1
|
Sun X, Liu W, Zhu C, Wang Z, Deng H, Liao Q, Xiao W, Liu X. Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:167-179. [PMID: 40073266 DOI: 10.1093/jimmun/vkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/05/2024] [Indexed: 03/14/2025]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation. However, due to the lack of a viable animal model, the physiological role and underlying mechanism of VHL in antiviral immunity remains to be elucidated. In this study, we found that heterozygous vhl-deficient zebrafish have normal neutrophils and no gross phenotypic alterations. However, upon spring viremia of carp virus or grass carp reovirus infection, antiviral gene expression is induced in vhl+/- zebrafish compared with wild-type zebrafish. In addition, spring viremia of carp virus replication is suppressed in vhl+/- zebrafish, owing to the enhancement of antiviral ability. Furthermore, by crossing with mavs-/- zebrafish line, we observed that disruption of mavs in vhl+/- zebrafish abrogates the viral resistance exhibited in vhl+/- zebrafish. Thus, we reveal that heterozygous vhl deficiency enhances the antiviral ability of zebrafish against RNA virus infection, and we provide genetic evidence to support that zebrafish mavs serves as a mediator for the suppressive role of vhl in antiviral innate immunity.
Collapse
Affiliation(s)
- Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
2
|
Wang H, Siren J, Perttunen S, Immonen K, Chen Y, Narumanchi S, Kosonen R, Paavola J, Laine M, Tikkanen I, Lakkisto P. Deficiency of heme oxygenase 1a causes detrimental effects on cardiac function. J Cell Mol Med 2024; 28:e18243. [PMID: 38509740 PMCID: PMC10955162 DOI: 10.1111/jcmm.18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Juuso Siren
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Yu‐Chia Chen
- Department of AnatomyUniversity of HelsinkiHelsinkiFinland
| | | | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Jere Paavola
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mika Laine
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Abdominal Centre NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Clinical ChemistryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
3
|
Zhang R, Ma Z, Wang J, Fan C. HIF signaling overactivation inhibits lateral line neuromast development through Wnt in zebrafish. Gene 2024; 898:148077. [PMID: 38097093 DOI: 10.1016/j.gene.2023.148077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The lateral line is critical for prey detection, predator avoidance, schooling, and rheotaxis behavior in fish. As similar to hair cells in the mammalian inner ear, the lateral line sensory organ called neuromasts is a popular model for hair cell regeneration. However, the mechanism of lateral line development has not been fully understood. In this study, we showed for the first time that hypoxia-inducible factor (HIF) signaling is involved in lateral line development in zebrafish. hif1ab and epas1b were highly expressed in neuromasts during lateral line development. Hypoxia response induced by a prolyl hydroxylase domain-containing proteins (PHD) inhibitor treatment or vhl gene knockout significantly reduced hair cells and support cells in neuromast during lateral line development. In addition, inhibition of Hif-1α or Epas1 could partially rescue hair cells in the larvae with increased HIF activity, respectively. Moreover, the support cell proliferation and the expression of Wnt target genes decreased in vhl mutants which suggests that Wnt signaling mediated the role of HIF signaling in lateral line development. Collectively, our results demonstrate that HIF signaling overactivation inhibits lateral line development in zebrafish and suggest that inhibition of HIF signaling might be a potential therapeutic method for hair cell death.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ziyue Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
4
|
Liao Q, Deng H, Wang Z, Yu G, Zhu C, Jia S, Liu W, Bai Y, Sun X, Chen X, Xiao W, Liu X. Deletion of prolyl hydroxylase domain-containing enzyme 3 (phd3) in zebrafish facilitates hypoxia tolerance. J Biol Chem 2023; 299:105420. [PMID: 37923141 PMCID: PMC10724695 DOI: 10.1016/j.jbc.2023.105420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Prolyl hydroxylase domain (PHD)-containing enzyme 3 (PHD3) belongs to the Caenorhabditis elegans gene egl-9 family of prolyl hydroxylases. PHD3 catalyzes proline hydroxylation of hypoxia-inducible factor α (HIF-α) and promotes HIF-α proteasomal degradation through coordination with the pVHL complex under normoxic conditions. However, the relationship between PHD3 and the hypoxic response is not well understood. In this study, we used quantitative real-time PCR assay and O-dianisidine staining to characterize the hypoxic response in zebrafish deficient in phd3. We found that the hypoxia-responsive genes are upregulated and the number of erythrocytes was increased in phd3-null zebrafish compared with their wild-type siblings. On the other hand, we show overexpression of phd3 suppresses HIF-transcriptional activation. In addition, we demonstrate phd3 promotes polyubiquitination of zebrafish hif-1/2α proteins, leading to their proteasomal degradation. Finally, we found that compared with wild-type zebrafish, phd3-null zebrafish are more resistant to hypoxia treatment. Therefore, we conclude phd3 has a role in hypoxia tolerance. These results highlight the importance of modulation of the hypoxia signaling pathway by phd3 in hypoxia adaptation.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; College of Life Science, Wuhan University, Wuhan, P. R.China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Yao Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| |
Collapse
|
5
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
6
|
An Overview towards Zebrafish Larvae as a Model for Ocular Diseases. Int J Mol Sci 2023; 24:ijms24065387. [PMID: 36982479 PMCID: PMC10048880 DOI: 10.3390/ijms24065387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.
Collapse
|
7
|
Chen X, Wang M, Tang Y, Xie B, Nie X, Cai S. Von Hipple-Lindau disease complicated with central retinal vein occlusion: a case report. BMC Ophthalmol 2022; 22:440. [PMID: 36384467 PMCID: PMC9670504 DOI: 10.1186/s12886-022-02661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Central Retinal Vein Occlusion (CRVO) is a rare complication of von Hipple-Lindau (VHL) disease. This report presents the first case of VHL disease complicated with CRVO caused by VHL c.208G > A mutation. CASE PRESENTATION A 20 s man whose left eye visual acuity gradually declined for half a year. The visual acuity of the left eye is counting fingers. Fundus examination revealed that retinal hemangioblastoma was also found in addition to typical CRVO signs such as tortuous expansion of retinal veins and flame-shaped hemorrhage of the retina. Liver tumor, cerebral infarction and erythrocytosis were found during systemic examination, and the diagnosis of polycythemia was confirmed by bone marrow smear. Furthermore, both family history and genetic analysis indicated that the patient had VHL disease caused by VHL c.208G > A. In this patient, a large number of bone marrow erythrocytes proliferated due to VHL disease, which led to the increase of blood viscosity and erythrocyte vascular adhesion, resulting in the obstruction of central retinal vein blood flow, and finally CRVO. For CRVO and its pathogenic factor polycythemia, patient received laser retinal photocoagulation and phlebotomies. After a 1-year follow-up, the vision in the left eye improved to 0.2 logMAR. CONCLUSIONS This is a rare case of polycythemia complicated by CRVO in patient with VHL disease. It reminds us that the systemic disease factors should be fully considered in the diagnosis of young patients with CRVO, and that treatment requires a coordinated effort of physicians.
