatment with an anti-RGMb monoclonal antibody (mAb) that blocks the interaction with BMP-2/4 and neogenin prevented GvHD and improved survival compared to isotype control (75% versus 30% survival at 60 days after transplantation). The GVT effect was retained in tumor models. Using an inflammatory bowel disease dextran sulfate sodium model, treatment with anti-RGMb blocking monoclonal antibody but not isotype control prevented colitis and improved survival compared to control (73% versus 33% at 21 days after treatment) restoring gut homeostasis. Anti-RGMb mAb (9D1) treatment decreased IFN-γ and significantly increased IL-5 and IL-10 in the gut of the treated mice compared to the isotype control treated mice.
Collapse
Affiliation(s)
- Magdiel Pérez-Cruz
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Bettina P. Iliopoulou
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Katie Hsu
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hsin-Hsu Wu
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Tom Erkers
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Kavya Swaminathan
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sai-Wen Tang
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cameron S. Bader
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Neeraja Kambham
- Department of Developmental biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Bryan Xie
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemarie H. Dekruyff
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Song YS, Annalora AJ, Marcus CB, Jefcoate CR, Sorenson CM, Sheibani N. Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress. Cells 2022; 11:2930. [PMID: 36230892 PMCID: PMC9563809 DOI: 10.3390/cells11192930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.
Collapse
Affiliation(s)
- Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christine M. Sorenson
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
15
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
16
|
Wang S, Chen C, Yu L, Mueller J, Rausch V, Mueller S. Bone morphogenetic protein 6-mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J Biol Chem 2021; 297:101378. [PMID: 34740612 PMCID: PMC8637636 DOI: 10.1016/j.jbc.2021.101378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.
Collapse
Affiliation(s)
- Shijin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Linna Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10101590. [PMID: 34679725 PMCID: PMC8533173 DOI: 10.3390/antiox10101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.
Collapse
|
18
|
Kim HY, Lee JM, Lee YS, Li S, Lee SJ, Bae SC, Jung HS. Runx3 regulates iron metabolism via modulation of BMP signalling. Cell Prolif 2021; 54:e13138. [PMID: 34611951 PMCID: PMC8666273 DOI: 10.1111/cpr.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Runx3, a member of the Runx family of transcription factors, has been studied as a tumour suppressor and key player of organ development. In a previous study, we reported differentiation failure and excessive angiogenesis in the liver of Runx3 knock‐out (KO) mice. Here, we examined a function of the Runx3 in liver, especially in iron metabolism. Methods We performed histological and immunohistological analyses of the Runx3 KO mouse liver. RNA‐sequencing analyses were performed on primary hepatocytes isolated from Runx3 conditional KO (cKO) mice. The effect of Runx3 knock‐down (KD) was also investigated using siRNA‐mediated KD in functional human hepatocytes and human hepatocellular carcinoma cells. Result We observed an iron‐overloaded liver with decreased expression of hepcidin in Runx3 KO mice. Expression of BMP6, a regulator of hepcidin transcription, and activity of the BMP pathway were decreased in the liver tissue of Runx3 KO mice. Transcriptome analysis on primary hepatocytes isolated from Runx3 cKO mice also revealed that iron‐induced increase in BMP6 was mediated by Runx3. Similar results were observed in Runx3 knock‐down experiments using HepaRG cells and HepG2 cells. Finally, we showed that Runx3 enhanced the activity of the BMP6 promoter by responding to iron stimuli in the hepatocytes. Conclusion In conclusion, we suggest that Runx3 plays important roles in iron metabolism of the liver through regulation of BMP signalling.
Collapse
Affiliation(s)
- Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - You-Soub Lee
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
19
|
Sinha S, Pereira-Reis J, Guerra A, Rivella S, Duarte D. The Role of Iron in Benign and Malignant Hematopoiesis. Antioxid Redox Signal 2021; 35:415-432. [PMID: 33231101 PMCID: PMC8328043 DOI: 10.1089/ars.2020.8155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Significance: Iron is an essential element required for sustaining a normal healthy life. However, an excess amount of iron in the bloodstream and tissue generates toxic hydroxyl radicals through Fenton reactions. Henceforth, a balance in iron concentration is extremely important to maintain cellular homeostasis in both normal hematopoiesis and erythropoiesis. Iron deficiency or iron overload can impact hematopoiesis and is associated with many hematological diseases. Recent Advances: The mechanisms of action of key iron regulators such as erythroferrone and the discovery of new drugs, such as ACE-536/luspatercept, are of potential interest to treat hematological disorders, such as β-thalassemia. New therapies targeting inflammation-induced ineffective erythropoiesis are also in progress. Furthermore, emerging evidences support differential interactions between iron and its cellular antioxidant responses of hematopoietic and neighboring stromal cells. Both iron and its systemic regulator, such as hepcidin, play a significant role in regulating erythropoiesis. Critical Issues: Significant pre-clinical studies are on the way and new drugs targeting iron metabolism have been recently approved or are undergoing clinical trials to treat pathological conditions with impaired erythropoiesis such as myelodysplastic syndromes or β-thalassemia. Future Directions: Future studies should explore how iron regulates hematopoiesis in both benign and malignant conditions. Antioxid. Redox Signal. 35, 415-432.
