1
|
Feng M, Ma Q, Zhang B, Chen Y, Yang Y, He X, Zeng Y, Jing M, Ou X, Liu Y, Li Q, Liao W, Li X, Tan S, Qin D, Li D, Li Q, Wang Y. Targeting the poliovirus receptor to activate T cells and induce myeloid-derived suppressor cells to differentiate to pro-inflammatory macrophages via the IFN-γ-p-STAT1-IRF8 axis in cancer therapy. Cell Death Differ 2025:10.1038/s41418-025-01496-6. [PMID: 40229462 DOI: 10.1038/s41418-025-01496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
T cell immunoglobulin and ITIM domain (TIGIT) is one of the most important immune checkpoints expressed on lymphocytes, and poliovirus receptor (PVR, also CD155) serves as the most crucial ligand for TIGIT, harboring an important function in cancer cells and influencing the tumor microenvironment (TME). While it's well-established that TIGIT blockade could reverse immunosuppression, the question of whether direct inhibition of PVR yields comparable results remains to be fully elucidated. This study investigated the role of PVR within the TME on the LLC, CT26 and MC38 tumor models and found that direct blockade of PVR on tumor cells could trigger T cell activation, enhance the production of immunostimulatory cytokine IFN-γ, and drive the differentiation of intratumoral myeloid-derived suppressor cells (MDSCs) into pro-inflammatory macrophages through the IFN-γ-p-STAT1-IRF8 axis. Furthermore, this study found that the anti-PVR nanobody monotherapy reduced tumor volume in the CT26 and MC38 tumor models. Combination of anti-PVR nanobody and anti-PD-1 antibody was effective in the LLC, CT26 and MC38 tumor models and had acceptable toxicity. These findings collectively suggest that PVR exhibits considerable promise as a therapeutic target in the development of immunotherapies aimed at augmenting the anti-tumor immune response.
Collapse
Affiliation(s)
- Mingyang Feng
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qizhi Ma
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Benxia Zhang
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Chen
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xia He
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
- National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Zeng
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Jing
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xuejin Ou
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yixian Liu
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sirui Tan
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Diyuan Qin
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Cui M, Zhou M, Zhou L, Zhou G, Liu Y. Tertiary lymphoid structures achieve 'cold' to 'hot' transition by remodeling the cold tumor microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189312. [PMID: 40189114 DOI: 10.1016/j.bbcan.2025.189312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated significant clinical efficacy in immune-infiltrated tumors such as melanoma and non-small cell lung cancer. However, "cold tumors"-including ovarian cancer, pancreatic cancer, and gliomas-exhibit insufficient immune infiltration, leading to poor therapeutic responses to ICBs and limited improvement in patient prognosis. Recent studies have shown that tumor-associated tertiary lymphoid structures (TLSs) can induce strong local immune responses within the tumor microenvironment (TME), serving as important biological markers for predicting ICB therapy efficacy. Notably, preclinical and clinical studies on cold tumors have confirmed that TLSs can potently enhance ICB efficacy through TME remodeling-a breakthrough that has attracted considerable attention. Here, we systematically examine the immunological profile of cold tumors and decipher the mechanistic basis for their impaired immune cell infiltration. We further delineate the distinctive features of tumor-associated TLSs in generating antitumor immunity and establish criteria for their identification. Significantly, we emphasize the unique capability of TLSs to reprogram the immunosuppressive tumor microenvironment characteristic of cold tumors. Based on these insights, we evaluate clinical evidence supporting TLS-mediated enhancement of ICB efficacy and discuss emerging strategies for exogenous TLSs induction.
Collapse
Affiliation(s)
- Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengfan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
3
|
Lau VWC, Mead GJ, Varyova Z, Mazet JM, Krishnan A, Roberts EW, Prota G, Gileadi U, Midwood KS, Cerundolo V, Gérard A. Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models. Nat Commun 2025; 16:2. [PMID: 39746898 PMCID: PMC11696141 DOI: 10.1038/s41467-024-54791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Loss of IFNγ-sensitivity by tumours is thought to be a mechanism enabling evasion, but recent studies suggest that IFNγ-resistant tumours can be sensitised for immunotherapy, yet the underlying mechanism remains unclear. Here, we show that IFNγ receptor-deficient B16-F10 mouse melanoma tumours are controlled as efficiently as WT tumours despite their lower MHC class I expression. Mechanistically, IFNγ receptor deletion in B16-F10 tumours increases IFNγ availability, triggering a remodelling of the immune landscape characterised by inflammatory monocyte infiltration and the generation of 'mono-macs'. This altered myeloid compartment synergises with an increase in antigen-specific CD8+ T cells to promote anti-tumour immunity against IFNγ receptor-deficient tumours, with such an immune crosstalk observed around blood vessels. Importantly, analysis of transcriptomic datasets suggests that similar immune remodelling occurs in human tumours carrying mutations in the IFNγ pathway. Our work thus serves mechanistic insight for the crosstalk between tumour IFNγ resistance and anti-tumour immunity, and implicates this regulation for future cancer therapy.
Collapse
Affiliation(s)
- Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Gracie J Mead
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zofia Varyova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anagha Krishnan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Immunodynamics Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gennaro Prota
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Wakabayashi H, Hattori N, Uzawa A, Ito M, Hasegawa H, Mimura N, Empitu M, Aizawa M, Kuwabara S, Asanuma K, Oda S. Tryptophan-immunoadsorption plasmapheresis regulates polymorphonuclear-myeloid-derived suppressor cells and pro-inflammatory cytokines. Ther Apher Dial 2024. [PMID: 39508126 DOI: 10.1111/1744-9987.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Immunoadsorption plasmapheresis (IA) has been reported to have immunoregulatory effects, in addition to the removal of autoantibodies. This study aimed to investigate the effects of IA on the proportion of myeloid-derived suppressor cells (MDSCs) that potentially suppress autoimmune responses and regulate immunity. METHODS The study included 21 patients with autoimmune neurological diseases and 8 healthy participants. We measured polymorphonuclear (PMN)-MDSCs (CD14-CD11b+CD33+) and inflammation-related mediators before and after a single session of tryptophan-IA. We also investigated whether an increase in PMN-MDSCs after initial IA was a predictor of clinical efficacy in nine patients with myasthenia gravis based on the Quantitative Myasthenia Gravis score. RESULTS For a total of 36 times of IA procedures, the number of PMN-MDSCs significantly increased after IA. Interleukin-10, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1β levels showed significant increases after IA. Despite similar severity at admission, the Quantitative Myasthenia Gravis scores at discharge were significantly lower in the group in which IA increased PMN-MDSCs to a level of 20% of peripheral blood mononuclear cells or more. CONCLUSION Tryptophan-IA regulates PMN-MDSCs and pro-inflammatory cytokines, possibly leading to suppression of autoimmune responses and tissue damage in neuroimmunological disorders.