Collapse
Affiliation(s)
- Xingwang Chen
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi, 563000, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi, China
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Mengyao Wang
- Chongqing Aier General Hospital, Chongqing, China
| | - Yuan Tang
- Guiyang Aier Eye Hospital, Guiyang, China
| | - Bing Xie
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi, 563000, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi, China
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiaomei Nie
- Department of Ophthalmology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shanjun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi, 563000, Guizhou Province, China.
- Guizhou Eye Hospital, Zunyi, China.
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, China.
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Agarwala S, Kim KY, Phan S, Ju S, Kong YE, Castillon GA, Bushong EA, Ellisman MH, Tamplin OJ. Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy. eLife 2022; 11:e64835. [PMID: 35943143 PMCID: PMC9391045 DOI: 10.7554/elife.64835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here, we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.
Collapse
Affiliation(s)
- Sobhika Agarwala
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Keun-Young Kim
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Sebastien Phan
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Saeyeon Ju
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Ye Eun Kong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Guillaume A Castillon
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Eric A Bushong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Mark H Ellisman
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
- Department of Neurosciences, University of California at San Diego School of MedicineSan DiegoUnited States
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
9
|
Li P, Zhang J, Liu X, Gan L, Xie Y, Zhang H, Si J. The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Front Microbiol 2022; 13:903471. [PMID: 35722341 PMCID: PMC9201518 DOI: 10.3389/fmicb.2022.903471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota has become a topical issue in unraveling the research mechanisms underlying disease onset and progression. As an important and potential "organ," gut microbiota plays an important role in regulating intestinal epithelial cell differentiation, proliferation, metabolic function and immune response, angiogenesis and host growth. More recently, zebrafish models have been used to study the interactions between gut microbiota and hosts. It has several advantages, such as short reproductive cycle, low rearing cost, transparent larvae, high genomic similarity to humans, and easy construction of germ-free (GF) and transgenic zebrafish. In our review, we reviewed a large amount of data focusing on the close relationship between gut microbiota and host health. Moreover, we outlined the functions of gut microbiota in regulating intestinal epithelial cell differentiation, intestinal epithelial cell proliferation, metabolic function, and immune response. More, we summarized major factors that can influence the composition, abundance, and diversity of gut microbiota, which will help us to understand the significance of gut microbiota in regulating host biological functions and provide options for maintaining the balance of host health.
Collapse
Affiliation(s)
- Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
10
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
11
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|
12
|
Wu S, Chen K, Xu T, Ma K, Gao L, Fu C, Zhang W, Jing C, Ren C, Deng M, Chen Y, Zhou Y, Pan W, Jia X. Tpr Deficiency Disrupts Erythroid Maturation With Impaired Chromatin Condensation in Zebrafish Embryogenesis. Front Cell Dev Biol 2021; 9:709923. [PMID: 34722501 PMCID: PMC8548687 DOI: 10.3389/fcell.2021.709923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate erythropoiesis involves nuclear and chromatin condensation at the early stages of terminal differentiation, which is a unique process to distinguish mature erythrocytes from erythroblasts. However, the underlying mechanisms of chromatin condensation during erythrocyte maturation remain elusive. Here, we reported a novel zebrafish mutant cas7 with erythroid maturation deficiency. Positional cloning showed that a single base mutation in tprb gene, which encodes nucleoporin translocated promoter region (Tpr), is responsible for the disrupted erythroid maturation and upregulation of erythroid genes, including ae1-globin and be1-globin. Further investigation revealed that deficient erythropoiesis in tprb cas7 mutant was independent on HIF signaling pathway. The proportion of euchromatin was significantly increased, whereas the percentage of heterochromatin was markedly decreased in tprb cas7 mutant. In addition, TPR knockdown in human K562 cells also disrupted erythroid differentiation and dramatically elevated the expression of globin genes, which suggests that the functions of TPR in erythropoiesis are highly conserved in vertebrates. Taken together, this study revealed that Tpr played vital roles in chromatin condensation and gene regulation during erythroid maturation in vertebrates.
Collapse
Affiliation(s)
- Shuang Wu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Xu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Ke Ma
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Cong Fu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changbin Jing
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chunguang Ren
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Min Deng
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoe Jia
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
13
|
Mandic M, Joyce W, Perry SF. The evolutionary and physiological significance of the Hif pathway in teleost fishes. J Exp Biol 2021; 224:272213. [PMID: 34533194 DOI: 10.1242/jeb.231936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypoxia-inducible factor (HIF) pathway is a key regulator of cellular O2 homeostasis and an important orchestrator of the physiological responses to hypoxia (low O2) in vertebrates. Fish can be exposed to significant and frequent changes in environmental O2, and increases in Hif-α (the hypoxia-sensitive subunit of the transcription factor Hif) have been documented in a number of species as a result of a decrease in O2. Here, we discuss the impact of the Hif pathway on the hypoxic response and the contribution to hypoxia tolerance, particularly in fishes of the cyprinid lineage, which includes the zebrafish (Danio rerio). The cyprinids are of specific interest because, unlike in most other fishes, duplicated paralogs of the Hif-α isoforms arising from a teleost-specific genome duplication event have been retained. Positive selection has acted on the duplicated paralogs of the Hif-α isoforms in some cyprinid sub-families, pointing to adaptive evolutionary change in the paralogs. Thus, cyprinids are valuable models for exploring the evolutionary significance and physiological impact of the Hif pathway on the hypoxic response. Knockout in zebrafish of either paralog of Hif-1α greatly reduces hypoxia tolerance, indicating the importance of both paralogs to the hypoxic response. Here, with an emphasis on the cardiorespiratory system, we focus on the role of Hif-1α in the hypoxic ventilatory response and the regulation of cardiac function. We explore the effects of the duration of the hypoxic exposure (acute, sustained or intermittent) on the impact of Hif-1α on cardiorespiratory function and compare relevant data with those from mammalian systems.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, 2251 Meyer Hall, University of California Davis, Davis, CA 95616, USA
| | - William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5.,Department of Biology - Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
14
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
15
|
Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, Bebenek A, Holley SA, Crews CM. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem Biol 2021; 28:648-661.e5. [PMID: 33836141 DOI: 10.1016/j.chembiol.2021.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Many diseases, including cancer, stem from aberrant activation or overexpression of oncoproteins that are associated with multiple signaling pathways. Although proteins with catalytic activity can be successfully drugged, the majority of other protein families, such as transcription factors, remain intractable due to their lack of ligandable sites. In this study, we report the development of TRAnscription Factor TArgeting Chimeras (TRAFTACs) as a generalizable strategy for targeted transcription factor degradation. We show that TRAFTACs, which consist of a chimeric oligonucleotide that simultaneously binds to the transcription factor of interest (TOI) and to HaloTag-fused dCas9 protein, can induce degradation of the former via the proteasomal pathway. Application of TRAFTACs to two oncogenic TOIs, NF-κB and brachyury, suggests that TRAFTACs can be successfully employed for the targeted degradation of other DNA-binding proteins. Thus, TRAFTAC technology is potentially a generalizable strategy to induce degradation of other transcription factors both in vitro and in vivo.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael Burgess
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Dhanusha A Nalawansha
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Katherine Dai
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Zhenyi Hu
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Adrian Bebenek
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Scott A Holley
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
16
|
Abstract
Zebrafish are rapidly becoming a leading model organism for cancer research. The genetic pathways driving cancer are highly conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish genome to rapidly generate transgenic animals makes zebrafish an excellent model organism. Transgenic zebrafish containing complex, patient-relevant genotypes have been used to model many cancer types. Here we present a comprehensive review of transgenic zebrafish cancer models as a resource to the field and highlight important areas of cancer biology that have yet to be studied in the fish. The ability to image cancer cells and niche biology in an endogenous tumor makes zebrafish an indispensable model organism in which we can further understand the mechanisms that drive tumorigenesis and screen for potential new cancer therapies.