Collapse
Affiliation(s)
- Sayantani Sinha
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Joana Pereira-Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO), Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| |
Collapse
|
20
|
Enns CA, Jue S, Zhang AS. Hepatocyte neogenin is required for hemojuvelin-mediated hepcidin expression and iron homeostasis in mice. Blood 2021; 138:486-499. [PMID: 33824974 PMCID: PMC8370464 DOI: 10.1182/blood.2020009485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed multifunctional transmembrane protein. It interacts with hemojuvelin (HJV), a BMP coreceptor that plays a pivotal role in hepatic hepcidin expression. Earlier studies suggest that the function of HJV relies on its interaction with NEO1. However, the role of NEO1 in iron homeostasis remains controversial because of the lack of an appropriate animal model. Here, we generated a hepatocyte-specific Neo1 knockout (Neo1fl/fl;Alb-Cre+) mouse model that circumvented the developmental and lethality issues of the global Neo1 mutant. Results show that ablation of hepatocyte Neo1 decreased hepcidin expression and caused iron overload. This iron overload did not result from altered iron utilization by erythropoiesis. Replacement studies revealed that expression of the Neo1L1046E mutant that does not interact with Hjv, was unable to correct the decreased hepcidin expression and high serum iron in Neo1fl/fl;Alb-Cre+ mice. In Hjv-/- mice, expression of HjvA183R mutant that has reduced interaction with Neo1, also displayed a blunted induction of hepcidin expression. These observations indicate that Neo1-Hjv interaction is essential for hepcidin expression. Further analyses suggest that the Hjv binding triggered the cleavage of the Neo1 cytoplasmic domain by a protease, which resulted in accumulation of truncated Neo1 on the plasma membrane. Additional studies did not support that Neo1 functions by inhibiting Hjv shedding as previously proposed. Together, our data favor a model in which Neo1 interaction with Hjv leads to accumulation of cleaved Neo1 on the plasma membrane, where Neo1 acts as a scaffold to induce the Bmp signaling and hepcidin expression.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
21
|
Wang J, Liu W, Li JC, Li M, Li B, Zhu R. Hepcidin Downregulation Correlates With Disease Aggressiveness And Immune Infiltration in Liver Cancers. Front Oncol 2021; 11:714756. [PMID: 34277457 PMCID: PMC8278784 DOI: 10.3389/fonc.2021.714756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepcidin is a polypeptide hormone mainly produced by hepatocytes to modulate systemic iron balance. A drastic downregulation of the hepcidin gene was found in liver cancers. However, there is a paucity of information about the clinical significance of hepcidin gene downregulation in liver cancers. Methods Hepcidin expression profiles were assessed using multiple public datasets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify patients for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. Tumor immune infiltration was analyzed using the single sample gene set enrichment analysis (ssGSEA) approach on the Cancer Genome Atlas (TCGA) dataset. Hepcidin antagonist Fursultiamine was used to treat liver cancer HepG2 and Huh7 cells together with Sorafenib. Results Hepcidin gene was predominantly expressed in benign liver tissues but drastically decreased in liver cancer tissues. Hepcidin reduction in liver cancers correlated with risk factors like non-alcoholic fatty liver disease (NAFLD) and liver fibrosis, as well as cancer grade and tumor stage. Hepcidin downregulation was associated with a rapid cancer progression and worse disease-specific survival, especially in patients of the White race without alcohol consumption history. Hepcidin expression in liver cancer tissues positively correlated with the bone morphogenetic protein-6 (BPM6)/interleukin-6 (IL6) cytokines and cytotoxic immune infiltration. Blocking hepcidin action with its antagonist Fursultiamine moderately reduced Sorafenib-induced apoptotic cell death in HepG2 and Huh7 cells. Conclusion Hepcidin downregulation in liver cancers correlated with liver cancer risk factors, cancer aggressiveness, cytotoxic immune cell infiltration, and patient survival outcomes. BMP6/IL6 pathway insufficiency is a potential cause of hepcidin downregulation in liver cancers.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Mingyi Li
- Department of General Surgery, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Runzhi Zhu
