1
|
Kethiri AR, Kate A, Koduri MA, Sahoo A, Agarwal H, Pingali T, Singh VK, Ali MH, Mishra DK, Basu S, Singh V. Immunological and histopathological changes in alkali burn-induced ocular surface pannus: Implication on success vs. failure of SLET. Exp Eye Res 2025; 255:110378. [PMID: 40194647 DOI: 10.1016/j.exer.2025.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE This study aimed to investigate the histopathological and immunological characteristics of human alkali burn ocular surface pannus in successful and failed cases of simple limbal epithelial transplantation (SLET). METHODS Paraffin embedded pannus sections of limbal stem cell deficiency (LSCD) patients who underwent simple limbal epithelial transplantation were obtained from pathology. Samples included both cases of SLET failure (n = 12) and success (n = 7). Histological features were assessed using Hematoxylin-Eosin and Periodic acid-Schiff staining while infiltrated immune cells were characterised using immunohistochemistry. Data were represented as mean or median with the interquartile range and standard deviation. Multiple comparisons of means by linear mixed effect model with Tukey contrast and Bonferroni method were used. RESULTS Conjunctivalization of the cornea that led to fibrous pannus formation was confirmed by the presence of CK19+ and CK3/12- cells. The median percentage of immune cell infiltrates like T-cells (CD3; success (9 %; IQR-9.2) vs. failure (23.5 %; IQR-10.2), (CD5; success (2.2 %; IQR-3) vs. failure (13.4 %; IQR-18.3), B-cells (CD20; success (3.2 %; IQR-3.2) vs. failure (4.1 %; IQR-5.5), antigen presenting cells (co-stimulatory CD40; success (7.8 %; IQR-8.9) vs. failure (16.4 %; IQR-7.1), and plasma cells (CD138; success (1.1 %; IQR-2.1) vs. failure (3.6 %; IQR-3.5) were identified in the pannus. CONCLUSIONS This study highlights a significantly higher infiltration of immune cells in the pannus and surrounding ocular tissue in cases of SLET failure compared to successful outcomes. These findings suggest that, strategies to reduce immune infiltration such as immunotherapy, corticosteroids, or amniotic membrane grafting should be considered prior to SLET to improve the success of limbal transplant surgery.
Collapse
Affiliation(s)
- Abhinav Reddy Kethiri
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Anahita Kate
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Madhuri Amulya Koduri
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Abhishek Sahoo
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Harsha Agarwal
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Tejaswini Pingali
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vijay Kumar Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Md Hasnat Ali
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Dilip Kumar Mishra
- Ophthalmic Pathology Laboratory Services, L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
2
|
McDaniel Mims B, Furr KL, Enriquez J, Grisham MB. Improving bench-to-bedside translation for acute graft-versus-host disease models. Dis Model Mech 2025; 18:DMM052084. [PMID: 40019007 PMCID: PMC11892683 DOI: 10.1242/dmm.052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
The transplantation of allogeneic hematopoietic stem cells is a potentially curative treatment for hematological malignancies, inherited blood disorders and immune deficiencies. Unfortunately, 30-50% of patients receiving allogeneic hematopoietic stem cells will develop a potentially life-threatening inflammatory disease called acute graft-versus-host disease (aGVHD). In patients with aGVHD, graft-associated T cells, which typically target the skin, intestinal tract and liver, can also damage the lungs and lymphoid tissue. Damage to lymphoid tissue creates prolonged immunodeficiency that markedly increases the risk of infections and bleeding, resulting in considerable morbidity and mortality. Although mouse models of aGVHD have been instrumental to our understanding of this condition's pathogenesis, translation of preclinical data into new and more effective treatments for human disease has been limited for reasons that remain to be fully understood. However, evidence suggests that factors associated with mouse models of aGVHD likely contribute to these unsatisfactory results. In this Review, we identify and discuss the specific factors inherent to mouse models of aGVHD that may limit the translation of preclinical data to patient treatment, and suggest how to improve the translatability of these models.