Collapse
Affiliation(s)
- Alicia M. McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haley R. Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Stem Cell and Regenerative Biology Department and Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02138, USA
| |
Collapse
|
17
|
Min J, Ningappa M, So J, Shin D, Sindhi R, Subramaniam S. Systems Analysis of Biliary Atresia Through Integration of High-Throughput Biological Data. Front Physiol 2020; 11:966. [PMID: 32848883 PMCID: PMC7426509 DOI: 10.3389/fphys.2020.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Biliary atresia (BA), blockage of the proper bile flow due to loss of extrahepatic bile ducts, is a rare, complex disease of the liver and the bile ducts with unknown etiology. Despite ongoing investigations to understand its complex pathogenesis, BA remains the most common cause of liver failure requiring liver transplantation in children. To elucidate underlying mechanisms, we analyzed the different types of high-throughput genomic and transcriptomic data collected from the blood and liver tissue samples of children suffering from BA. Through use of a novel integrative approach, we identified potential biomarkers and over-represented biological functions and pathways to derive a comprehensive network showing the dysfunctional mechanisms associated with BA. One of the pathways highlighted in the integrative network was hypoxia signaling. Perturbation with hypoxia inducible factor activator, dimethyloxalylglycine, induced the biliary defects of BA in a zebrafish model, serving as a validation for our studies. Our approach enables a systems-level understanding of human BA biology that is highlighted by the interaction between key biological functions such as fibrosis, inflammation, immunity, hypoxia, and development.
Collapse
Affiliation(s)
- Jun Min
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Departments of Cellular and Molecular Medicine and Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Ratnayake R, Gunasekera SP, Ma JJ, Dang LH, Carney TJ, Paul VJ, Luesch H. Dolastatin 15 from a Marine Cyanobacterium Suppresses HIF-1α Mediated Cancer Cell Viability and Vascularization. Chembiochem 2020; 21:2356-2366. [PMID: 32237262 PMCID: PMC7438311 DOI: 10.1002/cbic.202000180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Chemical investigation of a benthic marine cyanobacterium yielded the anticancer agent dolastatin 15, originally isolated from a mollusk. Dolastatin 15 is a microtubule-destabilizing agent with analogues undergoing clinical evaluation. Profiling against a panel of isogenic HCT116 colorectal cancer cells showed remarkable differential cytotoxicity against the parental cells over isogenic cells lacking HIF or other key players in the pathway, including oncogenic KRAS and VEGF. Dolastatin 15 displayed an antivascularization effect in human endothelial cells and in zebrafish vhl mutants with activated Hif, thus signifying its clinical potential as a treatment for solid tumors with an angiogenic component. Global transcriptome analysis with RNA sequencing suggested that dolastatin 15 could affect other major cancer pathways that might not directly involve tubulin or HIF. The identification of the true producer of a clinically relevant agent is important for sustainable supply, as is understanding the biosynthesis, and future genetic manipulation of the biosynthetic gene cluster for analogue production.
Collapse
Affiliation(s)
- Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | | | - Jia Jia Ma
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Long H Dang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, 34949, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
19
|
Dikova V, Vorhauser J, Geng A, Pelster B, Sandbichler AM. Metabolic interaction of hydrogen peroxide and hypoxia in zebrafish fibroblasts. Free Radic Biol Med 2020; 152:469-481. [PMID: 31740229 DOI: 10.1016/j.freeradbiomed.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022]
Abstract
Cells require oxygen for aerobic metabolism, which may also result in the production of reactive oxygen species (ROS) as a by-product. Under low oxygen conditions, ROS formation has been reported to either increase or decrease. We addressed this physiological response for the first time in zebrafish embryonic fibroblasts (Z3) and used a hydrogen peroxide (H2O2)-specific fluorescent protein (roGFP2-Orp1) either targeted to the mitochondria or expressed in the cytosol. Microfluidic live-cell imaging measurements showed that oxygen deprivation in Z3 cells results in decreased or stable H2O2 levels within the mitochondria or the cytosol, respectively, and that the reductive shift recorded in the mitochondrial matrix is directly dependent on oxygen concentration. The response was accompanied by a transient increase in extracellular acidification rate (ECAR) and a lower cellular reducing potential as assessed by the viability stain alamarBlue. Complex I and III inhibition with Rotenone and Antimycin A led to H2O2 production under normoxia but these inhibitors were not able to avert the reductive shift under hypoxia. Only by system-wide inhibition of flavin-containing oxidases with Diphenyleneiodonium (DPI) were we able to decrease the reductive shift, while selective inhibition of NADPH oxidases with the inhibitor Apocynin had no effect on the hypoxia response. Since DPI also led to a strong increase in ECAR we found that, in order to keep the cytosolic H2O2 levels stable, glycolytic metabolism was of fundamental importance. According to our experiments with the glucose-6-phosphate dehydrogenase inhibitor 6-Aminonicotinamide, this was attributable to the pentose phosphate pathway producing reducing equivalents required for ROS degradation.