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
23
|
Hepatocyte neogenin, another key actor in iron homeostasis. Blood 2021; 138:423-425. [PMID: 34383040 DOI: 10.1182/blood.2021011936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
|
24
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
25
|
Pagani A, Pettinato M, Colucci S, Dulja A, Rauner M, Nai A, Camaschella C, Altamura S, Muckenthaler MU, Silvestri L. Hemochromatosis proteins are dispensable for the acute hepcidin response to BMP2. Haematologica 2020; 105:e493. [PMID: 33054090 PMCID: PMC7556651 DOI: 10.3324/haematol.2019.241984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alessia Pagani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Mariateresa Pettinato
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Germany
| | - Alessandro Dulja
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rauner
- Department of Medicine III, Technische Universitat Dresden, Dresden, Germany
| | - Antonella Nai
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Germany
| | - Laura Silvestri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
26
|
Xiao X, Alfaro-Magallanes VM, Babitt JL. Bone morphogenic proteins in iron homeostasis. Bone 2020; 138:115495. [PMID: 32585319 PMCID: PMC7453787 DOI: 10.1016/j.bone.2020.115495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway plays a central role in regulating hepcidin, which is the master hormone governing systemic iron homeostasis. Hepcidin is produced by the liver and acts on the iron exporter ferroportin to control iron absorption from the diet and iron release from body stores, thereby providing adequate iron for red blood cell production, while limiting the toxic effects of excess iron. BMP6 and BMP2 ligands produced by liver endothelial cells bind to BMP receptors and the coreceptor hemojuvelin (HJV) on hepatocytes to activate SMAD1/5/8 signaling, which directly upregulates hepcidin transcription. Most major signals that influence hepcidin production, including iron, erythropoietic drive, and inflammation, intersect with the BMP-SMAD pathway to regulate hepcidin transcription. Mutation or inactivation of BMP ligands, BMP receptors, HJV, SMADs or other proteins that modulate the BMP-SMAD pathway result in hepcidin dysregulation, leading to iron-related disorders, such as hemochromatosis and iron refractory iron deficiency anemia. Pharmacologic modulators of the BMP-SMAD pathway have shown efficacy in pre-clinical models to regulate hepcidin expression and treat iron-related disorders. This review will discuss recent insights into the role of the BMP-SMAD pathway in regulating hepcidin to control systemic iron homeostasis.
Collapse
Affiliation(s)
- Xia Xiao
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl. Biochim Biophys Acta Gen Subj 2020; 1864:129610. [PMID: 32251709 DOI: 10.1016/j.bbagen.2020.129610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-β family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS The present study reveals non‑iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.
Collapse
|
28
|
Li X, Sun B, Zhao X, An J, Zhang Y, Gu Q, Zhao N, Wang Y, Liu F. Function of BMP4 in the Formation of Vasculogenic Mimicry in Hepatocellular Carcinoma. J Cancer 2020; 11:2560-2571. [PMID: 32201526 PMCID: PMC7066000 DOI: 10.7150/jca.40558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
Vasculogenic mimicry (VM) is linked to vascular invasion of human hepatocellular carcinoma (HCC). BMP4, one BMP family member, is upregulated in several cancers. The purpose of this report is to identify the function of BMP4 in the formation of VM in HCC and the mechanism underling this regulation. In our report, BMP4 up-regulation resulted in an increase in migration, invasion and channel-like structure formation as well as induced epithelial-mesenchymal transition (EMT) process and stem cell-associated proteins OCT4 and SOX2 expression in HCC cells. In addition, The VM-associated proteins, including EphA2, VE-cadherin and MMP2, also could be effectively enhanced by the overexpression of BMP4. Furthermore, according to the TCGA database, higher expression of BMP4 is seen in HCC in contrast to normal liver samples. Immunohistochemistry revealed that BMP4 was positively associated with VM formation, age, histological differentiation, HCC stage, and shorter survival duration. These data demonstrated that BMP4 could promote VM network formation in HCC through induction of stemness in EMT and modulating the EphA2/VE-cadherin/MMP2 signaling pathway.
