1
|
Ma YN, Zou YD, Liu ZL, Wu GX, Zhou YZ, Luo CX, Huang XT, Xie ML, Xu SN, Li X. SENP3 Promotes Mantle Cell Lymphoma Development through Regulating Wnt10a Expression. Curr Med Sci 2024; 44:134-143. [PMID: 38273178 DOI: 10.1007/s11596-024-2829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.
Collapse
Affiliation(s)
- Yan-Ni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Hematology, the Third Affiliated Hospital (Daping Hospital), Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yun-Ding Zou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi-Long Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gui-Xian Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuan-Ze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Cheng-Xin Luo
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang-Tao Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming-Ling Xie
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuang-Nian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Li
- Department of Hematology, the Third Affiliated Hospital (Daping Hospital), Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| |
Collapse
|
2
|
Zou Z, Chen S, Wu Y, Ji S. The USP35-CXCR3 Axis plays an oncogenic role in JeKo-1 mantle cell lymphoma cells. Integr Biol (Camb) 2024; 16:zyae021. [PMID: 39591978 DOI: 10.1093/intbio/zyae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
In B cells, the chemokine receptor CXCR3 is expressed only by a subset of B cells. However, CXCR3 is highly expressed in a rare type of B-cell lymphoma known as Mantle Cell Lymphoma (MCL) and CXCR3 inhibitor impairs proliferation and induces apoptosis in the MCL cell line JeKo-1. Despite this, the mechanism responsible for maintaining high levels of CXCR3 in MCL cells remains unclear. In this study, we assessed CXCR3 expression and amplification in MCL samples and confirmed that CXCR3 is overexpressed in MCL tissues. We also observed that CXCR3 amplification is present in a small portion of MCL patients and is associated with MCL classification. We then screened ubiquitin-specific proteases (USPs) that might control the degradation of CXCR3 protein. Our investigation revealed that USP35 acts as a potent stabilizer of CXCR3 protein. Knockdown of USP35 substantially reduced the CXCR3 protein levels in JeKo-1 cells, resulting in reduced cell viability, cell cycle arrest, increased apoptosis, and mitigated migration and invasion in these cells. At the molecular level, USP35 deubiquitinates and stabilizes CXCR3. USP35 deficiency attenuated the activation of the JAK1/STAT1 pathway and reduced the expression of β-catenin and c-Myc in JeKo-1 cells. Furthermore, we observed that overexpression of CXCR3 rescued the impaired tumorigenicity of USP35-deficient JeKo-1 cells, and the mechanism may be related to the fact that USP35 promotes CXCR3 deubiquitination to stabilize its expression. These findings collectively demonstrate the oncogenic role of the USP35-CXCR3 axis in JeKo-1 MCL cells.
Collapse
Affiliation(s)
- Zongkai Zou
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou 363000, Fujian, China
| | - Shumin Chen
- Department of Basic Medicine, Zhangzhou Health Vocational College; Collaborative Innovation Center for Translation Medical Testing and Application Technology, No. 29, Shengli West Road, Xiangcheng District, Zhangzhou 363000, Fujian, China
| | - Yonghe Wu
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou 363000, Fujian, China
| | - Siling Ji
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou 363000, Fujian, China
| |
Collapse
|
3
|
Gelebart P, Eriksen Gjerstad M, Benjaminsen S, Han J, Karlsen I, Safont MM, Leitch C, Fandalyuk Z, Popa M, Helgeland L, Papp B, Baran-Marszak F, McCormack E. Inhibition of a new AXL isoform, AXL3, induces apoptosis of mantle cell lymphoma cells. Blood 2023; 142:1478-1493. [PMID: 37339584 DOI: 10.1182/blood.2022015581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma having a poor overall survival that is in need for the development of new therapeutics. In this study, we report the identification and expression of a new isoform splice variant of the tyrosine kinase receptor AXL in MCL cells. This new AXL isoform, called AXL3, lacks the ligand-binding domain of the commonly described AXL splice variants and is constitutively activated in MCL cells. Interestingly, functional characterization of AXL3, using CRISPR inhibition, revealed that only the knock down of this isoform leads to apoptosis of MCL cells. Importantly, pharmacological inhibition of AXL activity resulted in a significant decrease in the activation of well-known proproliferative and survival pathways activated in MCL cells (ie, β-catenin, Ak strain transforming, and NF-κB). Therapeutically, preclinical studies using a xenograft mouse model of MCL indicated that bemcentinib is more effective than ibrutinib in reducing the tumor burden and to increase the overall survival. Our study highlights the importance of a previously unidentified AXL splice variant in cancer and the potential of bemcentinib as a targeted therapy for MCL.
Collapse
Affiliation(s)
- Pascal Gelebart
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jianhua Han
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ida Karlsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Calum Leitch
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Bela Papp
- INSERM, UMR U976, Institut Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
| | | | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Pharmacy, University of Bergen, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol 2023; 153:255-279. [PMID: 36967197 PMCID: PMC11104846 DOI: 10.1016/bs.ctdb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs replenish the blood and immune cells of an organism throughout its life. HSC development, maintenance, and differentiation are all tightly regulated by cell signaling pathways, including the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to cell surface receptors and give rise to several different downstream signaling cascades. These are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review how Wnt signaling impacts HSCs during development and in disease.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Kate E Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States; Van Andel Institute Graduate School, Grand Rapids, MI, United States
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
5
|
Ahmed Z, Ahmed A. Evaluation of serum level of lymphoid enhancer-binding factor-1 and its relation with clinico-hematological and prognostic parameters in pediatric patients with acute lymphoblastic leukemia. IRAQI JOURNAL OF HEMATOLOGY 2022. [DOI: 10.4103/ijh.ijh_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Sebestyén E, Nagy Á, Marosvári D, Rajnai H, Kajtár B, Deák B, Matolcsy A, Brandner S, Storhoff J, Chen N, Bagó AG, Bödör C, Reiniger L. Distinct miRNA Expression Signatures of Primary and Secondary Central Nervous System Lymphomas. J Mol Diagn 2021; 24:224-240. [DOI: 10.1016/j.jmoldx.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
|
7
|
Alshareef A, Peters AC, Gélébart P, Chen W, Lai R. Gene Methylation and Silencing of WIF1 Is a Frequent Genetic Abnormality in Mantle Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22020893. [PMID: 33477402 PMCID: PMC7830226 DOI: 10.3390/ijms22020893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the Wnt canonical pathway (WCP) is constitutively active in most cases of mantle cell lymphoma (MCL). Here, we aimed to elucidate the mechanisms underlying this biochemical deregulation. We hypothesized that gene methylation/silencing of WIF1 (Wnt inhibitory factor-1), a physiologic inhibitor of WCP, contributes to the deregulation of WCP and promotes cell growth in MCL. In support of this hypothesis, we found that the expression of WIF1 was detectable in none of the 4 MCL cell lines, and in only 2 of 5 tumors (40%) examined. Using methylation-specific PCR, we found evidence of gene methylation of WIF1 in 4 of 5 cell lines (80%) and in 24 of 29 (82%) tumors. The addition of the demethylation agent 5-aza-2′-deoxycytidine to Mino and JeKo-1, two WIF1-negative cell lines, restored the expression of WIF1 mRNA in these cells. Gene transfection of WIF1 into JeKo-1 and Mino cells significantly reduced cell growth, and this finding correlated with substantial downregulations of various proteins in WCP, such as β-catenin and pGSK-3β. In conclusion, our results support the concept that gene methylation/silencing of WIF1 is a frequent event in MCL, and this abnormality contributes to the aberrant activation of WCP. These results have provided further evidence that aberrant Wnt signaling is pathogenetically important in MCL and it may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, P.O. Box 41477, Saudi Arabia;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
| | - Anthea C. Peters
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
8
|
Frenquelli M, Tonon G. WNT Signaling in Hematological Malignancies. Front Oncol 2020; 10:615190. [PMID: 33409156 PMCID: PMC7779757 DOI: 10.3389/fonc.2020.615190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The role of the WNT signaling pathway in key cellular processes, such as cell proliferation, differentiation and migration is well documented. WNT signaling cascade is initiated by the interaction of WNT ligands with receptors belonging to the Frizzled family, and/or the ROR1/ROR2 and RYK families. The downstream signaling cascade results in the activation of the canonical β-catenin dependent pathway, ultimately leading to transcriptional control of cell proliferation, or the non-canonical pathway, mainly acting on cell migration and cell polarity. The high level of expression of both WNT ligands and WNT receptors in cancer cells and in the surrounding microenvironment suggests that WNT may represent a central conduit of interactions between tumor cells and microenviroment. In this review we will focus on WNT pathways deregulation in hematological cancers, both at the ligand and receptor levels. We will review available literature regarding both the classical β-catenin dependent pathway as well as the non-canonical pathway, with particular emphasis on the possible exploitation of WNT aberrant activation as a therapeutic target, a notion supported by preclinical data.