Collapse
Affiliation(s)
- Valentina Dikova
- Institute of Zoology and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Julia Vorhauser
- Institute of Zoology and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Anne Geng
- Institute of Zoology and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Bernd Pelster
- Institute of Zoology and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | | |
Collapse
|
20
|
Marchi D, Santhakumar K, Markham E, Li N, Storbeck KH, Krone N, Cunliffe VT, van Eeden FJM. Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae. PLoS Genet 2020; 16:e1008757. [PMID: 32379754 PMCID: PMC7237044 DOI: 10.1371/journal.pgen.1008757] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/19/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo.
Collapse
Affiliation(s)
- Davide Marchi
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (DM); (FJMv)
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology Kattankulathur, India
| | - Eleanor Markham
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Nan Li
- The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, South Africa
| | - Nils Krone
- The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vincent T. Cunliffe
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Fredericus J. M. van Eeden
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (DM); (FJMv)
| |
Collapse
|
21
|
Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells 2020; 9:cells9041017. [PMID: 32325871 PMCID: PMC7226144 DOI: 10.3390/cells9041017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
A common feature of tumorigenesis is the upregulation of angiogenesis pathways in order to supply nutrients via the blood for the growing tumor. Understanding how cells promote angiogenesis and how to control these processes pharmaceutically are of great clinical interest. Clear cell renal cell carcinoma (ccRCC) is the most common form of sporadic and inherited kidney cancer which is associated with excess neovascularization. ccRCC is highly associated with biallelic mutations in the von Hippel–Lindau (VHL) tumor suppressor gene. Although upregulation of the miR-212/132 family and disturbed VHL signaling have both been linked with angiogenesis, no evidence of a possible connection between the two has yet been made. We show that miRNA-212/132 levels are increased after loss of functional pVHL, the protein product of the VHL gene, in vivo and in vitro. Furthermore, we show that blocking miRNA-212/132 with anti-miRs can significantly alleviate the excessive vascular branching phenotype characteristic of vhl−/− mutant zebrafish. Moreover, using human umbilical vascular endothelial cells (HUVECs) and an endothelial cell/pericyte coculture system, we observed that VHL knockdown promotes endothelial cells neovascularization capacity in vitro, an effect which can be inhibited by anti-miR-212/132 treatment. Taken together, our results demonstrate an important role for miRNA-212/132 in angiogenesis induced by loss of VHL. Intriguingly, this also presents a possibility for the pharmaceutical manipulation of angiogenesis by modulating levels of MiR212/132.
Collapse
|
22
|
Kim HR, Santhakumar K, Markham E, Baldera D, Greenald D, Bryant HE, El-Khamisy SF, van Eeden FJ. Investigation of the role of VHL-HIF signaling in DNA repair and apoptosis in zebrafish. Oncotarget 2020; 11:1109-1130. [PMID: 32284789 PMCID: PMC7138166 DOI: 10.18632/oncotarget.27521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
pVHL is a tumor suppressor. The lack of its function leads to various tumors, among which ccRCC (clear cell renal cell carcinoma) has the most serious outcome due to its resistance to chemotherapies and radiotherapies. Although HIF promotes the progression of ccRCC, the precise mechanism by which the loss of VHL leads to tumor initiation remains unclear. We exploited two zebrafish vhl mutants, vhl and vll, and Tg (phd3:: EGFP)i144 fish to identify crucial functions of Vhl in tumor initiation. Through the mutant analysis, we found that the role of pVHL in DNA repair is conserved in zebrafish Vll. Interestingly, we also discovered that Hif activation strongly suppressed genotoxic stress induced DNA repair defects and apoptosis in vll and brca2 mutants and in embryos lacking ATM activity. These results suggest the potential of HIF as a clinical modulator that can protect cells from accumulating DNA damage and apoptosis which can lead to cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Eleanor Markham
- Bateson Centre/BMS, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Davide Baldera
- Bateson Centre/BMS, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - David Greenald
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
| | - Helen E. Bryant
- Department of Oncology & Metabolism, The Medical School, Sheffield S10 2RX, UK
| | - Sherif F. El-Khamisy
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
23
|
Ward R, Ali Z, Slater K, Reynolds AL, Jensen LD, Kennedy BN. Pharmacological restoration of visual function in a zebrafish model of von-Hippel Lindau disease. Dev Biol 2019; 457:226-234. [PMID: 30825427 DOI: 10.1016/j.ydbio.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 02/01/2023]
Abstract
Von Hippel-Lindau (VHL) syndrome is a rare, autosomal dominant disorder, characterised by hypervascularised tumour formation in multiple organ systems. Vision loss associated with retinal capillary hemangioblastomas remains one of the earliest complications of VHL disease. The mortality of Vhl-/- mice in utero restricted modelling of VHL disease in this mammalian model. Zebrafish harbouring a recessive germline mutation in the vhl gene represent a viable, alternative vertebrate model to investigate associated ocular loss-of-function phenotypes. Previous studies reported neovascularisation of the brain, eye and trunk together with oedema in the vhl-/- zebrafish eye. In this study, we demonstrate vhl-/- zebrafish almost entirely lack visual function. Furthermore, hyaloid vasculature networks in the vhl-/- eye are improperly formed and this phenotype is concomitant with development of an ectopic intraretinal vasculature. Sunitinib malate, a multi tyrosine kinase inhibitor, market authorised for cancer, reversed the ocular behavioural and morphological phenotypes observed in vhl-/- zebrafish. We conclude that the zebrafish vhl gene contributes to an endogenous molecular barrier that prevents development of intraretinal vasculature, and that pharmacological intervention with sunitinib can improve visual function and hyaloid vessel patterning while reducing abnormally formed ectopic intraretinal vessels in vhl-/- zebrafish.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Ireland
| | - Zaheer Ali
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Kayleigh Slater
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Ireland
| | - Alison L Reynolds
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Ireland; UCD School of Veterinary Medicine, University College Dublin, D04 V1W8, Ireland
| | - Lasse D Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Breandán N Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Ireland.