Collapse
Affiliation(s)
- Xiao Li
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Baocun Sun
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jindan An
- Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Qiang Gu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong Wang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Fang Liu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
29
|
Zhang P, He J, Wang F, Gong J, Wang L, Wu Q, Li W, Liu H, Wang J, Zhang K, Li M, Huang X, Pu C, Li Y, Jiang F, Wang F, Min J, Chen X. Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting. J Cachexia Sarcopenia Muscle 2019; 10:557-573. [PMID: 30884219 PMCID: PMC6596404 DOI: 10.1002/jcsm.12414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/27/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Muscle wasting occurs in response to various physiological and pathological conditions, including ageing and Duchenne muscular dystrophy (DMD). Transforming growth factor-β1 (TGF-β1) contributes to muscle pathogenesis in elderly people and DMD patients; inhibition of TGF-β1 signalling is a promising therapeutic strategy for muscle-wasting disorders. Hemojuvelin (HJV or Hjv as the murine homologue) is a membrane-bound protein that is highly expressed in skeletal muscle, heart, and liver. In hepatic cells, Hjv acts as a coreceptor for bone morphogenetic protein, a TGF-β subfamily member. The aim of this study was to investigate whether Hjv plays an essential role in muscle physiological and pathophysiological processes by acting as a coreceptor for TGF-β1 signalling. METHODS Conventional and conditional Hjv knockout mice as well as mdx and aged mice transfected with Hjv overexpression vector were used to study the role of Hjv in muscle physiology and pathophysiology. qRT-PCR, western blotting, and immunohistochemistry examinations were conducted to evaluate gene, protein, and structural changes in vivo and in vitro. Exercise endurance was determined using treadmill running test, and muscle force was detected by an isometric transducer. RNA interference, immunoprecipitation, and dual-luciferase reporter assays were utilized to explore the mechanism by which Hjv regulates TGF-β1 signalling in skeletal muscle. RESULTS Conventional and conditional Hjv knockout mice displayed muscle atrophy, fibrosis, reduced running endurance, and muscle force. HJV was significantly down-regulated in the muscles of DMD patients (n = 3, mean age: 11.7 ± 5.7 years) and mdx mice as well as in those of aged humans (n = 10, 20% women, mean age: 75.1 ± 9.5 years) and mice. Overexpression of Hjv rescued dystrophic and age-related muscle wasting. Unlike its function in hepatic cells, the bone morphogenetic protein downstream phosphorylated p-Smad1/5/8 signalling pathway was unchanged, but TGF-β1, TGF-β receptor II (TβRII), and p-Smad2/3 expression were increased in Hjv-deficient muscles. Mechanistically, loss of Hjv promoted activation of Smad3 signalling induced by TGF-β1, whereas Hjv overexpression inhibited TGF-β1/Smad3 signalling by directly interacting with TβRII on the muscle membrane. CONCLUSIONS Our findings identify an unrecognized role of HJV in skeletal muscle by regulating TGF-β1/Smad3 signalling as a coreceptor for TβRII. Unlike the TGF-β1/Smad3 pathway, HJV could be a reliable drug target as its expression is not widespread. Novel therapeutic strategies could potentially be devised to interfere only with the muscle function of HJV to treat DMD and age-related muscle wasting.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jian He
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Fei Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Jing Gong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lu Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qian Wu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjiong Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongju Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jing Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mao Li
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuanqiang Pu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ying Li
- No. 454 Hospital of People's Liberation Army, Nanjing, China
| | - Fengjie Jiang
- No. 454 Hospital of People's Liberation Army, Nanjing, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
30
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
31
|
Abstract
Hepcidin, the main regulator of iron metabolism, is synthesized and released by hepatocytes in response to increased body iron concentration and inflammation. Deregulation of hepcidin expression is a common feature of genetic and acquired iron disorders: in Hereditary Hemochromatosis (HH) and iron-loading anemias low hepcidin causes iron overload, while in Iron Refractory Iron Deficiency Anemia (IRIDA) and anemia of inflammation (AI), high hepcidin levels induce iron-restricted erythropoiesis. Hepcidin expression in the liver is mainly controlled by the BMP-SMAD pathway, activated in a paracrine manner by BMP2 and BMP6 produced by liver sinusoidal endothelial cells. The BMP type I receptors ALK2 and ALK3 are responsible for iron-dependent hepcidin upregulation and basal hepcidin expression, respectively. Characterization of animal models with genetic inactivation of the key components of the pathway has suggested the existence of two BMP/SMAD pathway branches: the first ALK3 and HH proteins dependent, responsive to BMP2 for basal hepcidin activation, and the second ALK2 dependent, activated by BMP6 in response to increased tissue iron. The erythroid inhibitor of hepcidin Erythroferrone also impacts on the liver BMP-SMAD pathway although its effect is blunted by pathway hyper-activation. The liver BMP-SMAD pathway is required also in inflammation to cooperate with JAK2/STAT3 signaling for full hepcidin activation. Pharmacologic targeting of BMP-SMAD pathway components or regulators may improve the outcome of both genetic and acquired disorders of iron overload and deficiency by increasing or inhibiting hepcidin expression.