Collapse
Affiliation(s)
- Michela Frenquelli
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Roué G, Sola B. Management of Drug Resistance in Mantle Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12061565. [PMID: 32545704 PMCID: PMC7352245 DOI: 10.3390/cancers12061565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare but aggressive B-cell hemopathy characterized by the translocation t(11;14)(q13;q32) that leads to the overexpression of the cell cycle regulatory protein cyclin D1. This translocation is the initial event of the lymphomagenesis, but tumor cells can acquire additional alterations allowing the progression of the disease with a more aggressive phenotype and a tight dependency on microenvironment signaling. To date, the chemotherapeutic-based standard care is largely inefficient and despite the recent advent of different targeted therapies including proteasome inhibitors, immunomodulatory drugs, tyrosine kinase inhibitors, relapses are frequent and are generally related to a dismal prognosis. As a result, MCL remains an incurable disease. In this review, we will present the molecular mechanisms of drug resistance learned from both preclinical and clinical experiences in MCL, detailing the main tumor intrinsic processes and signaling pathways associated to therapeutic drug escape. We will also discuss the possibility to counteract the acquisition of drug refractoriness through the design of more efficient strategies, with an emphasis on the most recent combination approaches.
Collapse
Affiliation(s)
- Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| | - Brigitte Sola
- MICAH Team, INSERM U1245, UNICAEN, CEDEX 5, 14032 Caen, France
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| |
Collapse
|
10
|
Lazarian G, Friedrich C, Quinquenel A, Tran J, Ouriemmi S, Dondi E, Martin A, Mihoub I, Chiron D, Bellanger C, Fleury C, Gélébart P, McCormack E, Ledoux D, Thieblemont C, Marzec J, Gribben JG, Cymbalista F, Varin-Blank N, Gardano L, Baran-Marszak F. Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma. Oncogene 2020; 39:2934-2947. [PMID: 32034308 DOI: 10.1038/s41388-020-1183-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
B-cell receptor (BCR) signaling pathways and interactions with the tumor microenvironment account for mantle cell lymphoma (MCL) cells survival in lymphoid organs. In several MCL cases, the WNT/β-catenin canonical pathway is activated and β-catenin accumulates into the nucleus. As both BCR and β-catenin are important mediators of cell survival and interaction with the microenvironment, we investigated the crosstalk between BCR and WNT/β-catenin signaling and analyzed their impact on cellular homeostasis as well as their targeting by specific inhibitors. β-catenin was detected in all leukemic MCL samples and its level of expression rapidly increased upon BCR stimulation. This stabilization was hampered by the BCR-pathway inhibitor Ibrutinib, supporting β-catenin as an effector of the BCR signaling. In parallel, MCL cells as compared with normal B cells expressed elevated levels of WNT16, a NF-κB target gene. Its expression increased further upon BCR stimulation to participate to the stabilization of β-catenin. Upon BCR stimulation, β-catenin translocated into the nucleus but did not induce a Wnt-like transcriptional response, i.e., TCF/LEF dependent. β-catenin rather participated to the regulation of NF-κB transcriptional targets, such as IL6, IL8, and IL1. Oligo pull down and chromatin immunoprecipitation experiments demonstrated that β-catenin is part of a protein complex that binds the NF-κB DNA consensus sequence, strengthening the idea of an association between the two proteins. An inhibitor targeting β-catenin transcriptional interactions hindered both NF-κB DNA recruitment and induced primary MCL cells apoptosis. Thus, β-catenin likely represents another player through which BCR signaling impacts on MCL cell survival.
Collapse
Affiliation(s)
- Gregory Lazarian
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Chloe Friedrich
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Anne Quinquenel
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Julie Tran
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Souhail Ouriemmi
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Elisabetta Dondi
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Antoine Martin
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'anatomopathologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Imane Mihoub
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - David Chiron
- Centre de Recherches en Cancérologie et Immunologie Nantes-Angers, U1232 INSERM, Centre National de la Recherche Scientifique (CNRS) ERL6001, Université de Nantes, Nantes, France
| | - Céline Bellanger
- Centre de Recherches en Cancérologie et Immunologie Nantes-Angers, U1232 INSERM, Centre National de la Recherche Scientifique (CNRS) ERL6001, Université de Nantes, Nantes, France
| | - Carole Fleury
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Pascal Gélébart
- Department of clinical science, University of Bergen, Bergen, Norway
| | - Emmet McCormack
- Department of clinical science, University of Bergen, Bergen, Norway
| | - Dominique Ledoux
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Catherine Thieblemont
- Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacek Marzec
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Florence Cymbalista
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Nadine Varin-Blank
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France. .,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.
| | - Laura Gardano
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Fanny Baran-Marszak
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France. .,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France. .,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France.
| |
Collapse
|
11
|
Haque M, Li J, Huang YH, Almowaled M, Barger CJ, Karpf AR, Wang P, Chen W, Turner SD, Lai R. NPM-ALK Is a Key Regulator of the Oncoprotein FOXM1 in ALK-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel) 2019; 11:E1119. [PMID: 31390744 PMCID: PMC6721812 DOI: 10.3390/cancers11081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is an oncogenic transcription factor implicated in the pathogenesis of solid and hematologic cancers. In this study, we examined the significance of FOXM1 in NPM-ALK-positive anaplastic large cell lymphoma (NPM-ALK + ALCL), with a focus on how it interacts with NPM-ALK, which is a key oncogenic driver in these tumors. FOXM1 was expressed in NPM-ALK + ALCL cell lines (5/5), patient samples (21/21), and tumors arising in NPM-ALK transgenic mice (4/4). FOXM1 was localized in the nuclei and confirmed to be transcriptionally active. Inhibition of FOXM1 in two NPM-ALK + ALCL cells using shRNA and pharmalogic agent (thiostrepton) resulted in reductions in cell growth and soft-agar colony formation, which were associated with apoptosis and cell-cycle arrest. FOXM1 is functionally linked to NPM-ALK, as FOXM1 enhanced phosphorylation of the NPM-ALK/STAT3 axis. Conversely, DNA binding and transcriptional activity of FOXM1 was dependent on the expression of NPM-ALK. Further studies showed that this dependency hinges on the binding of FOXM1 to NPM1 that heterodimerizes with NPM-ALK, and the phosphorylation status of NPM-ALK. In conclusion, we identified FOXM1 as an important oncogenic protein in NPM-ALK+ ALCL. Our results exemplified that NPM-ALK exerts oncogenic effects in the nuclei and illustrated a novel role of NPM1 in NPM-ALK pathobiology.
Collapse
Affiliation(s)
- Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jing Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
- Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, Harbin 150080, Heilongjiang, China
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Meaad Almowaled
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Carter J Barger
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peng Wang
- Department of Hematology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB T6G2R3, Canada.
| |
Collapse
|
12
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) is an essential member of the SOX transcription factors and has been highlighted as an important regulator in embryogenesis. SOX11 studies have only recently shifted focus from its role in embryogenesis and development to its function in disease. In particular, the role of SOX11 in carcinogenesis has become of major interest in the field. SOX11 expression is elevated in a wide variety of tumors. In many cancers, dysfunctional expression of SOX11 has been correlated with increased cancer cell survival, inhibited cell differentiation, and tumor progression through the induction of metastasis and angiogenesis. Nevertheless, in a limited number of malignancies, SOX11 has also been identified to function as a tumor suppressor. Herein, we review the correlation between the expression of SOX11 and tumor behaviors. We also summarize the mechanisms underlying the regulation of SOX11 expression and activity in pathological conditions. In particular, we focus on the pathological processes of cancer targeted by SOX11 and discuss whether SOX11 is protective or detrimental during tumor progression. Moreover, SOX11 is highlighted as a clinical biomarker for the diagnosis and prognosis of various human cancer. The information reviewed here should assist in future experimental designs and emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military
Medical University, Xi’an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, 127 Changle West Road,
Xi’an 710032, China
| |
Collapse
|
13
|
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma. J Cell Commun Signal 2018; 13:421-434. [PMID: 30465121 DOI: 10.1007/s12079-018-0494-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin's lymphoma characterised by overexpression of cyclin D1. Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease with median survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators in progressive MCL. We have used the human MCL cell lines REC1 < G519 < JVM2 as a model for disease aggression. The magnitude of CCN1 expression in human MCL cells is REC1 > G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1 expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expression of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18-20 and 28-30 kDa) decreased with disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1) are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519 cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1 followed a similar profile of expression as cyclin D1. Conversely, p21CIP1 was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellular localization detected p21CIP1/ p27KIP1 primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction with reduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease and treatment resistance.