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79423, USA
| | - Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79423, USA
| |
Collapse
|
3
|
Zhu J, Yang L, Xia J, Zhou N, Zhu J, Zhu H, Chen J, Qing K, Duan CW. Interleukin-27 Promotes the Generation of Myeloid-derived Suppressor Cells to Alleviate Graft-versus-host Disease. Transplantation 2024; 108:e404-e416. [PMID: 38773837 DOI: 10.1097/tp.0000000000005069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
BACKGROUND Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xia
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayao Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Wen Duan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Konuma T, Hamatani-Asakura M, Monna-Oiwa M, Kato S, Andoh S, Yokoyama K, Nannya Y, Takahashi S. Recipient IL-17A polymorphism rs2275913 is associated with acute graft-versus-host disease after single-unit cord blood transplantation. Transpl Immunol 2024; 86:102096. [PMID: 39067490 DOI: 10.1016/j.trim.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Interleukin-17 (IL-17) is elevated in human inflammatory and autoimmune diseases. The polymorphism in the promoter region of the IL-17 A gene is associated with susceptibility to several inflammatory diseases, including acute graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation from adult donors. However, the impacts of IL-17 A polymorphism on cord blood transplantation (CBT) outcomes remain unclear. OBJECTIVE The objective of this study was to assess the impact of IL-17 A polymorphism rs2275913 on GVHD, survival, relapse, non-relapse mortality (NRM), and hematopoietic recovery after CBT. STUDY DESIGN We conducted a retrospective analysis of data from adult patients who underwent single-unit CBT at our institution from January 2005 to March 2023 for whose recipient or donor DNA samples were available. IL-17 A genotyping was performed using real-time polymerase chain reaction with the TaqMan® SNP genotyping assay for rs2275913. RESULTS A total of 158 recipients and 136 donors were evaluated in this study. Multivariate analysis showed that rs2275913 GA or AA recipients were associated with increased risk of grades II to IV acute GVHD compared to GG recipients (hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.00-2.13; P = 0.047). Serum IL-17 A levels at eight weeks were significantly higher in rs2275913 GA or AA recipients compared to GG. The rs2275913 polymorphism did not affect survival, relapse, NRM, or hematopoietic recovery after single-unit CBT. CONCLUSION Our data showed recipient IL-17 A polymorphism rs2275913 was associated with the risk of grade II to IV acute GVHD in adults undergoing single-unit CBT. However, the rs2275913 polymorphism in recipients and donors did not affect survival or relapse. Thus, the polymorphism of IL-17 A rs2275913 in recipients might predict the risk of acute GVHD after single-unit CBT.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Andoh
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Verma K, Croft W, Margielewska-Davies S, Pearce H, Stephens C, Diaconescu D, Bevington S, Craddock C, Amel-Kashipaz R, Zuo J, Kinsella FAM, Moss P. CD70 identifies alloreactive T cells and represents a potential target for prevention and treatment of acute GVHD. Blood Adv 2024; 8:4900-4912. [PMID: 39028952 PMCID: PMC11421336 DOI: 10.1182/bloodadvances.2024012909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) remains a major challenge after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and further understanding of its immunopathology is crucial for developing new treatments. CD70 interacts with CD27 and is upregulated transiently on T cells after recent T-cell receptor (TCR) engagement. Here, we investigated the functional and clinical significance of CD70 expression on T cells during the early posttransplantation period. CD70 was expressed on a subset of highly activated memory T cells within the first 2 weeks after transplant, which then gradually declined in most patients. CD70+ T cells exhibited an open chromatin landscape and a transcriptional profile indicative of intense Myelocytomatosis oncogene (MYC)-driven glycolysis and proliferation. CD4+ and CD8+CD70+ T-cell numbers increased by ninefold and fourfold, respectively, during acute GVHD (aGVHD) and displayed an oligoclonal TCR repertoire. These cells expressed CCR4 and CCR6 chemokine receptors and were markedly increased in aGVHD tissue samples. Furthermore, CD70+ T cells demonstrated alloreactive specificity in vitro, and proliferative and inflammatory cytokine responses were markedly attenuated by CD70 blockade. These findings identify CD70 as a marker of highly activated alloreactive T cells and reveal the potential therapeutic importance of inhibiting CD27-CD70 costimulation in both the prophylaxis and treatment of aGVHD.