Collapse
|
32
|
Rotwein P. Variation in the repulsive guidance molecule family in human populations. Physiol Rep 2019; 7:e13959. [PMID: 30746893 PMCID: PMC6370684 DOI: 10.14814/phy2.13959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Repulsive guidance molecules, RGMA, RGMB, and RGMC, are related proteins discovered independently through different experimental paradigms. They are encoded by single copy genes in mammalian and other vertebrate genomes, and are ~50% identical in amino acid sequence. The importance of RGM actions in human physiology has not been realized, as most research has focused on non-human models, although mutations in RGMC are the cause of the severe iron storage disorder, juvenile hemochromatosis. Here I show that repositories of human genomic and population genetic data can be used as starting points for discovery and for developing new testable hypotheses about each of these paralogs in human biology and disease susceptibility. Information was extracted, aggregated, and analyzed from the Ensembl and UCSC Genome Browsers, the Exome Aggregation Consortium, the Genotype-Tissue Expression project portal, the cBio portal for Cancer Genomics, and the National Cancer Institute Genomic Data Commons data site. Results identify extensive variation in gene expression patterns, substantial alternative RNA splicing, and possible missense alterations and other modifications in the coding regions of each of the three genes, with many putative mutations being detected in individuals with different types of cancers. Moreover, selected amino acid substitutions are highly prevalent in the world population, with minor allele frequencies of up to 37% for RGMA and up to 8% for RGMB. These results indicate that protein sequence variation is common in the human RGM family, and raises the possibility that individual variants will have a significant population impact on human physiology and/or disease predisposition.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical SciencesPaul L. Foster School of MedicineTexas Tech Health University Health Sciences CenterEl PasoTexas
| |
Collapse
|
33
|
Abstract
Haemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin-ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein. Non-HFE forms of haemochromatosis due to mutations in HAMP, HJV or TFR2 are much rarer. Mutations in SLC40A1 (also known as FPN1; encoding ferroportin) that prevent hepcidin-ferroportin binding also cause haemochromatosis. Cellular iron excess in HFE and non-HFE forms of haemochromatosis is caused by increased concentrations of plasma iron, which can lead to the accumulation of iron in parenchymal cells, particularly hepatocytes, pancreatic cells and cardiomyocytes. Diagnosis is noninvasive and includes clinical examination, assessment of plasma iron parameters, imaging and genetic testing. The mainstay therapy is phlebotomy, although iron chelation can be used in some patients. Hepcidin supplementation might be an innovative future approach.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for Haemochromatosis, University Hospital of Modena, Modena, Italy
| | - Paul C. Adams
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | | | - Olivier Loréal
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
34
|
Hohlbaum AM, Gille H, Trentmann S, Kolodziejczyk M, Rattenstetter B, Laarakkers CM, Katzmann G, Christian HJ, Andersen N, Allersdorfer A, Olwill SA, Meibohm B, Audoly LP, Swinkels DW, van Swelm RPL. Sustained plasma hepcidin suppression and iron elevation by Anticalin-derived hepcidin antagonist in cynomolgus monkey. Br J Pharmacol 2018; 175:1054-1065. [PMID: 29329501 DOI: 10.1111/bph.14143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Anaemia of chronic disease (ACD) has been linked to iron-restricted erythropoiesis imposed by high circulating levels of hepcidin, a 25 amino acid hepatocyte-derived peptide that controls systemic iron homeostasis. Here, we report the engineering of the human lipocalin-derived, small protein-based anticalin PRS-080 hepcidin antagonist with high affinity and selectivity. EXPERIMENTAL APPROACH Anticalin- and hepcidin-specific pharmacokinetic (PK)/pharmacodynamic modelling (PD) was used to design and select the suitable drug candidate based on t1/2 extension and duration of hepcidin suppression. The development of a novel free hepcidin assay enabled accurate analysis of bioactive hepcidin suppression and elucidation of the observed plasma iron levels after PRS-080-PEG30 administration in vivo. KEY RESULTS PRS-080 had a hepcidin-binding affinity of 0.07 nM and, after coupling to 30 kD PEG (PRS-080-PEG30), a t1/2 of 43 h in cynomolgus monkeys. Dose-dependent iron mobilization and hepcidin suppression were observed after a single i.v. dose of PRS-080-PEG30 in cynomolgus monkeys. Importantly, in these animals, suppression of free hepcidin and subsequent plasma iron elevation were sustained during repeated s.c. dosing. After repeated dosing and followed by a treatment-free interval, all iron parameters returned to pre-dose values. CONCLUSIONS AND IMPLICATIONS In conclusion, we developed a dose-dependent and safe approach for the direct suppression of hepcidin, resulting in prolonged iron mobilization to alleviate iron-restricted erythropoiesis that can address the root cause of ACD. PRS-080-PEG30 is currently in early clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | - Coby M Laarakkers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | | | | | | | | | | | - Bernd Meibohm