| |
Collapse
|
24
|
Mandic M, Tzaneva V, Careau V, Perry SF. Hif-1α paralogs play a role in the hypoxic ventilatory response of larval and adult zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.195198. [PMID: 30518608 DOI: 10.1242/jeb.195198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor (Hif) 1α, an extensively studied transcription factor, is involved in the regulation of many biological processes in hypoxia including the hypoxic ventilatory response. In zebrafish, there are two paralogs of Hif-1α (Hif-1A and Hif-1B), but little is known about the specific roles or potential sub-functionalization of the paralogs in response to hypoxia. Using knockout lines of Hif-1α paralogs, we examined their involvement in the hypoxic ventilatory response, measured as ventilation frequency (f V) in larval and adult zebrafish (Danio rerio). In wild-type zebrafish, f V increased across developmental time (4, 7, 10 and 15 days post--fertilization, dpf) in response to hypoxia (55 mmHg). In contrast, the Hif-1B knockout fish did not exhibit an increase in hypoxic f V at 4 dpf. Similar to wild-type, as larvae of all knockout lines developed, the magnitude of f V increased but to a lesser degree than in the wild-type larvae, until 15 dpf at which point there was no difference among the genotypes. In adult zebrafish, only in Hif-1B knockout fish was there an attenuation in f V during sustained exposure to 30 mmHg for 1 h but there was no effect when fish were exposed for a shorter duration to progressive hypoxia. The mechanism of action of Hif-1α, in part, may be through its downstream target, nitric oxide synthase, and its product, nitric oxide. Overall, the effect of each Hif-1α paralog on the hypoxic ventilatory response of zebrafish varies over development and is dependent on the type of hypoxic stress.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Vincent Careau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
25
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
26
|
Greenhough A, Bagley C, Heesom KJ, Gurevich DB, Gay D, Bond M, Collard TJ, Paraskeva C, Martin P, Sansom OJ, Malik K, Williams AC. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med 2018; 10:e8699. [PMID: 30143543 PMCID: PMC6220329 DOI: 10.15252/emmm.201708699] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches in vitro and in vivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1 Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy.
Collapse
Affiliation(s)
- Alexander Greenhough
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
- Cancer Epigenetics Laboratory, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - Clare Bagley
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - David B Gurevich
- School of Biochemistry, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - David Gay
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mark Bond
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - Chris Paraskeva
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - Paul Martin
- School of Biochemistry, Faculty of Life Sciences University of Bristol, Bristol, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences University of Bristol, Bristol, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| | - Ann C Williams
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular & Molecular Medicine, Faculty of Life Sciences University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Adamson KI, Sheridan E, Grierson AJ. Use of zebrafish models to investigate rare human disease. J Med Genet 2018; 55:641-649. [PMID: 30065072 DOI: 10.1136/jmedgenet-2018-105358] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
Abstract
Rare diseases are collectively common and often extremely debilitating. Following the emergence of next-generation sequencing (NGS) technologies, the variants underpinning rare genetic disorders are being unearthed at an accelerating rate. However, many rare conditions lack effective treatments due to their poorly understood pathophysiology. There is therefore a growing demand for the development of novel experimental models of rare genetic diseases, so that potentially causative variants can be validated, pathogenic mechanisms can be investigated and therapeutic targets can be identified. Animal models of rare diseases need to be genetically and physiologically similar to humans, and well-suited to large-scale experimental manipulation, considering the vast number of novel variants that are being identified through NGS. The zebrafish has emerged as a popular model system for investigating these variants, combining conserved vertebrate characteristics with a capacity for large-scale phenotypic and therapeutic screening. In this review, we aim to highlight the unique advantages of the zebrafish over other in vivo model systems for the large-scale study of rare genetic variants. We will also consider the generation of zebrafish disease models from a practical standpoint, by discussing how genome editing technologies, particularly the recently developed clustered regularly interspaced repeat (CRISPR)/CRISPR-associated protein 9 system, can be used to model rare pathogenic variants in zebrafish. Finally, we will review examples in the literature where zebrafish models have played a pivotal role in confirming variant causality and revealing the underlying mechanisms of rare diseases, often with wider implications for our understanding of human biology.
Collapse
Affiliation(s)
- Kathryn Isabel Adamson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Andrew James Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
van Rooijen E, van de Hoek G, Logister I, Ajzenberg H, Knoers NVAM, van Eeden F, Voest EE, Schulte-Merker S, Giles RH. The von Hippel-Lindau Gene Is Required to Maintain Renal Proximal Tubule and Glomerulus Integrity in Zebrafish Larvae. Nephron Clin Pract 2018; 138:310-323. [PMID: 29342457 DOI: 10.1159/000484096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND von Hippel-Lindau (VHL) disease is characterized by the development of benign and malignant tumours in many organ systems, including renal cysts and clear cell renal cell carcinoma. It is not completely understood what underlies the development of renal pathology, and the use of murine Vhl models has been challenging due to limitations in disease conservation. We previously described a zebrafish model bearing inactivating mutations in the orthologue of the human VHL gene. METHODS We used histopathological and functional assays to investigate the pronephric and glomerular developmental defects in vhl mutant zebrafish, supported by human cell culture assays. RESULTS Here, we report that vhl is required to maintain pronephric tubule and glomerulus integrity in zebrafish embryos. vhl mutant glomeruli are enlarged, cxcr4a+ capillary loops are dilated and the Bowman space is widened. While we did not observe pronephric cysts, the cells of the proximal convoluted and anterior proximal straight tubule are enlarged, periodic acid schiff (PAS) and Oil Red O positive, and display a clear cytoplasm after hematoxylin and eosine staining. Ultrastructural analysis showed the vhl-/- tubule to accumulate large numbers of vesicles of variable size and electron density. Microinjection of the endocytic fluorescent marker AM1-43 in zebrafish embryos revealed an accumulation of endocytic vesicles in the vhl mutant pronephric tubule, which we can recapitulate in human cells lacking VHL. CONCLUSIONS Our data indicates that vhl is required to maintain pronephric tubule and glomerulus integrity during zebrafish development, and suggests a role for VHL in endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Glenn van de Hoek
- Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ive Logister
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Henry Ajzenberg
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Freek van Eeden
- Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands.,Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany.,CiM Cluster of Excellence (EXC1003-CiM), Münster, Germany
| | - Rachel H Giles
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
29
|
Gooskens SL, Klasson TD, Gremmels H, Logister I, Pieters R, Perlman EJ, Giles RH, van den Heuvel-Eibrink MM. TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation and migration. Mol Oncol 2017; 12:166-179. [PMID: 29080283 PMCID: PMC5792742 DOI: 10.1002/1878-0261.12149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/12/2017] [Accepted: 10/07/2017] [Indexed: 01/06/2023] Open
Abstract
We recently identified hypermethylation at the gene promoter of transcription factor 21 (TCF21) in clear cell sarcoma of the kidney (CCSK), a rare pediatric renal tumor. TCF21 is a transcription factor involved in tubular epithelial development of the kidney and is a candidate tumor suppressor. As there are no in vitro models of CCSK, we employed a well-established clear cell renal cell carcinoma (ccRCC) cell line, 786-O, which also manifests high methylation at the TCF21 promoter, with consequent low TCF21 expression. The tumor suppressor function of TCF21 has not been functionally addressed in ccRCC cells; we aimed to explore the functional potential of TCF21 expression in ccRCC cells in vitro. 786-O clones stably transfected with either pBABE-TCF21-HA construct or pBABE vector alone were functionally analyzed. We found that ectopic expression of TCF21 in 786-O cells results in a trend toward decreased cell proliferation (not significant) and significantly decreased migration compared with mock-transfected 786-O cells. Although the number of colonies established in colony formation assays was not different between 786-O clones, colony size was significantly reduced in 786-O cells expressing TCF21. To investigate whether the changes in migration were due to epithelial-to-mesenchymal transition changes, we interrogated the expression of selected epithelial and mesenchymal markers. Although we observed upregulation of mRNA and protein levels of epithelial marker E-cadherin in clones overexpressing TCF21, this did not result in surface expression of E-cadherin as measured by fluorescence-activated cell sorting and immunofluorescence. Furthermore, mRNA expression of the mesenchymal markers vimentin (VIM) and SNAI1 was not significantly decreased in TCF21-expressing 786-O cells, while protein levels of VIM were markedly decreased. We conclude that re-expression of TCF21 in renal cancer cells that have silenced their endogenous TCF21 locus through hypermethylation results in reduced clonogenic proliferation, reduced migration, and reduced mesenchymal-like characteristics, suggesting a tumor suppressor function for transcription factor 21.