Collapse
Affiliation(s)
- Hanae Wakabayashi
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriyuki Hattori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michihiro Ito
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Hiroko Hasegawa
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Maulana Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Aizawa
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Angell CD, Lapurga G, Sun SH, Johnson C, Savardekar H, Rampersaud IV, Fletcher C, Albertson D, Ren C, Suarez-Kelly LP, Rampersaud AA, Carson WE. Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1509. [PMID: 39330666 PMCID: PMC11434946 DOI: 10.3390/nano14181509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Fluorescent nanodiamonds (FNDs) are carbon-based nanomaterials that emit bright, photostable fluorescence and exhibit a modifiable surface chemistry. Myeloid-derived suppressor cells (MDSCs) are an immunosuppressive cell population known to expand in cancer patients and contribute to worse patient outcomes. To target MDSC, glycidol-coated FND were conjugated with antibodies against the murine MDSC markers, CD11b and GR1 (dual-Ab FND). In vitro, dual-Ab FND uptake by murine MDSC was significantly higher than IgG-coated FND (94.7% vs. 69.0%, p < 0.05). In vivo, intra-tumorally injected dual-Ab FND primarily localized to the tumor 2 and 24 h post-injection, as measured by in vivo fluorescence imaging and flow cytometry analysis of the spleen and tumor. Dual-Ab FND were preferentially taken up by intra-tumoral MDSC, representing 87.1% and 83.0% of FND+ cells in the tumor 2 and 24 h post-injection, respectively. Treatment of mice with anti-PD-L1 immunotherapy prior to intra-tumoral injection of dual-Ab FND did not significantly alter the uptake of FND by MDSC. These results demonstrate the ability of our novel dual-antibody conjugated FND to target MDSC and reveal a potential strategy for targeted delivery to other specific immune cell populations in future cancer research.
Collapse
Affiliation(s)
- Colin D Angell
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Gabriella Lapurga
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Steven H Sun
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Courtney Johnson
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Himanshu Savardekar
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Charles Fletcher
- Columbus NanoWorks, Inc., 1507 Chambers Road, Columbus, OH 43212, USA
| | - David Albertson
- Columbus NanoWorks, Inc., 1507 Chambers Road, Columbus, OH 43212, USA
| | - Casey Ren
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Oberstein PE, Dias Costa A, Kawaler EA, Cardot-Ruffino V, Rahma OE, Beri N, Singh H, Abrams TA, Biller LH, Cleary JM, Enzinger P, Huffman BM, McCleary NJ, Perez KJ, Rubinson DA, Schlechter BL, Surana R, Yurgelun MB, Wang SJ, Remland J, Brais LK, Bollenrucher N, Chang E, Ali LR, Lenehan PJ, Dolgalev I, Werba G, Lima C, Keheler CE, Sullivan KM, Dougan M, Hajdu C, Dajee M, Pelletier MR, Nazeer S, Squires M, Bar-Sagi D, Wolpin BM, Nowak JA, Simeone DM, Dougan SK. Blockade of IL1β and PD1 with Combination Chemotherapy Reduces Systemic Myeloid Suppression in Metastatic Pancreatic Cancer with Heterogeneous Effects in the Tumor. Cancer Immunol Res 2024; 12:1221-1235. [PMID: 38990554 PMCID: PMC11369625 DOI: 10.1158/2326-6066.cir-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Innate inflammation promotes tumor development, although the role of innate inflammatory cytokines in established human tumors is unclear. Herein, we report clinical and translational results from a phase Ib trial testing whether IL1β blockade in human pancreatic cancer would alleviate myeloid immunosuppression and reveal antitumor T-cell responses to PD1 blockade. Patients with treatment-naïve advanced pancreatic ductal adenocarcinoma (n = 10) were treated with canakinumab, a high-affinity monoclonal human antiinterleukin-1β (IL1β), the PD1 blocking antibody spartalizumab, and gemcitabine/n(ab)paclitaxel. Analysis of paired peripheral blood from patients in the trial versus patients receiving multiagent chemotherapy showed a modest increase in HLA-DR+CD38+ activated CD8+ T cells and a decrease in circulating monocytic myeloid-derived suppressor cells (MDSC) by flow cytometry for patients in the trial but not in controls. Similarly, we used patient serum to differentiate monocytic MDSCs in vitro and showed that functional inhibition of T-cell proliferation was reduced when using on-treatment serum samples from patients in the trial but not when using serum from patients treated with chemotherapy alone. Within the tumor, we observed few changes in suppressive myeloid-cell populations or activated T cells as assessed by single-cell transcriptional profiling or multiplex immunofluorescence, although increases in CD8+ T cells suggest that improvements in the tumor immune microenvironment might be revealed by a larger study. Overall, the data indicate that exposure to PD1 and IL1β blockade induced a modest reactivation of peripheral CD8+ T cells and decreased circulating monocytic MDSCs; however, these changes did not lead to similarly uniform alterations in the tumor microenvironment.
Collapse
Affiliation(s)
- Paul E. Oberstein
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Emily A. Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Osama E. Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nina Beri
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nadine J. McCleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Rishi Surana
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Matthew B. Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - S. Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Eugena Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Igor Dolgalev
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Cibelle Lima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - C. Elizabeth Keheler
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Keri M. Sullivan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Michael Dougan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Cristina Hajdu
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Pathology, NYU Langone Health, New York, New York.
| | - Maya Dajee
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Marc R. Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | | | | | - Dafna Bar-Sagi
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Jonathan A. Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Diane M. Simeone
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Wu TN, Hung JT, Hung TH, Wang YH, Wu JC, Yu AL. Effective suppression of tumor growth and hepatic metastasis of neuroblastoma by NKT-stimulatory phenyl glycolipid. Biomed Pharmacother 2024; 177:117040. [PMID: 38959605 DOI: 10.1016/j.biopha.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Invariant natural killer T cell (iNKT) cells produce large amounts of cytokines in response to α-Galactosylceramide (α-GalCer) stimulation. An analog containing two phenyl rings on the acyl chain, C34, was previously found to be more Th1-biased than α-GalCer and triggered greater anticancer activities against breast cancer, melanoma and lung cancer in mice. Since liver is enriched in iNKT cells, we investigated anticancer efficacy of C34 on neuroblastoma with hepatic metastasis. C34 induced Th1-biased cytokine secretions in the liver, significantly suppressed neuroblastoma growth/metastasis and prolonged mouse survival. The anti-tumor efficacy might be attributed to greater expansions of hepatic NKT, NK, CD4+ T, and CD8+ T cells as well as reduction of the number of SSCloGr1intCD11b+ subset of myeloid-derived suppressor cells (MDSCs) in the liver of tumor-bearing mice, as compared to DMSO control group. C34 also upregulated expression of CD1d and CD11c, especially in the SSCloGr1intCD11b+ subset of MDSCs, which might be killed by C34-activated NKT cells, attributing to their reduced number. In addition, C34 also induced expansion of CD4+ T, CD8+ T, and NK cells, which might eliminate neuroblastoma cells. These immune-modulating effects of C34 might act in concert in the local milieu of liver to suppress the tumor growth. Further analysis of database of neuroblastoma revealed that patients with high CD11c expression in the monocytic MDSCs in the tumor had longer survival, suggesting the potential clinical application of C34 for treatment of neuroblastoma.
Collapse
Affiliation(s)
- Tai-Na Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 115, Taiwan.