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Rachel P L van Swelm
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
36
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, Zhang AS. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem 2017; 292:18354-18371. [PMID: 28924039 DOI: 10.1074/jbc.m117.801795] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.
Collapse
Affiliation(s)
- Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Mark D Kleven
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Ningning Zhao
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shall Jue
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
38
|
The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood 2017; 130:2111-2120. [PMID: 28864813 DOI: 10.1182/blood-2017-04-780692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023] Open
Abstract
The expression of the key regulator of iron homeostasis hepcidin is activated by the BMP-SMAD pathway in response to iron and inflammation and among drugs, by rapamycin, which inhibits mTOR in complex with the immunophilin FKBP12. FKBP12 interacts with BMP type I receptors to avoid uncontrolled signaling. By pharmacologic and genetic studies, we identify FKBP12 as a novel hepcidin regulator. Sequestration of FKBP12 by rapamycin or tacrolimus activates hepcidin both in vitro and in murine hepatocytes. Acute tacrolimus treatment transiently increases hepcidin in wild-type mice. FKBP12 preferentially targets the BMP receptor ALK2. ALK2 mutants defective in binding FKBP12 increase hepcidin expression in a ligand-independent manner, through BMP-SMAD signaling. ALK2 free of FKBP12 becomes responsive to the noncanonical inflammatory ligand Activin A. Our results identify a novel hepcidin regulator and a potential therapeutic target to increase defective BMP signaling in disorders of low hepcidin.
Collapse
|
39
|
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G157-G165. [PMID: 28596277 DOI: 10.1152/ajpgi.00004.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.
Collapse
Affiliation(s)
- Gautam Rishi
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - V Nathan Subramaniam
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
40
|
Abstract
Transforming growth factor β (TGF-β) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-β family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-β family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-β family in this organism as well as new conserved mechanisms of regulation.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, and the Graduate Center, New York, New York 11367
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020
| |
Collapse
|
41
|
Poli M, Asperti M, Ruzzenenti P, Naggi A, Arosio P. Non-Anticoagulant Heparins Are Hepcidin Antagonists for the Treatment of Anemia. Molecules 2017; 22:molecules22040598. [PMID: 28397746 PMCID: PMC6154463 DOI: 10.3390/molecules22040598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
The peptide hormone hepcidin is a key controller of systemic iron homeostasis, and its expression in the liver is mainly regulated by bone morphogenetic proteins (BMPs), which are heparin binding proteins. In fact, heparins are strong suppressors of hepcidin expression in hepatic cell lines that act by inhibiting the phosphorylation of SMAD1/5/8 proteins elicited by the BMPs. The inhibitory effect of heparins has been demonstrated in cells and in mice, where subcutaneous injections of non-anticoagulant heparins inhibited liver hepcidin expression and increased iron bioavailability. The chemical characteristics for high anti-hepcidin activity in vitro and in vivo include the 2O-and 6O-sulfation and a molecular weight above 7 kDa. The most potent heparins have been found to be the super-sulfated ones, active in hepcidin suppression with a molecular weight as low as 4 kDa. Moreover, the alteration of endogenous heparan sulfates has been found to cause a reduction in hepcidin expression in vitro and in vivo, indicating that heparins act by interfering with the interaction between BMPs and components of the complex involved in the activation of the BMP/SMAD1/5/8 pathway. This review summarizes recent findings on the anti-hepcidin activity of heparins and their possible use for the treatment of anemia caused by hepcidin excess, including the anemia of chronic diseases.