Collapse
Affiliation(s)
- Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Diana Diaconescu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick University, Coventry, United Kingdom
| | | | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A. M. Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Guo X, Qin Y, Feng Z, Li H, Yang J, Su K, Mao R, Li J. Investigating the anti-inflammatory effects of icariin: A combined meta-analysis and machine learning study. Heliyon 2024; 10:e35307. [PMID: 39170422 PMCID: PMC11336647 DOI: 10.1016/j.heliyon.2024.e35307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The objectives of this study were to define the superiority of icariin and its derivatives' anti-inflammatory activities and to create a reference framework for evaluating preclinical evidence. This method combines machine learning and meta-analysis to identify underlying biological pathways. Methods Data came from PubMed, Embase, Web of Science, and the Cochrane Library. SYRCLE was used to evaluate the risk of bias in a subset of research. Meta-analysis and detailed subgroup analyses, categorized by species, genders, disease type, dosage, and treatment duration, were performed using R and STATA 15.0 software to derive nuanced insights. Employing R software (version 4.2.3) and the tidymodels package, the analysis focused on constructing a model and selecting features, with TNF-α as the dependent variable. This approach aims to identify significant predictors of drug efficacy. An in-depth literature facilitated the synthesis of anti-inflammatory mechanisms attributed to icariin and its constituent compounds. Results Following a meticulous search and selection process, 19 studies, involving 370 and 260 animals were included in the meta-analysis and machine-learning assessment, respectively. The findings revealed that icariin and its derivatives markedly reduced inflammation markers, including TNF-α and IL-1β. Additionally, machine-learning outcomes, with TNF-α as the target variable, indicated enhanced anti-inflammatory effects of icariin across respiratory, urological, neurological, and digestive disease types. These effects were more pronounced at doses exceeding 27.52 mg/kg/day and treatment durations beyond 31.22 days. Conclusion Strong anti-inflammatory effects are exhibited by icariiin and its derivatives, which are especially beneficial in the management of digestive, neurological, pulmonary, and urinary conditions. Effective for periods longer than 31.22 days and at dosages more than 27.52 mg/kg/day. Subsequent research will involve more targeted animal experiments and safety assessments to obtain more comprehensive preclinical evidence.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenzhen Feng
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Kailin Su
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Ruixiao Mao
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jiansheng Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| |
Collapse
|
7
|
Vijayan V, Yan H, Lohmeyer JK, Prentiss KA, Patil RV, Barbarito G, Lopez I, Elezaby A, Peterson K, Baker J, Ostberg NP, Bertaina A, Negrin RS, Mochly-Rosen D, Weinberg K, Haileselassie B. Extracellular release of damaged mitochondria induced by prehematopoietic stem cell transplant conditioning exacerbates GVHD. Blood Adv 2024; 8:3691-3704. [PMID: 38701354 PMCID: PMC11284707 DOI: 10.1182/bloodadvances.2023012328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.
Collapse
Affiliation(s)
- Vijith Vijayan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Hao Yan
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kaylin A. Prentiss
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rachna V. Patil
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Giulia Barbarito
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ivan Lopez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kolten Peterson
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nicolai P. Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Bereketeab Haileselassie
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
8
|
Gutierrez-Barbosa H, Medina-Moreno S, Perdomo-Celis F, Davis H, Coronel-Ruiz C, Zapata JC, Chua JV. A Comparison of Lymphoid and Myeloid Cells Derived from Human Hematopoietic Stem Cells Xenografted into NOD-Derived Mouse Strains. Microorganisms 2023; 11:1548. [PMID: 37375051 DOI: 10.3390/microorganisms11061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Humanized mice are an invaluable tool for investigating human diseases such as cancer, infectious diseases, and graft-versus-host disease (GvHD). However, it is crucial to understand the strengths and limitations of humanized mice and select the most appropriate model. In this study, we describe the development of the human lymphoid and myeloid lineages using a flow cytometric analysis in four humanized mouse models derived from NOD mice xenotransplanted with CD34+ fetal cord blood from a single donor. Our results showed that all murine strains sustained human immune cells within a proinflammatory environment induced by GvHD. However, the Hu-SGM3 model consistently generated higher numbers of human T cells, monocytes, dendritic cells, mast cells, and megakaryocytes, and a low number of circulating platelets showing an activated profile when compared with the other murine strains. The hu-NOG-EXL model had a similar cell development profile but a higher number of circulating platelets with an inactivated state, and the hu-NSG and hu-NCG developed low frequencies of immune cells compared with the other models. Interestingly, only the hu-SGM3 and hu-EXL models developed mast cells. In conclusion, our findings highlight the importance of selecting the appropriate humanized mouse model for specific research questions, considering the strengths and limitations of each model and the immune cell populations of interest.