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Chine Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Liu M, Ren Y, Zhou Z, Yang J, Shi X, Cai Y, Arreola AX, Luo W, Fung KM, Xu C, Nipp RD, Bronze MS, Zheng L, Li YP, Houchen CW, Zhang Y, Li M. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia. Cancer Cell 2024; 42:885-903.e4. [PMID: 38608702 PMCID: PMC11162958 DOI: 10.1016/j.ccell.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yu Ren
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xiuhui Shi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yang Cai
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex X Arreola
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wenyi Luo
- Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ryan D Nipp
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Ng MS, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Yang K, Zhang Y, Jing J, Liong KH, Wu D, He R, Liu D, Teh YC, Bleriot C, Caronni N, Liu Z, Duan K, Narang V, Li M, Chen J, Liu Y, Liu L, Qi J, Liu Y, Jiang L, Shen B, Cheng H, Cheng T, Angeli V, Sharma A, Loh YH, Tey HL, Chong SZ, Ostuni R, Hidalgo A, Ginhoux F, Ng LG. Deterministic reprogramming of neutrophils within tumors. Science 2024; 383:eadf6493. [PMID: 38207030 PMCID: PMC11087151 DOI: 10.1126/science.adf6493] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.
Collapse
Affiliation(s)
- Melissa S.F. Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Changming Shi
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital; Shanghai, China
| | - Daniela Cerezo-Wallis
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid, Spain
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine; New Haven, USA
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
- National Skin Centre, National Healthcare Group; Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Katharine Yang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Yuning Zhang
- Department of Microbiology and Immunology, National University of Singapore (NUS); Singapore
| | - Jingsi Jing
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital; Shanghai, China
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Dandan Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | - Rui He
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital; Shanghai, China
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Camille Bleriot
- INSERM U1015, Institut Gustave Roussy; Villejuif, France
- CNRS UMR8253, Institut Necker des Enfants Malades; Paris, France
| | - Nicoletta Caronni
- Genomics of the Innate Immune System Unit, San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute; Milan, Italy
| | - Zhaoyuan Liu
- Genomics of the Innate Immune System Unit, San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute; Milan, Italy
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Mengwei Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui, China
| | - Jingjing Qi
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China
- Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | - Yingbin Liu
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China
- Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine; Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine; Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University; Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine; Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine; Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University; Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin, China
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore (NUS); Singapore
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research, QEII Medical Centre; Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University; Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University; Bentley, Western Australia, Australia
| | - Yuin-han Loh
- Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research); Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group; Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University; Singapore
- Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
- Department of Microbiology and Immunology, National University of Singapore (NUS); Singapore
| | - Renato Ostuni
- Genomics of the Innate Immune System Unit, San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute; Milan, Italy
- Vita-Salute San Raffaele University, Milan; Italy
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid, Spain
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine; New Haven, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine; Shanghai, China
- INSERM U1015, Institut Gustave Roussy; Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre; Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research); Singapore
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital; Shanghai, China
- Department of Microbiology and Immunology, National University of Singapore (NUS); Singapore
| |
Collapse
|
11
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
12
|
Williams CMD, Noll JE, Bradey AL, Duggan J, Wilczek VJ, Masavuli MG, Grubor‐Bauk B, Panagopoulos RA, Hewett DR, Mrozik KM, Zannettino ACW, Vandyke K, Panagopoulos V. Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma. Br J Haematol 2023; 203:614-624. [PMID: 37699574 PMCID: PMC10952523 DOI: 10.1111/bjh.19102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Collapse
Affiliation(s)
- Connor M. D. Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Alanah L. Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vicki J. Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Makutiro G. Masavuli
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Branka Grubor‐Bauk
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Romana A. Panagopoulos
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
- Breast Cancer Research Unit, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Krzysztof M. Mrozik
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Kate Vandyke
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
13
|
Sun R, Sun Y, Wu C, Liu Y, Zhou M, Dong Y, Du G, Luo H, Shi B, Jiang H, Li Z. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther 2023; 31:3193-3209. [PMID: 37735875 PMCID: PMC10638076 DOI: 10.1016/j.ymthe.2023.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Claudin18.2 (CLDN18.2)-specific chimeric antigen receptor (CAR-T) cells displayed limited efficacy in CLDN18.2-positive pancreatic ductal adenocarcinoma (PDAC). Strategies are needed to improve the trafficking capacity of CLDN18.2-specific CAR-T cells. PDAC has a unique microenvironment that consists of abundant cancer-associated fibroblasts (CAFs), which could secrete stromal cell-derived factor 1α (SDF-1α), the ligand of CXCR4. Then, we constructed and explored CLDN18.2-targeted CAR-T cells with CXCR4 co-expression in treating immunocompetent mouse models of PDAC. The results indicated that CXCR4 could promote the infiltration of CAR-T cells and enhance their efficacy in vivo. Mechanistically, the activation of signal transducer and activator of transcription 3 (STAT3) signaling was impaired in CXCR4 CAR-T cells, which reduced the release of inflammatory factors, such as tumor necrosis factor-α, IL-6, and IL-17A. Then, the lower release of inflammatory factors suppressed SDF-1α secretion in CAFs via the nuclear factor κB (NF-κB) pathway. Therefore, the decreased secretion of SDF-1α in feedback decreased the migration of myeloid-derived suppressor cells (MDSCs) in tumor sites. Overall, our study demonstrated that CXCR4 CAR-T cells could traffic more into tumor sites and also suppress MDSC migration via the STAT3/NF-κB/SDF-1α axis to obtain better efficacy in treating CLDN18.2-positive pancreatic cancer. Our findings provide a theoretical rationale for CXCR4 CAR-T cell therapy in PDAC.