Collapse
Affiliation(s)
- Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Paola Ruzzenenti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan 20133, Italy.
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
42
|
Huang X, Wu J, Li Q, Gu S, Chen Z, Wang K. Silkworm feces extract improves iron deficiency anemia via suppressing hepcidin expression and promoting iron-regulatory proteins expression. RSC Adv 2017. [DOI: 10.1039/c7ra09576g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we aimed to explore the preventive efficacy of SFE toward iron deficiency anemia in rats and clarify the underlying mechanisms. Findings suggest that SFE may be an efficient oral iron supplement to ameliorate iron deficiency anemia.
Collapse
Affiliation(s)
- Xiao Huang
- Union Hospital of Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jun Wu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- China
| | - Qiang Li
- Union Hospital of Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Saisai Gu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- China
| | - Zehong Chen
- Union Hospital of Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
43
|
Abstract
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Ferro E, Di Pietro A, Visalli G, Piraino B, Salpietro C, La Rosa MA. Soluble hemojuvelin in transfused and untransfused thalassaemic subjects. Eur J Haematol 2016; 98:67-74. [PMID: 27440164 DOI: 10.1111/ejh.12786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The hemojuvelin-bone morphogenetic protein axis is the principal iron-dependent mechanism of hepcidin regulation. The determination of soluble hemojuvelin (sHJV) levels could allow for a better understanding of the pathophysiological mechanisms of hepcidin regulation in thalassaemia. METHOD We have assessed sHJV in 45 transfused and 15 untransfused thalassaemic patients in comparison with 15 healthy subjects, evaluating its relationships with some parameters of iron overload, anaemia and erythropoiesis. RESULTS Untransfused thalassaemic patients had more severe anaemia and erythropoietic activity, while in transfused patients, the transfused RBCs reduced % reticulocytes and sTfR, increased serum indices of iron overload and iron stores in the liver (low MRI T2* values). sHJV levels were higher in patients than in controls and in untransfused in comparison with transfused patients. In the transfused group, we also found that sHJV values are significantly related to serum ferritin, cardiac MRI T2* and growth differentiation factor 15 and are sensitive to hepatitis C virus infection. CONCLUSION These results suggest that sHJV synthesis seems to be affected by an erythropoietic/hypoxic signal in untransfused patients that have severe anaemia, while in regularly transfused subjects, it is influenced by iron stores.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Basilia Piraino
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| |
Collapse
|
45
|
Shi Y, Chen GB, Huang XX, Xiao CX, Wang HH, Li YS, Zhang JF, Li S, Xia Y, Ren JL, Guleng B. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth. Oncotarget 2016; 6:20540-54. [PMID: 26029998 PMCID: PMC4653024 DOI: 10.18632/oncotarget.4110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Guo-Bin Chen
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Xiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Huan-Huan Wang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Ye-Sen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China.,Faculty of Clinical Medicine, Medical College, Xiamen University, Xiamen, Fujian Province, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
46
|
Wallace DF. The Regulation of Iron Absorption and Homeostasis. Clin Biochem Rev 2016; 37:51-62. [PMID: 28303071 PMCID: PMC5198508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders.
Collapse
|
47
|
Chen S, Feng T, Vujić Spasić M, Altamura S, Breitkopf-Heinlein K, Altenöder J, Weiss TS, Dooley S, Muckenthaler MU. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes. J Biol Chem 2016; 291:13160-74. [PMID: 27129231 DOI: 10.1074/jbc.m115.691543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.