Collapse
Affiliation(s)
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carolina Coronel-Ruiz
- Vice-Chancellor of Research, Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
| | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joel V Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Insights into mechanisms of graft-versus-host disease through humanised mouse models. Biosci Rep 2022; 42:231673. [PMID: 35993192 PMCID: PMC9446388 DOI: 10.1042/bsr20211986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic haematopoietic stem cell transplantation (HSCT) for the treatment of haematological cancers and other blood-related disorders. GVHD is an inflammatory disorder, where the transplanted donor immune cells can mediate an immune response against the recipient and attack host tissues. Despite over 60 years of research, broad-range immune suppression is still used to prevent or treat GVHD, leading to an increased risk of cancer relapse and infection. Therefore, further insights into the disease mechanisms and development of predictive and prognostic biomarkers are key to improving outcomes and reducing GVHD development following allogeneic HSCT. An important preclinical tool to examine the pathophysiology of GVHD and to understand the key mechanisms that lead to GVHD development are preclinical humanised mouse models. Such models of GVHD are now well-established and can provide valuable insights into disease development. This review will focus on models where human peripheral blood mononuclear cells are injected into immune-deficient non-obese diabetic (NOD)-scid-interleukin-2(IL-2)Rγ mutant (NOD-scid-IL2Rγnull) mice. Humanised mouse models of GVHD can mimic the clinical setting for GVHD development, with disease progression and tissues impacted like that observed in humans. This review will highlight key findings from preclinical humanised mouse models regarding the role of donor human immune cells, the function of cytokines and cell signalling molecules and their impact on specific target tissues and GVHD development. Further, specific therapeutic strategies tested in these preclinical models reveal key molecular pathways important in reducing the burden of GVHD following allogeneic HSCT.
Collapse
|
10
|
Heissig B, Salama Y, Tateno M, Takahashi S, Hattori K. siRNA against CD40 delivered via a fungal recognition receptor ameliorates murine acute graft-versus-host disease. EJHAEM 2022; 3:849-861. [PMID: 36051085 PMCID: PMC9421973 DOI: 10.1002/jha2.439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Acute graft-versus-host disease (aGvHD) remains a major threat to a successful outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Although antibody-based targeting of the CD40/CD40 ligand costimulatory pathway can prevent aGvHD, side effects hampered their clinical application, prompting a need for other ways to interfere with this important dendritic T-cell costimulatory pathway. Here, we used small interfering RNA (siRNA) complexed with β-glucan allowing the binding and uptake of the siRNA/β-glucan complex (siCD40/schizophyllan [SPG]; chemical modifications called NJA-312, NJA-302, and NJA-515) into Dectin1+ cells, which recognize this pathogen-associated molecular pattern receptor. aGvHD was induced by the transplantation of splenocytes and bone marrow cells from C57BL/6J into CBF1 mice. Splenic dendritic cells retained Dectin1 expression after HSCT but showed lower expression after irradiation. The administration of siCD40/SPG, NJA-312, and NJA-302 ameliorated aGvHD-mediated lethality and tissue damage of spleen and liver, but not skin. Multiple NJA-312high injections prevented aGvHD but resulted in early weight loss in allogeneic HSCT mice. In addition, NJA-312 treatment caused delayed initial donor T and B-cell recovery but resulted in stable chimerism in surviving mice. Mechanistically, NJA-312 reduced organ damage by suppressing CCR2+, F4/80+, and IL17A-expressing cell accumulation in spleen, liver, and thymus but not the skin of mice with aGvHD. Our work demonstrates that siRNA targeting of CD40 delivered via the PAMP-recognizing lectin Dectin1 changes the immunological niche, suppresses organ-specific murine aGvHD, and induces immune tolerance after organ transplantation. Our work charts future directions for therapeutic interventions to modulate tissue-specific immune reactions using Pathogen-associated molecular pattern (PAMP) molecules like 1,3-β-glucan for cell delivery of siRNA.