Collapse
Affiliation(s)
- Saskia L Gooskens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Timothy D Klasson
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Ive Logister
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Robert Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Elizabeth J Perlman
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, IL, USA
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Noonan HR, Metelo AM, Kamei CN, Peterson RT, Drummond IA, Iliopoulos O. Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma. Dis Model Mech 2017; 9:873-84. [PMID: 27491085 PMCID: PMC5007981 DOI: 10.1242/dmm.024380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/21/2016] [Indexed: 12/25/2022] Open
Abstract
Patients with von Hippel–Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. ‘Clear cell’ tumors contain large, proliferating cells with ‘clear cytoplasm’, and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl−/−) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl−/− zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl−/− zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl−/− pronephros is reminiscent of clear cell histology, indicating that the vhl−/− mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl−/− zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC. Summary: Zebrafish with an inactivating mutation in the vhl gene can be used as a model of early stage clear cell renal cell carcinoma, with applications for genetic studies and drug screens.
Collapse
Affiliation(s)
- Haley R Noonan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana M Metelo
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3001-401, Portugal
| | - Caramai N Kamei
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Randall T Peterson
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Iain A Drummond
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Othon Iliopoulos
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02142, USA
| |
Collapse
|
31
|
Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization. Proc Natl Acad Sci U S A 2017; 114:9948-9953. [PMID: 28851829 DOI: 10.1073/pnas.1705338114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.
Collapse
|
32
|
Gerri C, Marín-Juez R, Marass M, Marks A, Maischein HM, Stainier DYR. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat Commun 2017; 8:15492. [PMID: 28524872 PMCID: PMC5493593 DOI: 10.1038/ncomms15492] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/01/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM. The molecular mechanism regulating macrophage interaction with endothelial cells during development is unclear. Here, the authors show that in zebrafish mutation of hypoxia-inducible factor-1α impairs macrophage mobilization from the aorta-gonad-mesonephros, causing defects in angiogenesis and vessel repair.
Collapse
Affiliation(s)
- Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
33
|
Kwan W, North TE. Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish. Curr Top Dev Biol 2017; 124:125-160. [DOI: 10.1016/bs.ctdb.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
|
35
|
Kim H, Greenald D, Vettori A, Markham E, Santhakumar K, Argenton F, van Eeden F. Zebrafish as a model for von Hippel Lindau and hypoxia-inducible factor signaling. Methods Cell Biol 2017; 138:497-523. [DOI: 10.1016/bs.mcb.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis. Osteoarthritis Cartilage 2016; 24:1940-1950. [PMID: 27374878 PMCID: PMC5081689 DOI: 10.1016/j.joca.2016.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis. DESIGN Zebrafish larvae were subjected to periods of flaccid paralysis, rigid paralysis or hyperactivity. Immunohistochemistry and transgenic reporters were used to monitor changes to muscle and cartilage. Finite Element Models were generated to investigate the mechanical conditions of rigid paralysis. Principal component analysis was used to test variations in skeletal morphology and metrics for shape, orientation and size were applied to describe cell behaviour. RESULTS We show that flaccid and rigid paralysis and hypermobility affect cartilage element and joint shape. We describe differences between flaccid and rigid paralysis in regions showing high principal strain upon muscle contraction. We identify that altered shape and high strain occur in regions of cell differentiation and we show statistically significant changes to cell maturity occur in these regions in paralysed and hypermobile zebrafish. CONCLUSION While flaccid and rigid paralysis and hypermobility affect skeletal morphogenesis they do so in subtly different ways. We show that some cartilage regions are unaffected in conditions such as rigid paralysis where static force is applied, whereas joint morphogenesis is perturbed by both flaccid and rigid paralysis; suggesting that joints require dynamic movement for accurate morphogenesis. A better understanding of how biomechanics impacts skeletal cell behaviour will improve our understanding of how foetal mechanics shape the developing joint.
Collapse
|
37
|
Kwong RWM, Kumai Y, Tzaneva V, Azzi E, Hochhold N, Robertson C, Pelster B, Perry SF. Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor. ACTA ACUST UNITED AC 2016; 219:3988-3995. [PMID: 27802147 DOI: 10.1242/jeb.148700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg PO2 ) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca2+ levels and Ca2+ uptake. Ca2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca2+ channel (ecac), but not plasma membrane Ca2+-ATPase (pmca2) or Na+/Ca2+-exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca2+ balance during hypoxia, the results demonstrated that the reduction of Ca2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5 .,Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Estelle Azzi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Nina Hochhold
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
| | - Cayleih Robertson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
38
|
Cernaro V, Sfacteria A, Rifici C, Macrì F, Maricchiolo G, Lacquaniti A, Ricciardi CA, Buemi A, Costantino G, Santoro D, Buemi M. Renoprotective effect of erythropoietin in zebrafish after administration of gentamicin: an immunohistochemical study for β-catenin and c-kit expression. J Nephrol 2016; 30:385-391. [PMID: 27679401 DOI: 10.1007/s40620-016-0353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gentamicin is an aminoglycoside antibiotic widely used in the treatment of infections caused by Gram-negative bacteria. The main limitation to its therapeutic effectiveness is the potential nephrotoxicity. Erythropoietin has a tissue protective effect widely demonstrated in the kidney. The aim of the present study was to evaluate the renoprotective effects of erythropoietin in a model of zebrafish (Danio rerio) after administration of gentamicin. METHODS Sixty adult zebrafish were subdivided into three groups: group A was treated with gentamicin; group B received gentamicin and, 24 h later, epoetin alpha; group C received drug diluent only. In order to analyze the renoprotective activity of erythropoietin, the expression of c-kit and β-catenin was evaluated by immunohistochemistry. RESULTS Generally, the zebrafish renal tubule regenerates 15 days after an injury. Conversely, 7 days after gentamicin administration, animals treated with erythropoietin (group B) showed a better renal injury repair as documented by: increased expression of β-catenin, less degenerated tubules, greater number of centers of regeneration, positivity for c-kit only in immature-looking tubules and lymphohematopoietic cells. CONCLUSION The expression of c-kit and β-catenin suggests that erythropoietin may exert a role in regeneration reducing the extent of tubular damage from the outset after gentamicin administration.