Collapse
|
14
|
Gupta N, Gopal K, Wu C, Alshareef A, Chow A, Wu F, Wang P, Ye X, Bigras G, Lai R. Phosphorylation of Sox2 at Threonine 116 is a Potential Marker to Identify a Subset of Breast Cancer Cells with High Tumorigenecity and Stem-Like Features. Cancers (Basel) 2018; 10:cancers10020041. [PMID: 29401647 PMCID: PMC5836073 DOI: 10.3390/cancers10020041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
We have previously identified a novel phenotypic dichotomy in breast cancer (BC) based on the response to a SRR2 (Sox2 regulatory region 2) reporter, with reporter responsive (RR) cells being more tumorigenic/stem-like than reporter unresponsive (RU) cells. Since the expression level of Sox2 is comparable between the two cell subsets, we hypothesized that post-translational modifications of Sox2 contribute to their differential reporter response and phenotypic differences. By liquid chromatography-mass spectrometry, we found Sox2 to be phosphorylated in RR but not RU cells. Threonine 116 is an important phosphorylation site, since transfection of the T116A mutant into RR cells significantly decreased the SRR2 reporter luciferase activity and the RR-associated phenotype. Oxidative stress-induced conversion of RU into RR cells was accompanied by Sox2 phosphorylation at T116 and increased Sox2-DNA binding. In a cohort of BC, we found significant correlations between the proportion of tumor cells immuno-reactive with anti-phosphorylated Sox2T116 and a high tumor grade (p = 0.006), vascular invasion (p = 0.001) and estrogen receptor expression (p = 0.032). In conclusion, our data suggests that phosphorylation of Sox2T116 contributes to the tumorigenic/stem-like features in RR cells. Detection of phospho-Sox2T116 may be useful in identifying a small subset of tumor cells carrying stem-like/tumorigenic features in BC.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Alexandra Chow
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Peng Wang
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Xiaoxia Ye
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
- DynaLIFEDX Medical Laboratories, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
15
|
Wnt Signaling in Hematological Malignancies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:321-341. [PMID: 29389522 DOI: 10.1016/bs.pmbts.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leukemia and lymphoma are a wide encompassing term for a diverse set of blood malignancies that affect people of all ages and result in approximately 23,000 deaths in the United States per year (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Hematopoietic stem cells (HSCs) are tissue-specific stem cells at the apex of the hierarchy that gives rise to all of the terminally differentiated blood cells, through progressively restricted progenitor populations, a process that is known to be Wnt-responsive. In particular, the progenitor populations are subject to uncontrolled expansion during oncogenic processes, namely the common myeloid progenitor and common lymphoid progenitor, as well as the myeloblast and lymphoblast. Unregulated growth of these cell-types leads to mainly three types of blood cancers (i.e., leukemia, lymphoma, and myeloma), which frequently exhibit deregulation of the Wnt signaling pathway. Generally, leukemia is caused by the expansion of myeloid progenitors, leading to an overproduction of white blood cells; as such, patients are unable to make sufficient numbers of red blood cells and platelets. Likewise, an overproduction of lymphocytes leads to clogging of the lymph system and impairment of the immune system in lymphomas. Finally, cancer of the plasma cells in the blood is called myeloma, which also leads to immune system failure. Within each of these three types of blood cancers, there are multiple subtypes, usually characterized by their timeline of onset and their cell type of origin. Of these, 85% of leukemias are encompassed by the four most common diseases, that is, acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL); AML accounts for the majority of leukemia-related deaths (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Through understanding how HSCs are normally developed and maintained, we can understand how the normal functions of these pathways are disrupted during blood cancer progression; the Wnt pathway is important in regulation of both normal and malignant hematopoiesis. In this chapter, we will discuss the role of Wnt signaling in normal and aberrant hematopoiesis. Our understanding the relationship between Wnt and HSCs will provide novel insights into therapeutic targets.
Collapse
|
16
|
Janovská P, Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br J Pharmacol 2017; 174:4701-4715. [PMID: 28703283 PMCID: PMC5727250 DOI: 10.1111/bph.13949] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
In this review, we discuss the intricate roles of the Wnt signalling network in the development and progression of mature B-cell-derived haematological malignancies, with a focus on chronic lymphocytic leukaemia (CLL) and related B-cell lymphomas. We review the current literature and highlight the differences between the β-catenin-dependent and -independent branches of Wnt signalling. Special attention is paid to the role of the non-canonical Wnt/planar cell polarity (PCP) pathway, mediated by the Wnt-5-receptor tyrosine kinase-like orphan receptor (ROR1)-Dishevelled signalling axis in CLL. This is mainly because the Wnt/PCP co-receptor ROR1 was found to be overexpressed in CLL and the Wnt/PCP pathway contributes to numerous aspects of CLL pathogenesis. We also discuss the possibilities of therapeutically targeting the Wnt signalling pathways as an approach to disrupt the crucial interaction between malignant cells and their micro-environment. We also advocate the need for research in this direction for other lymphomas, namely, diffuse large B-cell lymphoma, Hodgkin lymphoma, mantle cell lymphoma, Burkitt lymphoma and follicular lymphoma where the Wnt signalling pathway probably plays a similar role. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Pavlína Janovská
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Vítězslav Bryja
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
17
|
Li XY, Li Y, Zhang L, Liu X, Feng L, Wang X. The antitumor effects of arsenic trioxide in mantle cell lymphoma via targeting Wnt/β‑catenin pathway and DNA methyltransferase-1. Oncol Rep 2017; 38:3114-3120. [PMID: 28901456 DOI: 10.3892/or.2017.5945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/17/2017] [Indexed: 11/05/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive non‑Hodgkin lymphoma (NHL) with poor prognosis. The rapid progression and frequently relapse make it urgent to identify therapeutic agents with potent antitumor effect. Increasing evidence indicated that dysregulation of Wnt/β‑catenin pathway and abnormal methylation appeared to promote tumorigenesis. Arsenic trioxide (As2O3, ATO) has been reported effective in many hematologic malignancies in recent studies, however, the mechanism and effects of ATO in MCL still need further research. In this study, ATO was shown to promote apoptosis and to inhibit cell viability in MCL cell lines, whereas, the expression of DNA methyltransferase-1 (DNMT-1), β‑catenin and the downstream molecules of Wnt/β‑catenin pathway such as c‑myc, cyclin D1 and MMP7 were all decreased in a dose-dependent manner with ATO. ATO also attenuated upregulation of β‑catenin after LiCl stimulation and provided synergistic effect with 5-azacytidine (5-azaC) on the DNMT-1 inhibition. The results indicated that ATO may suppress MCL by targeting Wnt/β‑catenin pathway and DNMT-1. These findings may guide drug usage of ATO in clinical therapy for MCL.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lili Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
18
|
Vega OA, Lucero CM, Araya HF, Jerez S, Tapia JC, Antonelli M, Salazar‐Onfray F, Las Heras F, Thaler R, Riester SM, Stein GS, van Wijnen AJ, Galindo MA. Wnt/β‐Catenin Signaling Activates Expression of the Bone‐Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. J Cell Biochem 2017; 118:3662-3674. [DOI: 10.1002/jcb.26011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Oscar A. Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Claudia M.J. Lucero
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Hector F. Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Julio C. Tapia
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Flavio Salazar‐Onfray
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
- Program of Immunology, Institute of Biomedical Sciences (ICBM)Faculty of Medicine, University of ChileSantiago 8380453Chile
| | - Facundo Las Heras
- Department of Anatomical PathologyUniversity of Chile Clinical HospitalSantiago 8380456Chile
- Department of PathologyClinica Las CondesSantiago 7591018Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Scott M. Riester
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer CenterThe Robert Larner College of Medicine, University of VermontBurlington 05405Vermont
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Mario A. Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| |
Collapse
|
19
|
Agostinelli C, Carloni S, Limarzi F, Righi S, Laginestra MA, Musuraca G, Fiorentino M, Napolitano R, Cuneo A, Vergara D, Zinzani PL, Sabattini E, Pileri SA, De Matteis S. The emerging role of GSK-3β in the pathobiology of classical Hodgkin lymphoma. Histopathology 2017; 71:72-80. [PMID: 28208230 DOI: 10.1111/his.13189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