Collapse
Affiliation(s)
- Ruixin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yansha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yiwei Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guoxiu Du
- CARsgen Therapeutics, Shanghai 200032, China
| | - Hong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| | - Zonghai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| |
Collapse
|
14
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Matsushima K, Shichino S, Ueha S. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:213-226. [PMID: 37518010 DOI: 10.2183/pjab.99.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Inflammation is a host defense response to various invading stimuli, but an excessive and persistent inflammatory response can cause tissue injury, which can lead to irreversible organ damage and dysfunction. Excessive inflammatory responses are believed to link to most human diseases. A specific type of leukocyte infiltration into invaded tissues is required for inflammation. Historically, the underlying molecular mechanisms of this process during inflammation were an enigma, compromising research in the fields of inflammation, immunology, and pathology. However, the pioneering discovery of chemotactic cytokines (chemokines), monocyte-derived neutrophil chemotactic factor (MDNCF; interleukin [IL]-8, CXCL8) and monocyte chemotactic and activating factor (MCAF; monocyte chemotactic factor 1 [MCP-1], CCL2) in the late 1980s finally enabled us to address this issue. In this review, we provide a historical overview of chemokine research over the last 35 years.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
16
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
17
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
18
|
Wang J, Wang J. Neutrophils, functions beyond host defense. Cell Immunol 2022; 379:104579. [PMID: 35901576 DOI: 10.1016/j.cellimm.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant, ephemeral cell type in human blood. As the first line of defense in the host immune system, neutrophils mature in the bone marrow after undergoing multiple stages of development and then are released into the peripheral blood and conduct a surveillance function. Recent advances in cutting-edge techniques such as single-cell sequencing have uncovered the complexity and plasticity of neutrophils under homeostatic and inflammatory conditions. The exploration of neutrophil heterogeneity and function under disease and homeostasis settings has revealed many unexpected roles of neutrophils beyond a phagocyte. Furthermore, neutrophils are known to actively communicate with innate and adaptive immunocytes via direct or indirect interactions, allowing the modulation of various immune cells. In this review, we will discuss the versatile identities of neutrophils that have been discovered in recent decades, as well as the interplay between neutrophils and other cells.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Yang D, Yang L, Cai J, Li H, Xing Z, Hou Y. Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization. Mol Cell Biochem 2022; 477:2469-2480. [PMID: 35590082 DOI: 10.1007/s11010-022-04461-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) are a type of functionally plastic immune cell population in tumor microenvironment (TME) and mainly polarized into two phenotypes: M2 and M1-like TAMs. The M2-like TAMs could stimulate tumor growth and metastasis, tissue remodeling and immune-suppression, whereas M1-like TAMs could initiate immune response to dampen tumor progression. TAMs with different polarization phenotypes can produce various kinds of cytokines, chemokines and growth factors to regulate immunity and inflammatory responses. It is an effective method to treat cancer through ameliorating TME and modulating TAMs by converting M2 into M1-like phenotype. However, intracellular signaling mechanisms underlying TAMs polarization are largely undefined. Phosphoinositide 3-kinase (PI3K)/Akt is an important signaling pathway participating in M2-like TAMs polarization, survival, growth, proliferation, differentiation, apoptosis and cytoskeleton rearrangement. In the present review, we analyzed the mechanism of TAMs polarization focusing on PI3K/Akt and its downstream mitogen‑activated protein kinase (MAPK) as well as nuclear factor kappa B (NF-κB) signaling pathways, thus provides the first evidence of intracellular targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Jialing Cai
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
20
|
Ogawa T, Shichino S, Ueha S, Bando K, Matsushima K. Profibrotic properties of C1q + interstitial macrophages in silica-induced pulmonary fibrosis in mice. Biochem Biophys Res Commun 2022; 599:113-119. [PMID: 35180470 DOI: 10.1016/j.bbrc.2022.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive fibrotic disease with poor prognosis and suboptimal therapeutic options. Although macrophages have been implicated in PF, the role of macrophage subsets, particularly interstitial macrophages (IMs), remains unknown. We performed a time-series single-cell RNA sequencing analysis of the silica-induced mouse PF model. Among the macrophage subsets in fibrotic lungs, Lyve1lo MHC IIhi IMs increased with fibrosis, and highly expressed profibrotic genes. Additionally, we identified C1q as an IM-specific marker. Experiments with C1q-diphtheria toxin receptor-GFP knock-in (C1qKI) mice revealed that IMs are distributed around fibrotic nodules. Depletion of C1q+ IMs in C1qKI mice decreased activated fibroblasts and epithelial cells; however, bodyweight loss and neutrophil infiltration were exacerbated in silica-induced PF. Collectively, these results suggest that IMs have profibrotic and anti-inflammatory properties and that the selective inhibition of the profibrotic function of IMs without compromising their anti-inflammatory effects is a potential novel therapeutic strategy for PF.
Collapse
Affiliation(s)
- Tatsuro Ogawa
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
21
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Mittmann LA, Haring F, Schaubächer JB, Hennel R, Smiljanov B, Zuchtriegel G, Canis M, Gires O, Krombach F, Holdt L, Brandau S, Vogl T, Lauber K, Uhl B, Reichel CA. Uncoupled biological and chronological aging of neutrophils in cancer promotes tumor progression. J Immunother Cancer 2021; 9:jitc-2021-003495. [PMID: 34876407 PMCID: PMC8655594 DOI: 10.1136/jitc-2021-003495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/13/2023] Open
Abstract
Background Beyond their fundamental role in homeostasis and host defense, neutrophilic granulocytes (neutrophils) are increasingly recognized to contribute to the pathogenesis of malignant tumors. Recently, aging of mature neutrophils in the systemic circulation has been identified to be critical for these immune cells to properly unfold their homeostatic and anti-infectious functional properties. The role of neutrophil aging in cancer remains largely obscure. Methods Employing advanced in vivo microscopy techniques in different animal models of cancer as well as utilizing pulse-labeling and cell transfer approaches, various ex vivo/in vitro assays, and human data, we sought to define the functional relevance of neutrophil aging in cancer. Results Here, we show that signals released during early tumor growth accelerate biological aging of circulating neutrophils, hence uncoupling biological from chronological aging of these immune cells. This facilitates the accumulation of highly reactive neutrophils in malignant lesions and endows them with potent protumorigenic functions, thus promoting tumor progression. Counteracting uncoupled biological aging of circulating neutrophils by blocking the chemokine receptor CXCR2 effectively suppressed tumor growth. Conclusions Our data uncover a self-sustaining mechanism of malignant neoplasms in fostering protumorigenic phenotypic and functional changes in circulating neutrophils. Interference with this aberrant process might therefore provide a novel, already pharmacologically targetable strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Laura A Mittmann
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Florian Haring
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Johanna B Schaubächer
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Roman Hennel
- Department of Radiotherapy and Radiation Oncology, LMU München, Munich, Germany
| | - Bojan Smiljanov
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, LMU München, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, LMU München, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Lesca Holdt
- Institute for Laboratory Medicine, LMU München, Munich, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Thomas Vogl
- Institute for Immunology, University of Munster, Munster, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, LMU München, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, LMU München, Munich, Germany .,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| |
Collapse
|
23
|
Oo MW, Kawai H, Takabatake K, Tomida S, Eguchi T, Ono K, Shan Q, Ohara T, Yoshida S, Omori H, Sukegawa S, Nakano K, Okamoto K, Sasaki A, Nagatsuka H. Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment. JCI Insight 2021; 7:148960. [PMID: 34874922 PMCID: PMC8765046 DOI: 10.1172/jci.insight.148960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence has shown that cancer stroma and BM-derived cells (BMDCs) in the tumor microenvironment (TME) play vital roles in tumor progression. However, the mechanism by which oral cancer stroma recruits any particular subset of BMDCs remains largely unknown. Here, we sought to identify the subset of BMDCs that is recruited by cancer stroma. We established a sequential transplantation model in BALB/c nude mice, including (a) BM transplantation of GFP-expressing cells and (b) coxenografting of patient-derived stroma (PDS; 2 cases, designated PDS1 and PDS2) with oral cancer cells (HSC-2). As controls, xenografting was performed with HSC-2 alone or in combination with normal human dermal fibroblasts (HDF). PDS1, PDS2, and HDF all promoted BMDC migration in vitro and recruitment in vivo. Multicolor immunofluorescence revealed that the PDS coxenografts recruited Arginase-1+CD11b+GR1+GFP+ cells, which are myeloid-derived suppressor cells (MDSCs), to the TME, whereas the HDF coxenograft did not. Screening using microarrays revealed that PDS1 and PDS2 expressed CCL2 mRNA (encoding C-C motif chemokine ligand 2) at higher levels than did HDF. Indeed, PDS xenografts contained significantly higher proportions of CCL2+ stromal cells and CCR2+Arginase-1+CD11b+GR1+ MDSCs (as receiver cells) than the HDF coxenograft. Consistently, a CCL2 synthesis inhibitor and a CCR2 antagonist significantly inhibited the PDS-driven migration of BM cells in vitro. Furthermore, i.p. injection of the CCR2 antagonist to the PDS xenograft models significantly reduced the CCR2+Arginase-1+CD11b+GR1+ MDSC infiltration to the TME. In conclusion, oral cancer stroma–secreted CCL2 is a key signal for recruiting CCR2+ MDSCs from BM to the TME.