Collapse
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Giulia Maricchiolo
- IAMC (Institute for Coastal Marine Environment), CNR, U.O.S. Messina, Spianata S. Raineri, 86, 98122, Messina, Italy
| | - Antonio Lacquaniti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Carlo Alberto Ricciardi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Antoine Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Giuseppe Costantino
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| |
Collapse
|
39
|
Elks PM, Renshaw SA, Meijer AH, Walmsley SR, van Eeden FJ. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech 2016; 8:1349-60. [PMID: 26512123 PMCID: PMC4631790 DOI: 10.1242/dmm.021865] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A low level of tissue oxygen (hypoxia) is a physiological feature of a wide range of diseases, from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydroxylase enzymes, which regulate the protein stability of hypoxia-inducible factor α (HIF-α) transcription factors. When stabilised, HIF-α binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to coordinate a wide-ranging transcriptional programme in response to the hypoxic environment. This year marks the 20th anniversary of the discovery of the HIF-1α transcription factor, and in recent years the HIF-mediated hypoxia response is being increasingly recognised as an important process in determining the outcome of diseases such as cancer, inflammatory disease and bacterial infections. Animal models have shed light on the roles of HIF in disease and have uncovered intricate control mechanisms that involve multiple cell types, observations that might have been missed in simpler in vitro systems. These findings highlight the need for new whole-organism models of disease to elucidate these complex regulatory mechanisms. In this Review, we discuss recent advances in our understanding of hypoxia and HIFs in disease that have emerged from studies of zebrafish disease models. Findings from such models identify HIF as an integral player in the disease processes. They also highlight HIF pathway components and their targets as potential therapeutic targets against conditions that range from cancers to infectious disease. Summary: Hypoxia signalling, mediated by HIF, is a crucial pathway in many disease processes. Here, we review current knowledge of HIF signalling and disease, focusing on recent findings from zebrafish models.
Collapse
Affiliation(s)
- Philip M Elks
- Department of Infection and Immunity, Medical School, The University of Sheffield, Sheffield, S10 2RX, UK The Bateson Centre, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- Department of Infection and Immunity, Medical School, The University of Sheffield, Sheffield, S10 2RX, UK The Bateson Centre, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah R Walmsley
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
40
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
41
|
Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S, Dhillon H, Goldberger O, Peng J, Shalem O, Sanjana NE, Zhang F, Goessling W, Zapol WM, Mootha VK. Hypoxia as a therapy for mitochondrial disease. Science 2016; 352:54-61. [PMID: 26917594 DOI: 10.1126/science.aad9642] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
Abstract
Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Isha H Jain
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luca Zazzeron
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rahul Goli
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristen Alexa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Harveen Dhillon
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olga Goldberger
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jun Peng
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ophir Shalem
- Broad Institute of Harvard and MIT, Cambridge, MA, USA. McGovern Institute for Brain Research, Cambridge, MA, USA. Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neville E Sanjana
- Broad Institute of Harvard and MIT, Cambridge, MA, USA. McGovern Institute for Brain Research, Cambridge, MA, USA. Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA. McGovern Institute for Brain Research, Cambridge, MA, USA. Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wolfram Goessling
- Broad Institute of Harvard and MIT, Cambridge, MA, USA. Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA. Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
42
|
Bräutigam L, Pudelko L, Jemth AS, Gad H, Narwal M, Gustafsson R, Karsten S, Carreras Puigvert J, Homan E, Berndt C, Berglund UW, Stenmark P, Helleday T. Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Res 2016; 76:2366-75. [PMID: 26862114 DOI: 10.1158/0008-5472.can-15-2380] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR.
Collapse
Affiliation(s)
- Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Linda Pudelko
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mohit Narwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Stella Karsten
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Carreras Puigvert
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evert Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Düsseldorf, Germany
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
den Hertog J. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:87-101. [PMID: 27165350 DOI: 10.1007/978-3-319-30654-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors.
Collapse
Affiliation(s)
- Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
44
|
Greenald D, Jeyakani J, Pelster B, Sealy I, Mathavan S, van Eeden FJ. Genome-wide mapping of Hif-1α binding sites in zebrafish. BMC Genomics 2015; 16:923. [PMID: 26559940 PMCID: PMC4642629 DOI: 10.1186/s12864-015-2169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia Inducible Factor (HIF) regulates a cascade of transcriptional events in response to decreased oxygenation, acting from the cellular to the physiological level. This response is evolutionarily conserved, allowing the use of zebrafish (Danio rerio) as a model for studying the hypoxic response. Activation of the hypoxic response can be achieved in zebrafish by homozygous null mutation of the von Hippel-Lindau (vhl) tumour suppressor gene. Previous work from our lab has focused on the phenotypic characterisation of this mutant, establishing the links between vhl mutation, the hypoxic response and cancer. To further develop fish as a model for studying hypoxic signalling, we examine the transcriptional profile of the vhl mutant with respect to Hif-1α. As our approach uses embryos consisting of many cell types, it has the potential to uncover additional HIF regulated genes that have escaped detection in analogous mammalian cell culture studies. Results We performed high-density oligonucleotide microarray analysis of the gene expression changes in von Hippel-Lindau mutant zebrafish, which identified up-regulation of well-known hypoxia response genes and down-regulation of genes primarily involved in lipid processing. To identify the dependency of these transcriptional changes on HIF, we undertook Chromatin Immunoprecipitation linked next generation sequencing (ChIP-seq) for the transcription factor Hypoxia Inducible Factor 1α (HIF-1α). We identified HIF-1α binding sites across the genome, with binding sites showing enrichment for an RCGTG motif, showing conservation with the mammalian hypoxia response element. Conclusions Transcriptome analysis of vhl mutant embryos detected activation of key hypoxia response genes seen in human cell models of hypoxia, but also suppression of many genes primarily involved in lipid processing. ChIP-seq analysis of Hif-1α binding sites unveiled an unprecedented number of loci, with a high proportion containing a canonical hypoxia response element. Whether these sites are functional remains unknown, nevertheless their frequent location near transcriptional start sites suggests functionality, and will allow for investigation into the potential hypoxic regulation of genes in their vicinity. We expect that our data will be an excellent starting point for analysis of both fish and mammalian gene regulation by HIF. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Greenald
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| | - Justin Jeyakani
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Technikerstr, Innsbruck, Austria.