AIMS Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase involved in glycogen metabolism, cell cycle progression, differentiation, embryogenesis, migration, metabolism, survival and cellular senescence. Its main biological function is to inhibit β-catenin by sequestration and promotion of its proteasomal degradation in the Wnt canonical pathway; however, GSK-3β interacts with multiple signalling pathways, and aberrant expression of the enzyme was reported in many solid neoplasms. This study aimed to investigate the biological relevance of GSK-3β in classical Hodgkin lymphomas (cHL). METHODS AND RESULTS We analysed the functional status of GSK-3β enzyme in cHL by using antibodies raised against fixation-resistant epitopes of phospho Y216 GSK-3β (active form), phospho S9 GSK-3β (inactive form) and β-catenin protein. We first detected the pY216 GSK-3β active form of the enzyme in 100 of 100 (100%) of the cases, and in line with the latter expression profile, the β-catenin protein was found in only 12 of 100 (12%) of the samples. As reported previously in bladder cancer, pancreatic adenocarcinoma and chronic lymphocytic leukaemia, we showed an aberrant nuclear localization in the neoplastic clone of active pY216 GSK-3β in 78 of 100 (78%) of cHL cases. CONCLUSIONS We demonstrated the activation of GSK-3β in cHL resulting in inhibition of the Wnt/β-catenin signal cascade and the aberrant accumulation of its activated form in nuclei of Hodgkin Reed-Sternberg and Hodgkin cells. These findings may be relevant for future clinical studies, identifying GSK-3β as a potential therapeutic target for cHL.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Silvia Carloni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Francesco Limarzi
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Simona Righi
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Maria Antonella Laginestra
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Gerardo Musuraca
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant'Anna, Ferrara, Italy
| | - Daniele Vergara
- Laboratory of Clinical Proteomic, 'Giovanni Paolo II' Hospital, ASL-Lecce, Italy
| | - Pier Luigi Zinzani
- Hemathology Section, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
| | - Elena Sabattini
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Stefano A Pileri
- Professor Alma Mater Bologna University, Bologna, Italy.,Hematopathology Unit, European Institute of Oncology, Milan, Italy
| | - Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| |
Collapse
|
20
|
Li XY, Geng LY, Zhou XX, Wei N, Fang XS, Li Y, Wang X. Krüppel-like factor 4 contributes to the pathogenesis of mantle cell lymphoma. Leuk Lymphoma 2017; 58:2460-2469. [PMID: 28278702 DOI: 10.1080/10428194.2017.1292354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive subtype of B-cell non-Hodgkin lymphoma (NHL) with poor prognosis. Krüppel-like factor 4 (KLF4) has been reported as a bi-regulator in malignancies, but little is known about its role in MCL. Here, we showed that KLF4 was downregulated in three MCL cell lines and lymph nodes from MCL patients, which resulted in a negative prognosis. We also found that the regulation of KLF4 could inhibit the proliferation and induce apoptosis of Jeko-1 cells. The lentivirally over-expressed KLF4 protein was found bind to β-catenin and could inhibit downstream molecules such as cyclinD1 and c-Myc. Furthermore, 5-azacytidine could decrease the expression of methyltransferase-1 (DNMT-1) and restore the KLF4 expression in MCL cell lines, indicating that methylation might play an important role in the downregulation of KLF4. KLF4 may be a potential therapeutic target as a tumor suppressor in MCL.
Collapse
Affiliation(s)
- Xin-Yu Li
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Ling-Yun Geng
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xiang-Xiang Zhou
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Na Wei
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xiao-Sheng Fang
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Ying Li
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xin Wang
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| |
Collapse
|
21
|
Vogt N, Dai B, Erdmann T, Berdel WE, Lenz G. The molecular pathogenesis of mantle cell lymphoma. Leuk Lymphoma 2016; 58:1530-1537. [PMID: 27894215 DOI: 10.1080/10428194.2016.1248965] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by the translocation t(11;14) leading to constitutive cyclin D1 overexpression. However, overexpression of cyclin D1 alone is insufficient to cause malignant transformation. Secondary genetic alterations and deregulated signaling pathways involved in DNA damage response, cell proliferation, and apoptosis are indispensable for MCL lymphomagenesis. Recent studies investigating the biology of MCL have revealed crucial importance of B-cell receptor (BCR), nuclear factor-kappa B (NF-κB), phosphoinositide 3-kinase (PI3K), and BCL2 signaling for the molecular pathogenesis of MCL. In addition, activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), NOTCH and WNT pathway can be observed in subsets of MCLs. These addictions can potentially be utilized therapeutically by implementing small molecule inhibitors into current treatment regimens.
Collapse
Affiliation(s)
- Niklas Vogt
- a Department of Translational Oncology , University Hospital Münster , Münster , Germany.,b Department of Medicine A, Hematology, Oncology and Pneumology , University Hospital Münster , Münster , Germany
| | - Beiying Dai
- a Department of Translational Oncology , University Hospital Münster , Münster , Germany.,c Cluster of Excellence , Deutsche Forschungsgemeinschaft EXC 1003, Cells in Motion , Münster , Germany
| | - Tabea Erdmann
- a Department of Translational Oncology , University Hospital Münster , Münster , Germany.,c Cluster of Excellence , Deutsche Forschungsgemeinschaft EXC 1003, Cells in Motion , Münster , Germany
| | - Wolfgang E Berdel
- b Department of Medicine A, Hematology, Oncology and Pneumology , University Hospital Münster , Münster , Germany.,c Cluster of Excellence , Deutsche Forschungsgemeinschaft EXC 1003, Cells in Motion , Münster , Germany
| | - Georg Lenz
- a Department of Translational Oncology , University Hospital Münster , Münster , Germany.,b Department of Medicine A, Hematology, Oncology and Pneumology , University Hospital Münster , Münster , Germany.,c Cluster of Excellence , Deutsche Forschungsgemeinschaft EXC 1003, Cells in Motion , Münster , Germany
| |
Collapse
|
22
|
Wu C, Zhang HF, Gupta N, Alshareef A, Wang Q, Huang YH, Lewis JT, Douglas DN, Kneteman NM, Lai R. A positive feedback loop involving the Wnt/β-catenin/MYC/Sox2 axis defines a highly tumorigenic cell subpopulation in ALK-positive anaplastic large cell lymphoma. J Hematol Oncol 2016; 9:120. [PMID: 27821172 PMCID: PMC5100098 DOI: 10.1186/s13045-016-0349-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/28/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We have previously described the existence of two phenotypically distinct cell subsets in ALK-positive anaplastic large cell lymphoma (ALK + ALCL) based on their differential responsiveness to a Sox2 reporter (SRR2), with reporter-responsive (RR) cells being more tumorigenic and chemoresistant than reporter-unresponsive (RU) cells. However, the regulator(s) of RU/RR dichotomy are not identified. In this study, we aim to delineate the key regulator(s) of RU/RR dichotomy. METHODS JASPER motif match analysis was used to identify the putative factors binding to SRR2 sequence. SRR2 probe pull-down assay and quantitate real-time PCR were performed to analyze the regulation of Sox2 transcriptional activity by MYC. Methylcellulose colony formation assay, chemoresistance to doxorubicin and mouse xenograft study were performed to investigate the biological functions of MYC. PCR array and western blotting were executed to study related signaling pathways that regulate MYC expression. Immunofluorescence and immunohistochemistry assay were initiated to evaluate the expression of MYC and its correlation with its regulator by chi-square test analysis in human primary tumor cells. RESULTS We identified MYC as a potential regulator of RU/RR dichotomy. In support of its role, MYC was highly expressed in RR cells compared to RU cells, and inhibition of MYC substantially decreased the Sox2/SRR2 binding, Sox2 transcriptional activity, chemoresistance, and methylcellulose colony formation. In contrast, enforced expression of MYC in RU cells conferred the RR phenotype. The Wnt/β-catenin pathway, a positive regulator of MYC, was highly active in RR but not RU cells. While inhibition of this pathway in RR cells substantially decreased MYC expression and SRR2 reporter activity, experimental activation of this pathway led to the opposite effects in RU cells. Collectively, our results support a model in which a positive feedback loop involving Wnt/β-catenin/MYC and Sox2 contributes to the RR phenotype. In a mouse xenograft model, RU cells stably transfected with MYC showed upregulation of the Wnt/β-catenin/MYC/Sox2 axis and increased tumorigenecity. Correlating with these findings, there was a significant correlation between the expression of active β-catenin and MYC in ALK + ALCL primary tumor cells. CONCLUSIONS A positive feedback loop involving the Wnt/β-catenin/MYC/Sox2 axis defines a highly tumorigenic cell subset in ALK + ALCL.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Qian Wang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Jamie T. Lewis
- Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| | - Donna N. Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta Canada
- DynaLIFEDX Medical Laboratories, Edmonton, Alberta Canada
| |
Collapse
|
23
|
Linke F, Harenberg M, Nietert MM, Zaunig S, von Bonin F, Arlt A, Szczepanowski M, Weich HA, Lutz S, Dullin C, Janovská P, Krafčíková M, Trantírek L, Ovesná P, Klapper W, Beissbarth T, Alves F, Bryja V, Trümper L, Wilting J, Kube D. Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia 2016; 31:361-372. [DOI: 10.1038/leu.2016.232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
|
24
|
Emruli VK, Olsson R, Ek F, Ek S. Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma. BMC Cancer 2016; 16:493. [PMID: 27430213 PMCID: PMC4949756 DOI: 10.1186/s12885-016-2550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/β-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation. Methods An inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H+-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry. Results We show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines. Conclusions We show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2550-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venera Kuci Emruli
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 8, 223 87, Lund, Sweden
| | - Roger Olsson
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Fredrik Ek
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 8, 223 87, Lund, Sweden.