Collapse
Affiliation(s)
- Beate Heissig
- Department of Research Support Utilizing Bioresource BankGraduate School of MedicineJuntendo University School of MedicineTokyoJapan
| | - Yousef Salama
- An‐Najah Center for Cancer and Stem Cell ResearchFaculty of Medicine and Health SciencesAn‐Najah National UniversityNablusPalestine
| | - Masatoshi Tateno
- Department of PathologyKushiro Red Cross HospitalKushiroHokkaidoJapan
| | - Satoshi Takahashi
- Division of Clinical Precision Research PlatformInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Koichi Hattori
- Center for Genomic & Regenerative MedicineJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
11
|
Tvedt THA, Rose-John S, Tsykunova G, Ahmed AB, Gedde-Dahl T, Ersvær E, Bruserud Ø. IL-6 Responsiveness of CD4+ and CD8+ T Cells after Allogeneic Stem Cell Transplantation Differs between Patients and Is Associated with Previous Acute Graft versus Host Disease and Pretransplant Antithymocyte Globulin Therapy. J Clin Med 2022; 11:jcm11092530. [PMID: 35566660 PMCID: PMC9104003 DOI: 10.3390/jcm11092530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Graft-versus-host disease (GVHD), one of the most common and serious complications after allogeneic stem cell transplantation, is mediated by allocative T cells. IL-6 mediates both pro- and anti-inflammatory effects and modulates T cell response through classical signaling and trans-signaling. We investigated the effects on the mTOR and JAK/STAT pathways after various types of IL-6 signaling for circulating T cells were derived from 31 allotransplant recipients 90 days post-transplant. Cells were stimulated with IL-6 alone, hyper-IL-6 (trans-signaling), IL-6+IL-6 receptor (IL-6R; classical + trans-signaling) and IL-6+IL-6R+soluble gp130-Fc (classical signaling), and flow cytometry was used to investigate the effects on phosphorylation of AKT (Thr308), mTOR (Ser2442), STAT3 (Ser727) and STAT3 (Tyr705). CD3+CD4+ and CD3+C8+ T cells responded to classical and trans IL-6 stimulation with increased STAT3 (Tyr705) phosphorylation; these responses were generally stronger for CD3+CD4+ cells. STAT3 (Tyr705) responses were stronger for patients with previous acute GVHD; CD3+CD4+ cells from GVHD patients showed an additional STAT3 (Ser727) response, whereas patients without acute GVHD showed additional mTOR (Ser2448) responses. Furthermore, treatment with antithymocyte globulin as a part of GVHD prophylaxis was associated with generally weaker STAT3 (Tyr705) responses and altered STAT3 (Ser727) responsiveness of CD3+CD4+ cells together with increased mTOR (Ser2448) responses for the CD3+CD8+ cells. Thus, early post-transplant CD3+CD4+ and CD3+ CD8+ T cell subsets differ in their IL-6 responsiveness; this responsiveness is modulated by antithymocyte globulin and differs between patients with and without previous acute GVHD. These observations suggest that allotransplant recipients will be heterogeneous with regard to the effects of post-transplant IL-6 targeting.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
- Correspondence: Correspondence:
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24118 Kiel, Germany;
| | - Galina Tsykunova
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Tobias Gedde-Dahl
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, 5063 Bergen, Norway;
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| |
Collapse
|
12
|
Brevi A, Cogrossi LL, Lorenzoni M, Mattorre B, Bellone M. The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma. Front Immunol 2022; 13:845422. [PMID: 35371048 PMCID: PMC8968065 DOI: 10.3389/fimmu.2022.845422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The human microbiota is a unique set of microorganisms colonizing the human body and evolving within it from the very beginning. Acting as an insider, the microbiota provides nutrients, and mutualistically interacts with the host’s immune system, thus contributing to the generation of barriers against pathogens. While a strong link has been documented between intestinal dysbiosis (i.e., disruption to the microbiota homeostasis) and diseases, the mechanisms by which commensal bacteria impact a wide spectrum of mucosal and extramucosal human disorders have only partially been deciphered. This is particularly puzzling for multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells that accumulate in the bone marrow and lead to end-organ damage. Here we revise the most recent literature on data from both the bench and the bedside that show how the gut microbiota modulates cancer immunity, potentially impacting the progression of asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM) to full blown MM. We also explore the effect of the gut microbiome on hematopoietic stem cell transplantation, chemotherapy, immunomodulating therapy and cancer immunotherapy in MM patients. Additionally, we identify the most cogent area of investigation that have the highest chance to delineate microbiota-related and pathobiology-based parameters for patient risk stratification. Lastly, we highlight microbiota-modulating strategies (i.e., diet, prebiotics, probiotics, fecal microbiota transplantation and postbiotics) that may reduce treatment-related toxicity in patients affected by MM as well as the rates of undertreatment of SMM patients.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Lorenzoni