| | - Ian Sealy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Sinnakaruppan Mathavan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Fredericus J van Eeden
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
45
|
Novodvorsky P, Watson O, Gray C, Wilkinson RN, Reeve S, Smythe C, Beniston R, Plant K, Maguire R, M. K. Rothman A, Elworthy S, van Eeden FJM, Chico TJA. klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes. PLoS One 2015; 10:e0141611. [PMID: 26506092 PMCID: PMC4624238 DOI: 10.1371/journal.pone.0141611] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/09/2015] [Indexed: 01/25/2023] Open
Abstract
Introduction and Objectives The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development. Methods and Results Using Transcription Activator-Like Effector Nucleases (TALEN) we generated a klf2a mutant (klf2ash317) with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC) development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl), a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17) in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants. Conclusions The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.
Collapse
Affiliation(s)
- Peter Novodvorsky
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Watson
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Caroline Gray
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Robert N. Wilkinson
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Scott Reeve
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard Beniston
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Karen Plant
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard Maguire
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Stone Elworthy
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J. M. van Eeden
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Timothy J. A. Chico
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish. Proc Natl Acad Sci U S A 2015; 112:E5944-53. [PMID: 26483474 DOI: 10.1073/pnas.1510245112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling.
Collapse
|
47
|
Shi X, He BL, Ma ACH, Leung AYH. Fishing the targets of myeloid malignancies in the era of next generation sequencing. Blood Rev 2015; 30:119-30. [PMID: 26443083 DOI: 10.1016/j.blre.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/15/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
Recent advent in next generation sequencing (NGS) and bioinformatics has generated an unprecedented amount of genetic information in myeloidmalignancies. This information may shed lights to the pathogenesis, diagnosis and prognostication of these diseases and provide potential targets for therapeutic intervention. However, the rapid emergence of genetic information will quickly outpace their functional validation by conventional laboratory platforms. Foundational knowledge about zebrafish hematopoiesis accumulated over the past two decades and novel genomeediting technologies and research strategies in thismodel organismhavemade it a unique and timely research tool for the study of human blood diseases. Recent studies modeling human myeloid malignancies in zebrafish have also highlighted the technical feasibility and clinical relevance of thesemodels. Careful validation of experimental protocols and standardization among laboratorieswill further enhance the application of zebrafish in the scientific communities and provide important insights to the personalized treatment ofmyeloid malignancies.
Collapse
Affiliation(s)
- Xiangguo Shi
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Bai-Liang He
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Alvin C H Ma
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Anskar Y H Leung
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| |
Collapse
|
48
|
Metelo AM, Noonan H, Iliopoulos O. HIF2a inhibitors for the treatment of VHL disease. Oncotarget 2015; 6:23036-7. [PMID: 26325097 PMCID: PMC4695098 DOI: 10.18632/oncotarget.4564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/22/2015] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ana Martins Metelo
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Haley Noonan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
49
|
Chen YH, Chang CF, Lai YY, Sun CY, Ding YJ, Tsai JN. von Hippel-Lindau gene plays a role during zebrafish pronephros development. In Vitro Cell Dev Biol Anim 2015. [PMID: 26194803 DOI: 10.1007/s11626-015-9938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
von Hippel-Lindau (pVHL)-mediated ubiquitination of HIF-1α plays a central role in the cellular responses to changes in oxygen availability. In the present study, using zebrafish as a model, we showed that specific knockdown of endogenous vhl leads to pronephros malformation and renal failure. Knockdown of vhl resulted in abnormal kidney development, including curved and cystic pronephric tubule or/and cystic and atrophic glomerulus. Co-injecting capped vhl messenger RNA (mRNA) partially rescued pronephros morphant phenotype, confirming the specificity of the morpholino oligonucleotide (MO)-induced pronephric defects. In keeping with the pronephros phenotype, renal function was affected as well in vhl morphants. Dextran clearance abilities of vhl morphants were significantly reduced as compared with those of control embryos. Further analysis indicated that glomerular integrity is impaired in vhl morphants, while the organization of pronephric duct was minimally affected. Vhl morphants display global increased vegf signaling and angiogenesis. In addition, we found that vhl morphants displayed elevated expression of vegfa in podocytes and increased angiogenesis at pronephric glomerulus and the nearby vessels. Treatment of vegf inducer to embryos also caused pronephros phenotype resembling vhl morphants, further supporting that increased vegfa signaling contribute to the pronephros morphant phenotype. Our study establishes the zebrafish as an alternative vertebrate model system for studying Vhl function during kidney development.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan. .,Bachelor's Program in Advanced Material Sciences, Tamkang University, Tamsui, New Taipei, Taiwan.
| | - Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Yu Lai
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Ju Ding
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
50
|
Du J, Zhang D, Zhang W, Ouyang G, Wang J, Liu X, Li S, Ji W, Liu W, Xiao W. pVHL Negatively Regulates Antiviral Signaling by Targeting MAVS for Proteasomal Degradation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1782-90. [PMID: 26179906 DOI: 10.4049/jimmunol.1500588] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
The von Hippel-Lindau (VHL) gene is a well-defined tumor suppressor linked to human heredity cancer syndromes. As a component of the VHL-elongin B/C E3 ligase complex, pVHL performs its tumor function by targeting proteins for proteasomal degradation. It is largely unknown whether pVHL functions in antiviral immunity. In this article, we identify that pVHL negatively regulates innate antiviral immunity, which acts mainly by inducing degradation of mitochondrial antiviral-signaling protein (MAVS, also known as Cardif, IPS-1, or VISA). Overexpression of pVHL abrogated the cellular response to viral infection, whereas knockdown of pVHL exerted the opposite effect. pVHL targeted the K420 residue of MAVS to catalyze the formation of K48-linked polyubiquitin chains, leading to proteasomal degradation of MAVS. After viral infection, Mavs levels remained low in wild type zebrafish embryos but became much higher in vhl-deficient (vhl(-/-)) zebrafish embryos. Higher MAVS levels correlated with a greatly exaggerated antiviral response. In this work, we demonstrate that pVHL exhibits a previously unknown role in innate antiviral immunity.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Dawei Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Gang Ouyang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Jing Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Xing Liu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Shun Li
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Ji
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Wuhan Xiao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| |
Collapse
|