| |
Collapse
|
25
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Aly RM, Yousef AB. Prognostic significance of lymphoid enhancer-binding factor-1 expression in egyptian adult B-acute lymphocytic leukemia patients. Turk J Haematol 2015; 32:15-20. [PMID: 25805670 PMCID: PMC4439902 DOI: 10.4274/tjh.2013.0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Lymphoid enhancer-binding factor-1 (LEF-1) is a key transcription factor of wingless-type (Wnt) signaling in various tumors and it is associated with a number of malignant diseases such as leukemia. We explored the expression profile of LEF-1 in acute lymphoblastic leukemia (ALL) and determined its specific prognostic significance in this disease. Materials and Methods: We studied LEF-1 expression in 56 newly diagnosed B-acute ALL adult patients using real-time quantitative polymerase chain reaction to investigate whether LEF-1 expression was associated with clinical patient characteristics and treatment outcomes. Results: High LEF-1 expression was associated with significantly poorer disease-free survival (p=0.03) and overall survival (p=0.005). Patients with high LEF-1 expression had a significantly higher relapse rate compared with low LEF-1 expression (p=0.01). Conclusion: We provide evidence that high LEF-1 expression is a prognostic marker in adult B-acute ALL patients.
Collapse
Affiliation(s)
- Rabab M Aly
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt. E-mail:
| | | |
Collapse
|
27
|
Wu C, Molavi O, Zhang H, Gupta N, Alshareef A, Bone KM, Gopal K, Wu F, Lewis JT, Douglas DN, Kneteman NM, Lai R. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma. Blood 2015; 126:336-45. [PMID: 25921060 DOI: 10.1182/blood-2014-10-603738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Cell Transformation, Neoplastic
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Interferon-gamma
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- Mice, SCID
- Phosphorylation
- Proteasome Endopeptidase Complex/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Ubiquitin/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Ommoleila Molavi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, East Azerbaijan Province, Iran
| | - Haifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Kathleen M Bone
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada; and DynaLIFE Dx Medical Laboratories, Edmonton, AB, Canada
| |
Collapse
|
28
|
Mathur R, Sehgal L, Braun FK, Berkova Z, Romaguerra J, Wang M, Rodriguez MA, Fayad L, Neelapu SS, Samaniego F. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol 2015; 8:63. [PMID: 26048374 PMCID: PMC4460883 DOI: 10.1186/s13045-015-0161-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is an aggressive and incurable form of non-Hodgkin's lymphoma. Despite initial intense chemotherapy, up to 50% of cases of MCL relapse often in a chemoresistant form. We hypothesized that the recently identified MCL-initiating cells (MCL-ICs) are the main reason for relapse and chemoresistance of MCL. Cancer stem cell-related pathways such as Wnt could be responsible for their maintenance and survival. METHODS We isolated MCL-ICs from primary MCL cells on the basis of a defined marker expression pattern (CD34-CD3-CD45+CD19-) and investigated Wnt pathway expression. We also tested the potential of Wnt pathway inhibitors in elimination of MCL-ICs. RESULTS We showed that MCL-ICs are resistant to genotoxic agents vincristine, doxorubicin, and the newly approved Burton tyrosine kinase (BTK) inhibitor ibrutinib. We confirmed the differential up-regulation of Wnt pathway in MCL-ICs. Indeed, MCL-ICs were particularly sensitive to Wnt pathway inhibitors. Targeting β-catenin-TCF4 interaction with CCT036477, iCRT14, or PKF118-310 preferentially eliminated the MCL-ICs. CONCLUSIONS Our results suggest that Wnt signaling is critical for the maintenance and survival of MCL-ICs, and effective MCL therapy should aim to eliminate MCL-ICs through Wnt signaling inhibitors.
Collapse
Affiliation(s)
- Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Frank K Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Jorge Romaguerra
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - M Alma Rodriguez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Ashihara E, Takada T, Maekawa T. Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Sci 2015; 106:665-671. [PMID: 25788321 PMCID: PMC4471797 DOI: 10.1111/cas.12655] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
The canonical Wnt/β-catenin pathway plays an important role in different developmental processes through the regulation of stem cell functions. In the activation of the canonical Wnt/β-catenin pathway, β-catenin protein is imported into the nucleus and activates transcription of target genes including cyclin D1 and c-myc. Aberrant activation of the Wnt/β-catenin pathway contributes to carcinogenesis and malignant behaviors, and Wnt signaling is essential for the maintenance of cancer stem cells. The canonical Wnt/β-catenin pathway has been investigated extensively as a target in cancer treatment and several specific inhibitors of this signaling pathway have been identified through high-throughput screening. In this review, the significance of the canonical Wnt/β-catenin pathway in hematological carcinogenesis and screening methods for specific inhibitors are discussed.
Collapse
Affiliation(s)
- Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuya Takada
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
30
|
Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, Goldfarb D, Graham DM, Yan F, Deal AM, Fedoriw Y, Richards KL, Davis IJ, Weidinger G, Damania B, Major MB. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal 2015; 8:ra12. [PMID: 25650440 DOI: 10.1126/scisignal.2005654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.
Collapse
Affiliation(s)
- Matthew P Walker
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Charles M Stopford
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Maria Cederlund
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fang Fang
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Christopher Jahn
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alex D Rabinowitz
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, USA
| | - David M Graham
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Allison M Deal
- UNC Lineberger Comprehensive Cancer Center Biostatistics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kristy L Richards
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Ian J Davis
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Blossom Damania
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA. Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA.
| |
Collapse
|
31
|
Walker MP, Major MB, VanHook AM. Science Signaling
Podcast: 3 February 2015. Sci Signal 2015. [DOI: 10.1126/scisignal.aaa7112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wnt signaling inhibitors could be used to treat a common type of lymphoma.
Collapse
Affiliation(s)
- Matthew P. Walker
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|
32
|
Zhang Y, Wang CP, Ding XX, Wang N, Ma F, Jiang JH, Wang QD, Chang JB. FNC, a Novel Nucleoside Analogue, Blocks Invasion of Aggressive Non-Hodgkin Lymphoma Cell Lines Via Inhibition of the Wnt/β-Catenin Signaling Pathway. Asian Pac J Cancer Prev 2014; 15:6829-35. [DOI: 10.7314/apjcp.2014.15.16.6829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Xu N, Zhou WJ, Wang Y, Huang SH, Li X, Chen ZY. Hippocampal Wnt3a is Necessary and Sufficient for Contextual Fear Memory Acquisition and Consolidation. Cereb Cortex 2014; 25:4062-75. [PMID: 24904070 DOI: 10.1093/cercor/bhu121] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays critical roles in development. However, to date, the role of Wnts in learning and memory in adults is still not well understood. Here, we aimed to investigate the roles and mechanisms of Wnts in hippocampal-dependent contextual fear conditioning (CFC) memory formation in adult mice. CFC training induced the secretion and expression of Wnt3a and the activation of its downstream Wnt/Ca(2+) and Wnt/β-catenin signaling pathways in the dorsal hippocampus (DH). Intrahippocampal infusion of Wnt3a antibody impaired CFC acquisition and consolidation, but not expression. Using the Wnt antagonist sFRP1 or the canonical Wnt inhibitor Dkk1, we found that Wnt/Ca(2+) and Wnt/β-catenin signaling pathways were involved in acquisition and consolidation, respectively. Moreover, we found Wnt3a signaling is not only necessary but also sufficient for CFC memory. Intrahippocampal infusion of exogenous Wnt3a could enhance acquisition and consolidation of CFC. Overexpression of constitutively active β-catenin in the DH could rescue the deficit in CFC memory consolidation, but not acquisition induced by Wnt3a antibody injection, which suggests β-catenin signaling pathway acts downstream of Wnt3a to mediate CFC memory consolidation. Our study may help further the understanding of the precise regulation of Wnt3a in differential memory phases depending on divergent signaling pathways.