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Benedetta Mattorre
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Matteo Bellone,
| |
Collapse
|
13
|
Beak JA, Park MJ, Kim SY, Jhun J, Woo JS, Choi JW, Na HS, Lee SK, Choi JY, Cho ML. FK506 and Lactobacillus acidophilus ameliorate acute graft-versus-host disease by modulating the T helper 17/regulatory T-cell balance. J Transl Med 2022; 20:104. [PMID: 35216600 PMCID: PMC8881869 DOI: 10.1186/s12967-022-03303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Graft-versus-host disease (GvHD) is a critical complication after allogeneic hematopoietic stem cell transplantation (HSCT). The immunosuppressants given to patients undergoing allogeneic HSCT disturb the microbiome and the host immune system, potentially leading to dysbiosis and inflammation, and may affect immune function and bone marrow transplantation. The intestinal microbiome is a target for the development of novel therapies for GvHD. Lactobacillus species are widely used supplements to induce production of antimicrobial and anti-inflammatory factors. Methods We determined the effect of the combination of Lactobacillus acidophilus and FK506 on GvHD following major histocompatibility complex-mismatched bone marrow transplantation. Results The combination treatment suppressed IFN-γ and IL-17-producing T cell differentiation, but increased Foxp3+Treg differentiation and IL-10 production. Also, the combination treatment and combination treated-induced Treg cells modulated the proliferation of murine alloreactive T cells in vitro. Additionally, the combination treatment upregulated Treg-related genes—Nt5e, Foxp3, Ikzf2, Nrp1 and Itgb8—in murine CD4+-T cells. The combination treatment also alleviated GvHD clinically and histopathologically by controlling the effector T cell and Treg balance in vivo. Moreover, the combination treatment decreased Th17 differentiation significantly and significantly upregulated Foxp3 and IL-10 expression in peripheral blood mononuclear cells from healthy controls and liver transplantation (LT) patients. Conclusions Therefore, the combination of L. acidophilus and FK506 is effective and safe for patients undergoing allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Jin-Ah Beak
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
14
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Zhang C, Delawary M, Huang P, Korchak JA, Suda K, Zubair AC. IL-10 mRNA Engineered MSCs Demonstrate Enhanced Anti-Inflammation in an Acute GvHD Model. Cells 2021; 10:3101. [PMID: 34831324 PMCID: PMC8621791 DOI: 10.3390/cells10113101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are used in various studies to induce immunomodulatory effects in clinical conditions associated with immune dysregulation such as graft versus host disease (GvHD). However, most of these clinical trials failed to go beyond early phase 2 studies because of limited efficacy. Various methods have been assessed to increase the potency of MSCs. IL-10 is an anti-inflammatory cytokine that is known to modulate immune responses in GvHD. In this study, we evaluated the feasibility of transfecting IL-10 mRNA to enhance MSC therapeutic potential. IL-10 mRNA engineered MSCs (eMSCs-IL10) maintained high levels of IL-10 expression even after freezing and thawing. IL-10 mRNA transfection did not appear to alter MSC intrinsic characteristics. eMSCs-IL10 significantly suppressed T cell proliferation relative to naïve MSCs in vitro. In a mouse model for GvHD, eMSCs-IL10 induced a decrease in plasma level of potent pro-inflammatory cytokines and inhibited CD4+ and CD8+ T cell proliferation in the spleen. In summary, our studies demonstrate the feasibility of potentiating MSCs to enhance their immunomodulatory effects by IL-10 mRNA transfection. The use of non-viral transfection may generate a safe and potent MSC product for treatment of clinical conditions associated with immune dysregulation such as GvHD.
Collapse
Affiliation(s)
- Cuiping Zhang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Mina Delawary
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co., Ltd., Tokyo 1408710, Japan; (M.D.); (K.S.)
| | - Peng Huang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Jennifer A. Korchak
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Koji Suda
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co., Ltd., Tokyo 1408710, Japan; (M.D.); (K.S.)