Collapse
Affiliation(s)
- May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Qiusheng Shan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Saori Yoshida
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Haruka Omori
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery II, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutica, Okayama, Japan
| |
Collapse
|
24
|
Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021; 13:6131. [PMID: 34885240 PMCID: PMC8657162 DOI: 10.3390/cancers13236131] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of cancer related morbidity and mortality. The metastatic process involves several identifiable biological stages, including tumor cell dissemination, intravasation, and the extravasation of circulating cancer cells to facilitate colonization at a distant site. Immune cell infiltration and inflammation within the tumor microenvironment coincide with tumor progression and metastatic spread and are thought to be the key mediators of this complex process. Amongst many infiltrating cells, neutrophils have recently emerged as an important player in fueling tumor progression, both in animal models and cancer patients. The production of Neutrophil Extracellular Traps (NETs) is particularly important in the pathogenesis of the metastatic cascade. NETs are composed of web-like DNA structures with entangled proteins that are released in response to inflammatory cues in the environment. NETs play an important role in driving tumor progression both in experimental and clinical models. In this review, we aim to summarize the current advances in understanding the role of NETs in cancer, with a specific focus on their role in promoting premetastatic niche formation, interaction with circulating cancer cells, and in epithelial to mesenchymal transition during cancer metastasis. We will furthermore discuss the possible role and different treatment options for targeting NETs to prevent tumor progression.
Collapse
Affiliation(s)
| | | | | | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.L.S.); (S.T.)
| |
Collapse
|
25
|
Chan L, Karimi N, Morovati S, Alizadeh K, Kakish JE, Vanderkamp S, Fazel F, Napoleoni C, Alizadeh K, Mehrani Y, Minott JA, Bridle BW, Karimi K. The Roles of Neutrophils in Cytokine Storms. Viruses 2021; 13:v13112318. [PMID: 34835125 PMCID: PMC8624379 DOI: 10.3390/v13112318] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
A cytokine storm is an abnormal discharge of soluble mediators following an inappropriate inflammatory response that leads to immunopathological events. Cytokine storms can occur after severe infections as well as in non-infectious situations where inflammatory cytokine responses are initiated, then exaggerated, but fail to return to homeostasis. Neutrophils, macrophages, mast cells, and natural killer cells are among the innate leukocytes that contribute to the pathogenesis of cytokine storms. Neutrophils participate as mediators of inflammation and have roles in promoting homeostatic conditions following pathological inflammation. This review highlights the advances in understanding the mechanisms governing neutrophilic inflammation against viral and bacterial pathogens, in cancers, and in autoimmune diseases, and how neutrophils could influence the development of cytokine storm syndromes. Evidence for the destructive potential of neutrophils in their capacity to contribute to the onset of cytokine storm syndromes is presented across a multitude of clinical scenarios. Further, a variety of potential therapeutic strategies that target neutrophils are discussed in the context of suppressing multiple inflammatory conditions.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Kasra Alizadeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Christina Napoleoni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Jessica A. Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
26
|
Sun SH, Benner B, Savardekar H, Lapurga G, Good L, Abood D, Nagle E, Duggan M, Stiff A, DiVincenzo MJ, Suarez-Kelly LP, Campbell A, Yu L, Wesolowski R, Howard H, Shah H, Kendra K, Carson WE. Effect of Immune Checkpoint Blockade on Myeloid-Derived Suppressor Cell Populations in Patients With Melanoma. Front Immunol 2021; 12:740890. [PMID: 34712230 PMCID: PMC8547308 DOI: 10.3389/fimmu.2021.740890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells that inhibit anti-tumor immunity and contribute to immune therapy resistance. MDSC populations were measured in melanoma patients receiving immune checkpoint inhibitors (ICI). Methods Patients with melanoma (n=128) provided blood samples at baseline (BL), and before cycles 2 and 3 (BC2, BC3). Peripheral blood mononuclear cells (PBMC) were analyzed for MDSC (CD33+/CD11b+/HLA- DRlo/-) and MDSC subsets, monocytic (CD14+, M-MDSC), granulocytic (CD15+, PMN-MDSC), and early (CD14-/CD15-, E-MDSC) via flow cytometry. Statistical analysis employed unpaired and paired t-tests across and within patient cohorts. Results Levels of MDSC as a percentage of PBMC increased during ICI (BL: 9.2 ± 1.0% to BC3: 23.6 ± 1.9%, p<0.0001), and patients who developed progressive disease (PD) had higher baseline MDSC. In patients who had a complete or partial response (CR, PR), total MDSC levels rose dramatically and plateaued (BL: 6.4 ± 1.4%, BC2: 26.2 ± 4.2%, BC3: 27.5 ± 4.4%; p<0.0001), whereas MDSC rose less sharply in PD patients (BL: 11.7 ± 2.1%, BC2: 18.3 ± 3.1%, BC3: 19.0 ± 3.2%; p=0.1952). Subset analysis showed that within the expanding MDSC population, PMN-MDSC and E-MDSC levels decreased, while the proportion of M-MDSC remained constant during ICI. In PD patients, the proportion of PMN-MDSC (as a percentage of total MDSC) decreased (BL: 25.1 ± 4.7%, BC2: 16.1 ± 5.2%, BC3: 8.6 ± 1.8%; p=0.0105), whereas a heretofore under-characterized CD14+/CD15+ double positive MDSC subpopulation increased significantly (BL: 8.7 ± 1.4% to BC3: 26.9 ± 4.9%; p=0.0425). Conclusions MDSC levels initially increased significantly in responders. PMN-MDSC decreased and CD14+CD15+ MDSC increased significantly in PD patients. Changes in MDSC levels may have prognostic value in ICI.