Collapse
Affiliation(s)
- Ning Xu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wen-Juan Zhou
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yue Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shu-Hong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xian Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
34
|
Wishart TM, Mutsaers CA, Riessland M, Reimer MM, Hunter G, Hannam ML, Eaton SL, Fuller HR, Roche SL, Somers E, Morse R, Young PJ, Lamont DJ, Hammerschmidt M, Joshi A, Hohenstein P, Morris GE, Parson SH, Skehel PA, Becker T, Robinson IM, Becker CG, Wirth B, Gillingwater TH. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014; 124:1821-34. [PMID: 24590288 PMCID: PMC3973095 DOI: 10.1172/jci71318] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023] Open
Abstract
The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of Uba1 mRNA splicing was observed in the spinal cords of SMA mice exhibiting disease symptoms. Pharmacological or genetic suppression of UBA1 was sufficient to recapitulate an SMA-like neuromuscular pathology in zebrafish, suggesting that UBA1 directly contributes to disease pathogenesis. Dysregulation of UBA1 and subsequent ubiquitination pathways led to β-catenin accumulation, and pharmacological inhibition of β-catenin robustly ameliorated neuromuscular pathology in zebrafish, Drosophila, and mouse models of SMA. UBA1-associated disruption of β-catenin was restricted to the neuromuscular system in SMA mice; therefore, pharmacological inhibition of β-catenin in these animals failed to prevent systemic pathology in peripheral tissues and organs, indicating fundamental molecular differences between neuromuscular and systemic SMA pathology. Our data indicate that SMA-associated reduction of UBA1 contributes to neuromuscular pathogenesis through disruption of ubiquitin homeostasis and subsequent β-catenin signaling, highlighting ubiquitin homeostasis and β-catenin as potential therapeutic targets for SMA.
Collapse
Affiliation(s)
- Thomas M. Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Chantal A. Mutsaers
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Markus Riessland
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Michell M. Reimer
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Gillian Hunter
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Marie L. Hannam
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Samantha L. Eaton
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Heidi R. Fuller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Sarah L. Roche
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Eilidh Somers
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert Morse
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Philip J. Young
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Douglas J. Lamont
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Matthias Hammerschmidt
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Anagha Joshi
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Peter Hohenstein
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Glenn E. Morris
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Simon H. Parson
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul A. Skehel
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas Becker
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Iain M. Robinson
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Catherina G. Becker
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Brunhilde Wirth
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom.
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
Peninsula College of Medicine and Dentistry (Universities of Exeter and Plymouth), John Bull Building, Research Way, Tamar Science Park, Plymouth, United Kingdom.
Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, and Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom.
Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom.
Fingerprints Proteomics Facility, Dundee University, Dundee, United Kingdom.
Institute of Developmental Biology, University of Cologne, Cologne, Germany.
Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
35
|
Kuo PY, Leshchenko VV, Fazzari MJ, Perumal D, Gellen T, He T, Iqbal J, Baumgartner-Wennerholm S, Nygren L, Zhang F, Zhang W, Suh KS, Goy A, Yang DT, Chan WC, Kahl BS, Verma AK, Gascoyne RD, Kimby E, Sander B, Ye BH, Melnick AM, Parekh S. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma. Oncogene 2014; 34:1231-40. [PMID: 24681958 DOI: 10.1038/onc.2014.44] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 12/18/2022]
Abstract
Sex determining region Y-box 11 (SOX11) expression is specific for mantle cell lymphoma (MCL) as compared with other non-Hodgkin's lymphomas. However, the function and direct-binding targets of SOX11 in MCL are largely unknown. We used high-resolution chromatin immunoprecipitation sequencing to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11-target genes. Quantitative chromatin immunoprecipitation sequencing and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency. Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11-target genes may help explain the impact of SOX11 expression on patient outcomes.
Collapse
Affiliation(s)
- P-Y Kuo
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V V Leshchenko
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M J Fazzari
- 1] Department of Population Health, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA [2] Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - D Perumal
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Gellen
- Albert Einstein Cancer Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - T He
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Baumgartner-Wennerholm
- Department of Medicine, Center for Haematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - L Nygren
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - F Zhang
- Bioinformatics Laboratory, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Zhang
- Bioinformatics Laboratory, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K S Suh
- Genomics and Biomarkers Program, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - A Goy
- Genomics and Biomarkers Program, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - D T Yang
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - W-C Chan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - B S Kahl
- Department of Medicine, School of Medicine and Public Health, and The UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A K Verma
- Albert Einstein Cancer Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - R D Gascoyne
- Department of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - E Kimby
- Department of Medicine, Center for Haematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - B H Ye
- Department of Cell Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - A M Melnick
- 1] Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA [2] Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - S Parekh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Coscio A, Chang DW, Roth JA, Ye Y, Gu J, Yang P, Wu X. Genetic variants of the Wnt signaling pathway as predictors of recurrence and survival in early-stage non-small cell lung cancer patients. Carcinogenesis 2014; 35:1284-91. [PMID: 24517998 DOI: 10.1093/carcin/bgu034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early-stage non-small cell lung cancer (NSCLC) is potentially curative. Nevertheless, many patients will show disease recurrence after curative treatment. The Wnt signaling pathway is a developmental and stem cell pathway that plays an important role in tumorigenesis and may affect cancer progression. We hypothesize that genetic variants of the Wnt pathway may influence clinical outcome in early-stage NSCLC patients. We genotyped 441 functional and tagging single nucleotide polymorphisms (SNPs) from 54 genes of the Wnt pathway in 535 early-stage NSCLC patients treated with curative intent therapy including surgery and chemotherapy. For validation, 4 top SNPs were genotyped in 301 early-stage NSCLC patients from the Mayo Clinic. Cox proportional hazard model and combined SNP analyses were performed to identify significant SNPs correlated with recurrence-free and overall survival. Results from discovery group showed a total of 40 SNPs in 20 genes correlated with disease recurrence (P < 0.05). After correction for multiple comparisons, rs2536182 near Wnt16 remained significant (q < 0.1), which was validated in the replication population. Thirty-nine SNPs in 16 genes correlated with overall survival (P < 0.05) in the discovery group, and seven remained significant after multiple comparisons were considered (q < 0.1). In patients receiving surgery-only treatment, rs10898563 of FZD4 gene was associated with both recurrence-free and overall survival. Joint SNP analyses identified predictive markers for recurrence stratified by treatment. Our findings suggest inherited genetic variation in the Wnt signaling pathway may contribute to variable clinical outcomes for patients with early-stage NSCLC.