| | - Abba C. Zubair
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| |
Collapse
|
17
|
Wang X, Zhang R, Huang Z, Zang S, Wu Q, Xia L. Inhibition of the miR-155 and protein prenylation feedback loop alleviated acute graft-versus-host disease through regulating the balance between T helper 17 and Treg cells. Transpl Immunol 2021; 69:101461. [PMID: 34487810 DOI: 10.1016/j.trim.2021.101461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
MicroRNA-155(miR-155) and protein prenylation have been reported to participate in acute graft-versus-host disease (aGVHD) through modulating T lymphocyte differentiation, however the mechanism remains elusive. In this study, we found that the expression of miR-155 and protein prenyltransferases in peripheral blood T lymphocytes of aGVHD mice was significantly increased. Suppression of miR-155 by antagomir-155 could remarkably reduce prenyltransferases mRNA and protein expression in T lymphocytes of aGVHD mice. Conversely, prenyltransferase inhibitors significantly reduced the level of miR-155. Inhibition of this feedback loop of miR-155 and protein prenylation in aGVHD mice led to improved survival and lower aGVHD histopathology scores and significantly induced T cell deficient differentiation towards T helper 17 (Th17) cells and titled differentiation towards CD4+CD25hi regulatory T (Treg) cells. Furthermore, the immunoregulatory effects and protection from aGVHD of prenyltransferase inhibitors could be reversed by the addition of miR-155. The dual treatment of prenylation inhibitors and antagomir-155 showed synergistic effects on T polarization and protection from aGVHD. Consistent with the in vivo changes, inhibition of this feedback loop of miR-155 and protein prenylation affected Th17 and Treg cell polarization in vitro. Our data suggest that miR-155 and protein prenylation may constitute a feedback loop that amplifies immune and inflammatory responses in subjects with aGVHD, and they may serve as potential targets for aGVHD prophylaxis and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China; Department of Geriatrics,Union Hospital,Tongji Medical College, Huazhong University of Science and Technology,1277 JieFang Avenue,Wuhan 430022,China; Institute of Gerontology,Union Hospital,Tongji Medical College, Huazhong University of Science and Technology,1277 JieFang Avenue,Wuhan 430022,China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China
| | - Sibin Zang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China.
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China.
| |
Collapse
|
18
|
Liu H, Yu Z, Tang B, Miao S, Qin C, Li Y, Liang Z, Shi Y, Zhang Y, Wang Q, Yan M, Song Z, Ren H, Dong Y. LYG1 Deficiency Attenuates the Severity of Acute Graft-Versus-Host Disease via Skewing Allogeneic T Cells Polarization Towards Treg Cells. Front Immunol 2021; 12:647894. [PMID: 34262560 PMCID: PMC8273552 DOI: 10.3389/fimmu.2021.647894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a lethal complication after allogeneic hematopoietic stem cell transplantation. The mechanism involves the recognition of host antigens by donor-derived T cells which induces augmented response of alloreactive T cells. In this study, we characterized the role of a previously identified novel classical secretory protein with antitumor function-LYG1 (Lysozyme G-like 1), in aGVHD. LYG1 deficiency reduced the activation of CD4+ T cells and Th1 ratio, but increased Treg ratio in vitro by MLR assay. By using major MHC mismatched aGVHD model, LYG1 deficiency in donor T cells or CD4+ T cells attenuated aGVHD severity, inhibited CD4+ T cells activation and IFN-γ expression, promoted FoxP3 expression, suppressed CXCL9 and CXCL10 expression, restrained allogeneic CD4+ T cells infiltrating in target organs. The function of LYG1 in aGVHD was also confirmed using haploidentical transplant model. Furthermore, administration of recombinant human LYG1 protein intraperitoneally aggravated aGVHD by promoting IFN-γ production and inhibiting FoxP3 expression. The effect of rhLYG1 could partially be abrogated with the absence of IFN-γ. Furthermore, LYG1 deficiency in donor T cells preserved graft-versus-tumor response. In summary, our results indicate LYG1 regulates aGVHD by the alloreactivity of CD4+ T cells and the balance of Th1 and Treg differentiation of allogeneic CD4+ T cells, targeting LYG1 maybe a novel therapeutic strategy for preventing aGVHD.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhengyu Yu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shengchao Miao
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Chenchen Qin
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yongjin Shi
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qingya Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Miao Yan
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhengyang Song
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Adhikary SR, Cuthbertson P, Nicholson L, Bird KM, Sligar C, Hu M, O'Connell PJ, Sluyter R, Alexander SI, Watson D. Post-transplant cyclophosphamide limits reactive donor T cells and delays the development of graft-versus-host disease in a humanized mouse model. Immunology 2021; 164:332-347. [PMID: 34021907 DOI: 10.1111/imm.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+ hCD25+ hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Leigh Nicholson
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katrina M Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Min Hu
- Westmead Institute for Medical Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
20
|