Collapse
Affiliation(s)
- Steven H Sun
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, OH, United States
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Himanshu Savardekar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Logan Good
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - David Abood
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Erin Nagle
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Megan Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mallory J DiVincenzo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | | | - Amanda Campbell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lianbo Yu
- Center for Biostatistics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Hiral Shah
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kari Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - William E Carson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
28
|
Ring SS, Cupovic J, Onder L, Lütge M, Perez-Shibayama C, Gil-Cruz C, Scandella E, De Martin A, Mörbe U, Hartmann F, Wenger R, Spiegl M, Besse A, Bonilla WV, Stemeseder F, Schmidt S, Orlinger KK, Krebs P, Ludewig B, Flatz L. Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment. Nat Commun 2021; 12:4734. [PMID: 34354077 PMCID: PMC8342618 DOI: 10.1038/s41467-021-25057-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells. Lymphocytic choriomeningitis virus (LCMV)-based viral vectors have been shown to induce potent antitumor immune responses. Here the authors show that a LCMV-based vaccine vector remodels the tumor-associated fibroblastic stroma, sustaining CD8+ T cell activation and reducing tumor growth in a preclinical model of melanoma.
Collapse
Affiliation(s)
- Sandra S Ring
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland.,Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Urs Mörbe
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Robert Wenger
- Department of Plastic Reconstructive Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Matthias Spiegl
- Department of Plastic Reconstructive Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrej Besse
- Department of Medical Oncology and Hematology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Weldy V Bonilla
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland. .,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland. .,Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland. .,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Papafragkos I, Markaki E, Kalpadakis C, Verginis P. Decoding the Myeloid-Derived Suppressor Cells in Lymphoid Malignancies. J Clin Med 2021; 10:jcm10163462. [PMID: 34441758 PMCID: PMC8397155 DOI: 10.3390/jcm10163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid precursors which emerged as a potent regulator of the immune system, exerting suppressive properties in diverse disease settings. In regards to cancer, MDSCs have an established role in solid tumors; however, their contribution to immune regulation during hematologic malignancies and particularly in lymphomas remains ill-defined. Herein focused on lymphoma, we discuss the literature on MDSC cells in all histologic types, and we also refer to lessons learned by animal models of lymphoma. Furthermore, we elaborate on future directions and unmet needs and challenges in the MDSC field related to lymphoma malignancies which may shed light on the complex nature of the immune system in malignancies.
Collapse
Affiliation(s)
- Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Christina Kalpadakis
- Laboratory of Haematology, Division of Laboratory Medicine, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| |
Collapse
|
30
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
31
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
32
|
Fujimoto K, Uchida K, Yin E, Zhu J, Kojima Y, Uchiyama M, Yamamoto Y, Bashuda H, Matsumoto R, Tokushige K, Harada M, Inomata T, Kitaura J, Murakami A, Okumura K, Takeda K. Analysis of therapeutic potential of monocytic myeloid-derived suppressor cells in cardiac allotransplantation. Transpl Immunol 2021; 67:101405. [PMID: 33975012 DOI: 10.1016/j.trim.2021.101405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are attractive immune cells to induce immune tolerance. To explore a strategy for improving the efficacy of MDSC therapies, we examined the impact of adoptive transfer of several types of MDSCs on graft rejection in a murine heart transplantation model. METHODS We analyzed the effects of induced syngeneic and allogeneic bone marrow-derived MDSCs (BM-MDSCs) on graft survival and suppressive capacity. We also compared the ability of syngeneic monocytic MDSCs (Mo-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) to inhibit graft rejection and investigated the suppression mechanisms. RESULTS Both syngeneic and allogeneic donor- or allogeneic third-party-derived BM-MDSCs prolonged graft survival, although syngeneic BM-MDSCs inhibited anti-donor immune responses most effectively in vitro. Syngeneic Mo-MDSCs, rather than PMN-MDSCs, were responsible for immune suppression through downregulating inducible nitric oxide synthase (iNOS) and expanded naturally occurring thymic originated Treg (nTreg) in vitro. Adoptive transfer of Mo-MDSCs, but not PMN-MDSCs, prolonged graft survival and increased Treg infiltration into the graft heart. CONCLUSION Recipient-derived Mo-MDSCs are most effective in prolonging graft survival via inhibiting T cell response and nTreg infiltration.
Collapse
Affiliation(s)
- Keiichi Fujimoto
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan.
| | - Enzhi Yin
- Department of Surgery, Teikyo University, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | | | | | - Hisashi Bashuda
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Ryu Matsumoto
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Koji Tokushige
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaki Harada
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Ko Okumura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan; Division of Cell Biology, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Dang MT, Gonzalez MV, Gaonkar KS, Rathi KS, Young P, Arif S, Zhai L, Alam Z, Devalaraja S, To TKJ, Folkert IW, Raman P, Rokita JL, Martinez D, Taroni JN, Shapiro JA, Greene CS, Savonen C, Mafra F, Hakonarson H, Curran T, Haldar M. Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Rep 2021; 34:108917. [PMID: 33789113 PMCID: PMC10450591 DOI: 10.1016/j.celrep.2021.108917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/13/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation. Our analyses reveal significant TAM heterogeneity, identify markers of ontologically distinct TAM subsets, and show the impact of brain microenvironment on the differentiation of tumor-infiltrating monocytes. TAM composition undergoes dramatic changes with treatment and differs significantly between molecular-targeted and radiation therapy. We identify an immunosuppressive monocyte-derived TAM subset that emerges with radiation therapy and demonstrate its role in regulating T cell and neutrophil infiltration in MB.
Collapse
Affiliation(s)
- Mai T Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael V Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherjeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsun Ki Jerrick To
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Daniel Martinez
- Pathology Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jaclyn N Taroni
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Joshua A Shapiro
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Casey S Greene
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Candace Savonen
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Fernanda Mafra
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tom Curran
- Children's Research Institute at Mercy Children's Hospital, Kansas City, KS, USA
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021; 167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Macrophages are a type of functionally plastic cells that can create a pro-/anti-inflammatory microenvironment for organs by producing different kinds of cytokines, chemokines, and growth factors to regulate immunity and inflammatory responses. In addition, they can also be induced to adopt different phenotypes in response to extracellular and intracellular signals, a process defined as M1/M2 polarization. Growing evidence indicates that glycobiology is closely associated with this polarization process. In this research, we review studies of the roles of glycosylation, glucose metabolism, and key lectins in the regulation of macrophages function and polarization to provide a new perspective for immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110000, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaohan Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinghe Chen
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
35
|
Ali S, Borin TF, Piranlioglu R, Ara R, Lebedyeva I, Angara K, Achyut BR, Arbab AS, Rashid MH. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS One 2021; 16:e0246646. [PMID: 33544755 PMCID: PMC7864405 DOI: 10.1371/journal.pone.0246646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells.
Collapse
Affiliation(s)
- Sehar Ali
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Thaiz F. Borin
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Raziye Piranlioglu
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, United States of America
| | - Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Bhagelu R. Achyut
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Ali Syed Arbab
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (ASA); (MHR)
| | - Mohammad H. Rashid
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (ASA); (MHR)
| |
Collapse
|
36
|
Gao X, Sui H, Zhao S, Gao X, Su Y, Qu P. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Front Immunol 2021; 11:585214. [PMID: 33613512 PMCID: PMC7889583 DOI: 10.3389/fimmu.2020.585214] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that accumulate in tumor-bearing hosts to reduce T cells activity and promote tumor immune escape in the tumor microenvironment (TME). The immune system in the TME can be stimulated to elicit an anti-tumor immune response through immunotherapy. The main theory of immunotherapy resides on the plasticity of the immune system and its capacity to be re-educated into a potent anti-tumor response. Thus, MDSCs within the TME became one of the major targets to improve the efficacy of tumor immunotherapy, and therapeutic strategies for tumor MDSCs were developed in the last few years. In the article, we analyzed the function of tumor MDSCs and the regulatory mechanisms of agents targeting MDSCs in tumor immunotherapy, and reviewed their therapeutic effects in MDSCs within the TME. Those data focused on discussing how to promote the differentiation and maturation of MDSCs, reduce the accumulation and expansion of MDSCs, and inhibit the function, migration and recruitment of MDSCs, further preventing the growth, invasion and metastasis of tumor. Those investigations may provide new directions for cancer therapy.