Collapse
Affiliation(s)
- Angela Coscio
- Departments of General Oncology, Epidemiology and Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Jack A Roth
- Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and
| | | | | | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
37
|
Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, Roué G, Postigo A. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ 2013; 21:247-57. [PMID: 24013721 DOI: 10.1038/cdd.2013.123] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a poor response to treatment and prognosis. Constitutive activation of different signaling pathways in subsets of MCLs, through genetic and/or nongenetic alterations, endows tumor cells with enhanced proliferation and reduced apoptosis. The canonical Wnt pathway (β-catenin/TCF-LEF), implicated in the pathogenesis of numerous cancers, is constitutively active in half of MCLs. Here, we show that ZEB1, a transcription factor better known for promoting metastasis in carcinomas, is expressed in primary MCLs with active Wnt signaling. ZEB1 expression in MCL cells depends on Wnt, being downregulated by β-catenin knockdown or blocking of Wnt signaling by salinomycin. Knockdown of ZEB1 reduces in vitro cell viability and proliferation in MCL cells, and, importantly, tumor growth in mouse xenograft models. ZEB1 activates proliferation-associated (HMGB2, UHRF1, CENPF, MYC, MKI67, and CCND1) and anti-apoptotic (MCL1, BCL2, and BIRC5) genes and inhibits pro-apoptotic ones (TP53, BBC3, PMAIP1, and BAX). We show that ZEB1 expression in MCL cells determines differential resistance to chemotherapy drugs and regulates transporters involved in drug influx/efflux. Downregulation of ZEB1 by salinomycin increases the sensitivity of MCL cells to the cytotoxic effect of doxorubicin, cytarabine and gemcitabine. Lastly, salinomycin and doxorubicin display a synergistic effect in established and primary MCL cells. These results identify ZEB1 in MCL where it promotes cell proliferation, enhanced tumor growth and a differential response to chemotherapy drugs. ZEB1 could thus potentially become a predictive biomarker and therapeutic target in this lymphoma.
Collapse
Affiliation(s)
- E Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain
| | - L Fanlo
- 1] Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain [2] Master Program in Biomedical Research, University Pompeu Fabra, Barcelona 08002, Spain
| | - L Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain
| | - S Montes-Moreno
- Department of Pathology and Group of Cancer Genomics, Hospital Marques de Valdecilla, IFIMAV, Santander 39008, Spain
| | - A Moros
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - G Chiva-Blanch
- 1] Department of Internal Medicine, Hospital Clinic, Barcelona 08036, Spain [2] CIBERobn, ISCIII, Santiago de Compostela 15706, Spain
| | - R Estruch
- 1] Department of Internal Medicine, Hospital Clinic, Barcelona 08036, Spain [2] CIBERobn, ISCIII, Santiago de Compostela 15706, Spain
| | - A Martinez
- Department of Pathology, Hospital Clinic, Barcelona 08036, Spain
| | - D Colomer
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - B Győrffy
- Research Lab for Pediatrics and Nephrology, Hungarian Academy of Sciences, Semmelweis University, 1st Department of Pediatrics, Budapest 1083, Hungary
| | - G Roué
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - A Postigo
- 1] Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain [2] James Graham Brown Cancer Center, Louisville, KY 40202, USA [3] ICREA, Barcelona 08010, Spain
| |
Collapse
|
38
|
Zhao X, Zhang W, Wang L, Zhao WL. Genetic methylation and lymphoid malignancies: biomarkers of tumor progression and targeted therapy. Biomark Res 2013; 1:24. [PMID: 24252620 PMCID: PMC4101819 DOI: 10.1186/2050-7771-1-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/06/2013] [Indexed: 11/20/2022] Open
Abstract
Lymphoid malignancies, mainly including lymphocytic leukemia and lymphoma, are a group of heterogeneous diseases. Although the clinical outcome of patients has been significantly improved with current immuno-chemotherapy, definitive biomarkers remain to be investigated, particularly those reflecting the malignant behavior of tumor cells and those helpful for developing optimal targeted therapy. Recently, genome-wide analysis reveals that altered genetic methylations play an important role in tumor progression through regulation of multiple cellular transduction pathways. This review describes the pathogenetic effect of the aberrant genetic methylation in lymphoid malignancies, with special emphasis on potential therapeutic strategies targeting key signaling networks.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| | | | | | | |
Collapse
|
39
|
Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A, Niino D, Sugita Y, Okamura T, Doi A, Yasuda K, Tashiro K, Kuhara S, Ohshima K. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: Gene expression analysis. Int J Oncol 2013; 43:457-68. [PMID: 23760751 DOI: 10.3892/ijo.2013.1982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
For an accurate understanding of mantle cell lymphoma (MCL), molecular behavior could be staged into two major events: lymphomagenesis with the t(11;14) translocation (initiation), and evolution into a more aggressive form (transformation). Unfortunately, it is still unknown which genes contribute to each event. In this study, we performed cDNA microarray experiments designed based on the concept that morphologically heterogeneous MCL samples would provide insights into the role of aberrant gene expression for both events. A total of 15 MCLs were collected from the files, which include a total of 237 MCL patients confirmed by histology as CCND1-positive. We posited four stepwise morphological grades for MCL: MCL in situ, MCL with classical form (cMCL), MCL with aggressive form (aMCL), and MCL with intermediate morphology between classical and aggressive forms at the same site (iMCL). To identify genes involved in initiation, we compared the tumor cells of MCL in situ (n=4) with normal mantle zone B lymphocytes (n=4), which were selected by laser microdissection (LMD). To identify genes contributing to transformation, we selected the overlapping genes differentially expressed between both cMCL (n=4) vs. aMCL (n=5) and classical vs. aggressive areas in iMCL (n=2) obtained by LMD. A significant number of genes (n=23, p=0.016) belonging to the Wnt signaling pathway were differentially expressed in initiation. This specific activation was confirmed by immuno-histochemistry, as MCL in situ had nuclear localization of phosphorylated-β-catenin with high levels of cytoplasmic Wnt3 staining. For transformation, identified 60 overlapping genes included a number of members of the p53 interaction network (CDC2, BIRC5 and FOXM1), which is known to mediate cell cycle progression during the G2/M transition. Thus, we observe that the Wnt signaling pathway may play an important role in initial lymphomagenesis in addition to t(11;14) translocations, and that specific mitotic regulators facilitate transformation into more aggressive forms.
Collapse
Affiliation(s)
- Yoshizo Kimura
- Department of Pathology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Adult T-cell leukemia/lymphoma (ATL) is etiologically linked to infection with the human T-cell leukemia/lymphoma virus type 1 (HTLV-I). ATL is classified into 4 distinct clinical diseases: acute, lymphoma, chronic, and smoldering. Acute ATL is the most aggressive form, representing 60% of cases and has a 4-year survival of < 5%. A frequent complication and cause of death in acute ATL patients is the presence of lytic bone lesions and hypercalcemia. We analyzed the Wnt/β-catenin pathway because of its common role in cancer and bone remodeling. Our study demonstrated that ATL cells do not express high levels of β-catenin but displayed high levels of LEF-1/TCF genes along with elevated levels of β-catenin (LEF-1/TCF target genes) responsive genes. By profiling Wnt gene expression, we discovered that ATL patient leukemia cells shifted expression toward the noncanonical Wnt pathway. Interestingly, ATL cells overexpressed the osteolytic-associated genes-Wnt5a, PTHLH, and RANKL. We further show that Wnt5a secreted by ATL cells favors osteoclast differentiation and expression of RANK. Our results suggest that Wnt5a is a major contributing factor to the increase in osteolytic bone lesions and hypercalcemia found in ATL patients. Anti-Wnt5a therapy may prevent or reduce osteolytic lesions found in ATL patients and improve therapy outcome.
Collapse
|
41
|
Armanious H, Gelebart P, Anand M, Lai R. Identification of a novel crosstalk between casein kinase 2α and NPM-ALK in ALK-positive anaplastic large cell lymphoma. Cell Signal 2013; 25:381-8. [DOI: 10.1016/j.cellsig.2012.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/16/2022]
|
42
|
Walther N, Ulrich A, Vockerodt M, von Bonin F, Klapper W, Meyer K, Eberth S, Pukrop T, Spang R, Trümper L, Kube D. Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt's lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1092-8. [PMID: 23375451 DOI: 10.1016/j.ajpath.2012.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Burkitt's lymphoma (BL) is a highly malignant, aggressive non-Hodgkin's lymphoma derived from germinal center B cells. Recently, global gene expression profiling of patient samples led to a molecular definition of BL with lymphocyte enhancer-binding factor 1 (LEF1) as a signature gene. Herein, we report the expression of nucleic LEF1 in 15 of 18 patients with BL and the identification of LEF1 target genes. Germinal center B cells were devoid of detectable nuclear LEF1 expression, as were mantle cell lymphoma (0 of 5), marginal zone lymphoma (0 of 6), follicular lymphoma (0 of 12), and diffuse large B-cell lymphoma (1 of 31). Whole-genome gene expression profiling after transient knockdown of LEF1 in BL cell lines identified new LEF1 target genes; these LEF1 targets are enriched with genes associated with cancers. The expression of LEF1 and LEF1-regulated genes in primary BL suggests that LEF1 is not only aberrantly expressed but also transcriptionally active. This study supports a functionally important role for LEF1 and its target genes in BLs.