Collapse
Affiliation(s)
- Simeng Chen
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Teng Feng
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Maja Vujić Spasić
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Sandro Altamura
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| | - Katja Breitkopf-Heinlein
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jutta Altenöder
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, 93053 Regensburg, Germany
| | - Steven Dooley
- the Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany,
| | - Martina U Muckenthaler
- From the Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69117 Heidelberg, Germany, the Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany, and
| |
Collapse
|
48
|
Zhao N, Maxson JE, Zhang RH, Wahedi M, Enns CA, Zhang AS. Neogenin Facilitates the Induction of Hepcidin Expression by Hemojuvelin in the Liver. J Biol Chem 2016; 291:12322-35. [PMID: 27072365 DOI: 10.1074/jbc.m116.721191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/24/2023] Open
Abstract
Hemojuvelin (HJV) regulates iron homeostasis by direct interaction with bone morphogenetic protein (BMP) ligands to induce hepcidin expression through the BMP signaling pathway in the liver. Crystallography studies indicate that HJV can simultaneously bind to both BMP2 and the ubiquitously expressed cell surface receptor neogenin. However, the role of the neogenin-HJV interaction in the function of HJV is unknown. Here we identify a mutation in HJV that specifically lowers its interaction with neogenin. Expression of this mutant Hjv in the liver of Hjv(-/-) mice dramatically attenuated its induction of BMP signaling and hepcidin mRNA, suggesting that interaction with neogenin is critical for the iron regulatory function of HJV. Further studies revealed that neogenin co-immunoprecipitated with ALK3, an essential type-I BMP receptor for hepatic hepcidin expression. Neogenin has also been shown to facilitate the cleavage of HJV by furin in transfected cells. Surprisingly, although cleavage of HJV by furin has been implicated in the regulation of HJV function in cell culture models and furin-cleaved soluble Hjv is detectable in the serum of mice, mutating the furin cleavage site did not alter the stimulation of hepcidin expression by Hjv in mice. In vivo studies validated the important role of HJV-BMP interaction for Hjv stimulation of BMP signaling and hepcidin expression. Together these data support a model in which neogenin acts as a scaffold to facilitate assembly of the HJV·BMP·BMP receptor complex to induce hepcidin expression.
Collapse
Affiliation(s)
- Ningning Zhao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Julia E Maxson
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Richard H Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
49
|
Canali S, Core AB, Zumbrennen-Bullough KB, Merkulova M, Wang CY, Schneyer AL, Pietrangelo A, Babitt JL. Activin B Induces Noncanonical SMAD1/5/8 Signaling via BMP Type I Receptors in Hepatocytes: Evidence for a Role in Hepcidin Induction by Inflammation in Male Mice. Endocrinology 2016; 157:1146-62. [PMID: 26735394 PMCID: PMC4769363 DOI: 10.1210/en.2015-1747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of the iron regulatory hormone hepcidin contributes to the anemia of inflammation. Bone morphogenetic protein 6 (BMP6) signaling is a central regulator of hepcidin expression in the liver. Recently, the TGF-β/BMP superfamily member activin B was implicated in hepcidin induction by inflammation via noncanonical SMAD1/5/8 signaling, but its mechanism of action and functional significance in vivo remain uncertain. Here, we show that low concentrations of activin B, but not activin A, stimulate prolonged SMAD1/5/8 signaling and hepcidin expression in liver cells to a similar degree as canonical SMAD2/3 signaling, and with similar or modestly reduced potency compared with BMP6. Activin B stimulates hepcidin via classical activin type II receptors ACVR2A and ACVR2B, noncanonical BMP type I receptors activin receptor-like kinase 2 and activin receptor-like kinase 3, and SMAD5. The coreceptor hemojuvelin binds to activin B and facilitates activin B-SMAD1/5/8 signaling. Activin B-SMAD1/5/8 signaling has some selectivity for hepatocyte-derived cells and is not enabled by hemojuvelin in other cell types. Liver activin B mRNA expression is up-regulated in multiple mouse models of inflammation associated with increased hepcidin and hypoferremia, including lipopolysaccharide, turpentine, and heat-killed Brucella abortus models. Finally, the activin inhibitor follistatin-315 blunts hepcidin induction by lipopolysaccharide or B. abortus in mice. Our data elucidate a novel mechanism for noncanonical SMAD activation and support a likely functional role for activin B in hepcidin stimulation during inflammation in vivo.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Amanda B Core
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Kimberly B Zumbrennen-Bullough
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Maria Merkulova
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Chia-Yu Wang
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Antonello Pietrangelo
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Jodie L Babitt
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
50
|
Kleven MD, Enns CA, Zhang AS. Bone Morphogenetic Protein-6 Mutations Take Their Place in Iron Overload Diseases. Gastroenterology 2016; 150:556-9. [PMID: 26820052 DOI: 10.1053/j.gastro.2016.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mark D Kleven
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Caroline A Enns
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.
| | - An-Sheng Zhang
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|