Collapse
Affiliation(s)
- Xidan Gao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shang Zhao
- Department of Pathophysiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xingmei Gao
- Department of Neurology, People's Hospital of Binzhou, Binzhou, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
37
|
Tang M, Gao X, Sun H, Tian S, Dong J, Liu Z, Liu W. Neutrophil-Lymphocyte Ratio as a Prognostic Parameter in NSCLC Patients Receiving EGFR-TKIs: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2021; 2021:6688346. [PMID: 33542732 PMCID: PMC7840257 DOI: 10.1155/2021/6688346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To research the impact of neutrophil-lymphocyte ratio (NLR) as a prognostic parameter in non-small-cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). METHODS We searched the databases such as the American Society of Clinical Oncology (ASCO), EMBASE, PubMed, the European Society of Medical Oncology (ESMO), Wanfang, and CNKI for articles illustrating the impact of pretreatment NLR on survival data in NSCLC patients undergoing EGFR-TKIs treatment. We did a meta-analysis for overall survival (OS) and progression-free survival (PFS). RESULTS We recruited 10 studies in our meta-analysis. Our study suggested that patients with low NLR had better PFS (hazard ratio (HR) = 1.67, 95% confidence interval (CI) = (1.16-2.39), and P value = 0.005) and OS (HR = 1.66, 95% CI = (1.08-2.55), and P value = 0.02) in comparison to patients with high NLR. CONCLUSION In conclusion, our meta-analysis revealed that lower NLR predicted a better survival (PFS and OS) in patients receiving the treatment of EGFR-TKIs.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - He Sun
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Suyan Tian
- Department of Division of Clinical Research, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Junxue Dong
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Zhao Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
38
|
Zhang Y, Hughes KR, Raghani RM, Ma J, Orbach S, Jeruss JS, Shea LD. Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials 2021; 269:120666. [PMID: 33461057 DOI: 10.1016/j.biomaterials.2021.120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The presence of immunosuppressive innate immune cells such as myeloid derived suppressor cells (MDSCs), Ly6C-high monocytes, and tumor-associated macrophages (TAMs) at a tumor can inhibit effector T cell and NK cell function. Immune checkpoint blockade using anti-PD-1 antibody aims to overcome the immune suppressive environment, yet only a fraction of patients responds. Herein, we test the hypothesis that cargo-free PLG nanoparticles administered intravenously can divert circulating immune cells from the tumor microenvironment to enhance the efficacy of anti-PD-1 immunotherapy in the 4T1 mouse model of metastatic triple-negative breast cancer. In vitro studies demonstrate that these nanoparticles decrease the expression of MCP-1 by 5-fold and increase the expression of TNF-α by more than 2-fold upon uptake by innate immune cells. Intravenous administration of particles results in internalization by MDSCs and monocytes, with particles detected in the liver, lung, spleen, and primary tumor. Nanoparticle delivery decreased the abundance of MDSCs in circulation and in the lung, the latter being the primary metastatic site. Combined with anti-PD-1 antibody, nanoparticles significantly slowed tumor growth and resulted in a survival benefit. Gene expression analysis by GSEA indicated inflammatory myeloid cell pathways were downregulated in the lung and upregulated in the spleen and tumor. Upregulation of extrinsic apoptotic pathways was also observed in the primary tumor. Collectively, these results demonstrate that cargo-free PLG nanoparticles can reprogram immune cell responses and alter the tumor microenvironment in vivo to overcome the local immune suppression attributed to myeloid cells and enhance the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
39
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
40
|
Guo J, Wang L, Wang X, Li L, Lü Y, Wang C, Hao C, Zhang J. Excessive splenic volume is an unfavorable prognostic factor in patients with non-small cell lung cancer treated with chemoradiotherapy. Medicine (Baltimore) 2020; 99:e23321. [PMID: 33285708 PMCID: PMC7717811 DOI: 10.1097/md.0000000000023321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The relationship between splenic volume and the outcome of chemoradiotherapy for lung cancer has rarely been studied or addressed. The purpose of our study was to investigate whether splenic volume was associated with prognosis in patients treated with chemoradiotherapy for advanced or locally advanced non-small cell lung cancer (NSCLC).A retrospective investigation was conducted. Finally, 202 patients met the criteria and were included in the study. All patients were divided into 2 groups according to the optimum cutoff value of splenic volume for overall survival (OS). The optimum cutoff value was identified by X-tile software, and the OS and disease-free survival (DFS) were compared between the 2 groups of patients. The impact of splenic volume and other clinical characteristics on OS and DFS was analyzed using the Kaplan-Meier method and Cox proportional hazards model. Clinical characteristics were compared using chi-square or Fisher exact tests.The median (range) of splenic volume was 156.03 (28.55-828.11) cm. The optimal cutoff value of splenic volume was 288.4 cm. For univariate analyses, high splenic volume was associated with decreased OS (P = .025) and DFS (P = .044). In multivariate analyses, splenic volume remained an independent predictor of OS as a binary dependent variable (P = .003).Excessive splenic volume was associated with decreased OS and DFS in patients with NSCLC treated with chemoradiotherapy. Splenic volume should be regarded as an independent prognostic factor for patients treated with chemoradiotherapy for advanced or locally advanced NSCLC.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Radiotherapy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo
| | - Lei Wang
- Department of Oncology, The Fourth People's Hospital of ZiBo City
| | - Xiaoyan Wang
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo
| | - Luo Li
- Department of Science and Education, Zibo Central Hospital, Zibo, Shandong, China
| | - Yajuan Lü
- Department of Radiotherapy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan
| | - Congcong Wang
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo
| | - Chong Hao
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo
| | - Jiandong Zhang
- Department of Radiotherapy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan
| |
Collapse
|
41
|
Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release 2020; 327:70-87. [PMID: 32735878 DOI: 10.1016/j.jconrel.2020.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
This review article describes the use of immune cells as potential candidates to deliver anti-cancer drugs deep within the tumor microenvironment. First, the rationale of using drug carriers to target tumors and potentially decrease drug-related side effects is discussed. We further explain some of the current limitations when using nanoparticles for this purpose. Next, a comprehensive step-by-step description of the migration cascade of immune cells is provided as well as arguments on why immune cells can be used to address some of the limitations associated with nanoparticle-mediated drug delivery. We then describe the benefits and drawbacks of using red blood cells, platelets, granulocytes, monocytes, macrophages, myeloid-derived suppressor cells, T cells and NK cells for tumor-targeted drug delivery. An additional section discusses the versatility of nanoparticles to load anti-cancer drugs into immune cells. Lastly, we propose increasing the circulatory half-life and development of conditional release strategies as the two main future pillars to improve the efficacy of immune cell-mediated drug delivery to tumors.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
43
|