Collapse
Affiliation(s)
- Neele Walther
- Department of Hematology and Oncology, University Medical Centre of the Georg-August University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, Gong Y, Cai Z, Sun X. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett 2013; 333:9-17. [PMID: 23333798 DOI: 10.1016/j.canlet.2012.11.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 12/14/2022]
Abstract
Leukemia cells are protected by various components of their microenvironment, including marrow stromal cells (MSCs). To understand the molecular mechanisms underlying this protection, we cultured acute lymphoblastic leukemia (ALL) cells with MSCs and studied the effect of the latter on the molecular profiling of ALL cells at the mRNA and protein levels. Our results indicated that activated Wnt signaling in ALL cells is involved in MSC-mediated drug resistance. Blocking the Wnt pathway sensitized the leukemia cells to chemotherapy and improved overall survival in a mouse model. Targeting the Wnt pathway may be an innovative approach to the treatment of ALL.
Collapse
Affiliation(s)
- Yang Yang
- Department of Bone Marrow Transplant Center, First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seke Etet PF, Vecchio L, Bogne Kamga P, Nchiwan Nukenine E, Krampera M, Nwabo Kamdje AH. Normal hematopoiesis and hematologic malignancies: role of canonical Wnt signaling pathway and stromal microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1835:1-10. [PMID: 22982245 DOI: 10.1016/j.bbcan.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Wnts are a family of evolutionary-conserved secreted signaling molecules critically involved in a variety of developmental processes and in cell fate determination. A growing body of evidence suggests that Wnt signaling plays a crucial role in the influence of bone marrow stromal microenvironment on the balance between hematopoietic stem cell self-renewal and differentiation. Emerging clinical and experimental evidence also indicates Wnt signaling involvement in the disruption of the latter balance in hematologic malignancies, where the stromal microenvironment favors the homing of cancer cells to the bone marrow, as well as leukemia stem cell development and chemoresistance. In the present review, we summarize and discuss the role of the canonical Wnt signaling pathway in normal hematopoiesis and hematologic malignancies, with regard to recent findings on the stromal microenvironment involvement in these process and diseases.
Collapse
Affiliation(s)
- Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 Al-Qaseem, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
45
|
James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, Major MB, Camp ND, Fowler K, Martins TJ, Moon RT. WIKI4, a novel inhibitor of tankyrase and Wnt/ß-catenin signaling. PLoS One 2012; 7:e50457. [PMID: 23227175 PMCID: PMC3515623 DOI: 10.1371/journal.pone.0050457] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/22/2012] [Indexed: 12/21/2022] Open
Abstract
The Wnt/ß-catenin signaling pathway controls important cellular events during development and often contributes to disease when dysregulated. Using high throughput screening we have identified a new small molecule inhibitor of Wnt/ß-catenin signaling, WIKI4. WIKI4 inhibits expression of ß-catenin target genes and cellular responses to Wnt/ß-catenin signaling in cancer cell lines as well as in human embryonic stem cells. Furthermore, we demonstrate that WIKI4 mediates its effects on Wnt/ß-catenin signaling by inhibiting the enzymatic activity of TNKS2, a regulator of AXIN ubiquitylation and degradation. While TNKS has previously been shown to be the target of small molecule inhibitors of Wnt/ß-catenin signaling, WIKI4 is structurally distinct from previously identified TNKS inhibitors.
Collapse
Affiliation(s)
- Richard G. James
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kathryn C. Davidson
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Katherine A. Bosch
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Travis L. Biechele
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicholas C. Robin
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Russell J. Taylor
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael B. Major
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Nathan D. Camp
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kerry Fowler
- KWF Consulting, Seattle, Washington, United States of America
| | - Timothy J. Martins
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Quellos High Throughput Screening Core, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Randall T. Moon
- Department of Pharmacology, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, Krus U, Taneera J, Blom AM, Lyssenko V, Esguerra JLS, Hansson O, Eliasson L, Derry J, Zhang E, Wollheim CB, Groop L, Renström E, Rosengren AH. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 2012; 16:625-33. [PMID: 23140642 DOI: 10.1016/j.cmet.2012.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/10/2012] [Accepted: 10/22/2012] [Indexed: 12/12/2022]
Abstract
A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1β. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.
Collapse
Affiliation(s)
- Taman Mahdi
- Lund University Diabetes Centre, Lund University, 20502 Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT, Yu CP. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway. PLoS One 2012; 7:e47649. [PMID: 23094073 PMCID: PMC3477117 DOI: 10.1371/journal.pone.0047649] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD) patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dah-Shyong Yu
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Lin Wu
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ping Huang
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsin Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
48
|
Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122:3416-23. [PMID: 23023712 DOI: 10.1172/jci61272] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mantle cell lymphoma is a B cell malignancy in which constitutive dysregulation of cyclin D1 and the cell cycle, disruption of DNA damage response pathways, and activation of cell survival mechanisms contribute to oncogenesis. A small number of tumors lack cyclin D1 overexpression, suggesting that its dysregulation is always not required for tumor initiation. Some cases have hypermutated IGHV and stable karyotypes, a predominant nonnodal disease, and an indolent clinical evolution, which suggests that they may correspond to distinct subtypes of the disease. In this review, we discuss the molecular pathways that contribute to pathogenesis, and how improved understanding of these molecular mechanisms offers new perspectives for the treatment of patients.
Collapse
Affiliation(s)
- Pedro Jares
- Hematopathology Section, Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
49
|
Disheveled proteins promote cell growth and tumorigenicity in ALK-positive anaplastic large cell lymphoma. Cell Signal 2012; 25:295-307. [PMID: 23022960 DOI: 10.1016/j.cellsig.2012.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 01/21/2023]
Abstract
Our previous oligonucleotide array studies revealed that ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL) express high levels of the disheveled proteins (Dvls), a family of proteins that is integral to the Wnt signaling pathways. In this study, we assessed whether the Dvls are important in the pathogenesis of ALK(+)ALCL. By Western blotting, Dvl-2 and Dvl-3 were found to be highly expressed in ALK(+)ALCL cell lines and patient samples. The higher molecular weight forms, consistent with phosphorylated/active Dvl proteins, were observed in these lysates. siRNA knock-down of Dvls did not affect the Wnt canonical pathway, as assessed by the β-catenin protein levels and nuclear localization. In contrast, the same treatment led to changes in the transcriptional activity of NFAT and the phosphorylation status of Src, both of which are known to be regulated by the Wnt non-canonical signaling pathways in other cell types. Coupled with these biochemical changes, there was a significant decrease in cell growth and soft agar colony formation. NPM-ALK, the oncogenic tyrosine kinase characteristic of ALK(+)ALCL, was found to bind to the Dvls and enhance their tyrosine phosphorylation. In conclusion, our data suggest that the Dvls contribute to the pathogenesis of ALK(+)ALCL via signaling in the Wnt non-canonical pathways. To our knowledge, this is the first report demonstrating a physical and functional interaction between the Dvls and an oncogenic tyrosine kinase.
Collapse
|
50
|
Aberrant expression and biological significance of Sox2, an embryonic stem cell transcriptional factor, in ALK-positive anaplastic large cell lymphoma. Blood Cancer J 2012; 2:e82. [PMID: 22885405 PMCID: PMC3432482 DOI: 10.1038/bcj.2012.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sox2 (sex-determining region Y-Box) is one of the master transcriptional factors that are important in maintaining the pluripotency of embryonic stem cells (ESCs). In line with this function, Sox2 expression is largely restricted to ESCs and somatic stem cells. We report that Sox2 is expressed in cell lines and tumor samples derived from ALK-positive anaplastic large cell lymphoma (ALK+ALCL), for which the normal cellular counterpart is believed to be mature T-cells. The expression of Sox2 in ALK+ALCL can be attributed to nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the oncogenic fusion protein carrying a central pathogenetic role in these tumors. By confocal microscopy, Sox2 protein was detectable in virtually all cells in ALK+ALCL cell lines. However, the transcriptional activity of Sox2, as assessed using a Sox2-responsive reporter construct, was detectable only in a small proportion of cells. Importantly, downregulation of Sox2 using short interfering RNA in isolated Sox2active cells, but not Sox2inactive cells, resulted in a significant decrease in cell growth, invasiveness and tumorigenicity. To conclude, ALK+ALCL represents the first example of a hematologic malignancy that aberrantly expresses Sox2, which represents a novel mechanism by which NPM-ALK mediates tumorigenesis. We also found that the transcriptional activity and oncogenic effects of Sox2 can be heterogeneous in cancer cells.
Collapse
|