Neophytou CM, Pierides C, Christodoulou MI, Costeas P, Kyriakou TC, Papageorgis P. The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Front Oncol 2020; 10:899. [PMID: 32656079 PMCID: PMC7325995 DOI: 10.3389/fonc.2020.00899] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells include various cellular subtypes that are distinguished into mononuclear and polymorphonuclear cells, derived from either common myeloid progenitor cells (CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests that myeloid cells may also regulate cancer development by infiltrating the tumor to directly interact with cancer cells or by affecting the tumor microenvironment. Importantly, mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have either a positive or negative impact on the efficacy of chemotherapy, radiotherapy as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs), profusely found in the tumor stroma, can promote resistance to chemotherapeutic drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to an improved radiotherapy outcome. On the contrary, the presence of TAMs may be beneficial for targeted therapies as they can facilitate the accumulation of large quantities of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are generally thought to enhance cytotoxic therapies, including those using anthracyclines. This review focuses on the role of tumor-infiltrating and stroma myeloid cells in modulating tumor responses to various treatments. We herein report the impact of myeloid cells in a number of therapeutic approaches across a wide range of malignancies, as well as the efforts toward the elimination of myeloid cells or the exploitation of their presence for the enhancement of therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Chryso Pierides
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | | | - Paul Costeas
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus.,The Cyprus Cancer Research Institute, Nicosia, Cyprus
| | | | - Panagiotis Papageorgis
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
44
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
45
|
Hosur V, Skelly DA, Francis C, Low BE, Kohar V, Burzenski LM, Amiji MM, Shultz LD, Wiles MV. Improved mouse models and advanced genetic and genomic technologies for the study of neutrophils. Drug Discov Today 2020; 25:1013-1025. [PMID: 32387410 DOI: 10.1016/j.drudis.2020.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Mice have been excellent surrogates for studying neutrophil biology and, furthermore, murine models of human disease have provided fundamental insights into the roles of human neutrophils in innate immunity. The emergence of novel humanized mice and high-diversity mouse populations offers the research community innovative and powerful platforms for better understanding, respectively, the mechanisms by which human neutrophils drive pathogenicity, and how genetic differences underpin the variation in neutrophil biology observed among humans. Here, we review key examples of these new resources. Additionally, we provide an overview of advanced genetic engineering tools available to further improve such murine model systems, of sophisticated neutrophil-profiling technologies, and of multifunctional nanoparticle (NP)-based neutrophil-targeting strategies.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA.
| | - Daniel A Skelly
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Christopher Francis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Benjamin E Low
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Vivek Kohar
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Lisa M Burzenski
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Leonard D Shultz
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Michael V Wiles
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| |
Collapse
|
46
|
Cao P, Sun Z, Feng C, Zhang J, Zhang F, Wang W, Zhao Y. Myeloid-derived suppressor cells in transplantation tolerance induction. Int Immunopharmacol 2020; 83:106421. [PMID: 32217462 DOI: 10.1016/j.intimp.2020.106421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from bone marrow. These cells are developed from immature myeloid cells and have strong negative immunomodulatory effects. In the context of pathology (such as tumor, autoimmune disease, trauma, and burns), MDSCs accumulate around tumor and inflammatory tissues, where their main role is to inhibit the function of effector T cells and promote the recruitment of regulatory T cells. MDSCs can be used in organ transplantation to regulate the immune responses that participate in rejection of the transplanted organ. This effect is achieved by increasing the production of MDSCs in vivo or transfusion of MDSCs induced in vitro to establish immune tolerance and prolong the survival of the graft. In this review, we discuss the efficacy of MDSCs in a variety of transplantation studies as well as the induction of immune tolerance to prevent transplant rejection through the use of common clinical immunosuppressants combined with MDSCs.
Collapse
Affiliation(s)
- Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
47
|
Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020; 5:92-101. [PMID: 31956738 PMCID: PMC6962647 DOI: 10.1016/j.bioactmat.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macrophages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based nanomaterials as immunomodulatory agents.
Collapse
Affiliation(s)
- Noah T. Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Vascular Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
49
|
Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020; 20:483-497. [PMID: 32024984 DOI: 10.1038/s41577-019-0271-z] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Metastatic disease is responsible for approximately 90% of cancer deaths. For successful dissemination and metastasis, cancer cells must evade detection and destruction by the immune system. This process is enabled by factors secreted by the primary tumour that shape both the intratumoural microenvironment and the systemic immune landscape. Here, we review the evidence of aberrant immune cell crosstalk in metastasis formation and the role that primary tumours play in hijacking these interactions in order to enhance their metastatic potential. Moreover, we highlight the intriguing parallels between the inflammatory pathways underlying inflammatory disorders and cancer progression.
Collapse
Affiliation(s)
- Hannah Garner
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
50
|
Ibrahim SA, Kulshrestha A, Katara GK, Riehl V, Sahoo M, Beaman KD. Cancer-associated V-ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol Oncol 2020; 14:590-610. [PMID: 31925882 PMCID: PMC7053242 DOI: 10.1002/1878-0261.12630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tumors and neutrophils undergo an unexpected interaction, in which products released by tumor cells interact to support neutrophils that in turn support cancer growth, angiogenesis, and metastasis. A key protein that is highly expressed by cancer cells in tumors is the a2 isoform V‐ATPase (a2V). A peptide from a2V (a2NTD) is secreted specifically by cancer cells, but not normal cells, into the tumor microenvironment. This peptide reprograms neutrophils to promote angiogenesis, cancer cell invasiveness, and neutrophil recruitment. Here, we provide evidence that cancer‐associated a2V regulates the life span of protumorigenic neutrophils by influencing the intrinsic pathway of apoptosis. Immunohistochemical analysis of human cancer tissue sections collected from four different organs shows that levels of a2NTD and neutrophil counts are increased in cancer compared with normal tissues. Significant increases in neutrophil counts were present in both poorly and moderately differentiated tumors. In addition, there is a positive correlation between the number of neutrophils and a2NTD expression. Human neutrophils treated with recombinant a2NTD show significantly delayed apoptosis, and such prolonged survival was dependent on NF‐κB activation and ROS generation. Induction of antiapoptotic protein expression (Bcl‐xL and Bcl‐2A1) and decreased expression of proapoptotic proteins (Bax, Apaf‐1, caspase‐3, caspase‐6, and caspase‐7) were a hallmark of these treated neutrophils. Autocrine secretion of prosurvival cytokines of TNF‐α and IL‐8 by treated neutrophils prolongs their survival. Our findings highlight the important role of cancer‐associated a2V in regulating protumorigenic innate immunity, identifying a2V as a potential important target for cancer therapy.
Collapse
Affiliation(s)
- Safaa A Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Valerie Riehl
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Manoranjan Sahoo
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|