Chen W, Su G, Xu Y, Guo W, Bhansali R, Pan B, Kong Q, Cheng H, Cao J, Qi K, Zhu F, Li M, Zhu S, Zeng L, Li Z, Wu Q, Xu K. Caspase-1 inhibition ameliorates murine acute graft versus host disease by modulating the Th1/Th17/Treg balance. Int Immunopharmacol 2021; 94:107503. [PMID: 33647825 DOI: 10.1016/j.intimp.2021.107503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our previous studies have implicated Caspase-1 signaling in driving the proinflammatory state of acute graft versus host disease (aGVHD). Therefore, we aimed to elucidate the mechanism of Caspase-1 in in murine models of aGVHD through specific inhibition of its activity with the decoy peptide Ac-YVAD-CMK. We transplanted bone marrow from donor C57BL/6 (H-2b) mice into recipient BALB/c (H-2Kd) mice and randomized the recipients into the following treatment cohorts: (1) allogeneic hematopoietic stem cell transplantation and splenic cell infusion control (PBS group); (2) low dose Ac-YVAD-CMK (AC low group); (3) and high dose Ac-YVAD-CMK (AC high group). Indeed, we observed that Caspase-1 inhibition by Ac-YVAD-CMK ameliorated pathological damage and inflammation in the liver, lungs, and colon elicited by aGVHD. This was associated with reduced mortality secondary to aGVHD. Mechanistically, we found that Caspase-1 inhibition modulated donor T cell expansion, restored the balance of Th1/Th17/Treg subsets, and markedly decreased serum levels and aGVHD target organ mRNA expression of IL-1β, IL-18, and HMGB1. Thus, we demonstrate that inhibition of Caspase-1 by Ac-YVAD-CMK mitigates murine aGVHD by regulating Th1/Th17/Treg balance and attenuating its characteristic proinflammatory state.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - GuiZhen Su
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; The Third People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Yan Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentong Guo
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rahul Bhansali
- Department of Medicine, Hospital of the University of Pennsylvania
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - QingLing Kong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Medicine, Hospital of the University of Pennsylvania
| | - Hai Cheng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KunMing Qi
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Li
- Xuzhou Children's Hospital, Xuzhou, Jiangsu, China
| | - ShengYun Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - LingYu Zeng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ZhenYu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KaiLin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
21
|
Parker MH, Stone D, Abrams K, Johnson M, Granot N, Storb R. Anti-ICOS mAb Targets Pathogenic IL-17A-expressing Cells in Canine Model of Chronic GVHD. Transplantation 2021; 105:1008-1016. [PMID: 33065723 PMCID: PMC8046842 DOI: 10.1097/tp.0000000000003489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (GVHD) is a significant cause of morbidity and mortality in transplant patients. We have previously shown that 3 doses of an anti-inducible costimulator (ICOS) mAb transiently ameliorated symptoms and extended survival of dogs affected by chronic GVHD over that of control dogs. The purpose of this study was to specifically correlate changes in T-cell populations in the peripheral blood with anti-ICOS treatment and chronic GVHD progression and regression to reach a better understanding of the mechanism of the disease and prioritize future studies. METHODS Peripheral blood cells from canines transplanted with DLA-mismatched bone marrow and peripheral blood mononuclear cells to generate chronic GVHD were analyzed by flow cytometry using a panel of antibodies specific to helper and cytolytic T cells. RESULTS Chronic GVHD was specifically associated with an increase in CD4+ICOS+ cells, ICOS+ cells expressing IL-17A, and CD8+ cells generating granzyme B. Treatment with anti-ICOS mAb at onset of chronic GVHD symptoms specifically targeted IL-17A+-expressing cells, transiently relieved symptoms, and lengthened survival but was unable to reduce the percentage of CD8+ T-cells expressing granzyme B. CONCLUSIONS These studies suggested a role for both CD4+ and CD8+ T cells in pathogenesis of chronic GVHD in the canine model. We propose that future studies should focus on further extending survival by developing a treatment that would control both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Maura H. Parker
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Diane Stone
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kraig Abrams
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa Johnson
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noa Granot
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rainer Storb
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood 2021; 136:429-440. [PMID: 32526035 DOI: 10.1182/blood.2019000953] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is 1 of the major life-threating complications after allogeneic cell transplantation. Although steroids remain first-line treatment, roughly one-half of patients will develop steroid-refractory GVHD (SR-GVHD), which portends an extremely poor prognosis. Many agents that have shown encouraging response rates in early phase 1/2 trials for prevention and treatment have been unsuccessful in demonstrating a survival advantage when applied in the setting of SR-GVHD. The discovery of novel treatments has been further complicated by the absence of clinically informative animal models that address what may reflect a distinct pathophysiology. Nonetheless, the combined knowledge of established bone marrow transplantation models and recent human trials in SR-GVHD patients are beginning to illuminate novel mechanisms for inhibiting T-cell signaling and promoting tissue tolerance that provide an increased understanding of the underlying biology of SR-GVHD. Here, we discuss recent findings of newly appreciated cellular and molecular mechanisms and provide novel translational opportunities for advancing the effectiveness of treatment in SR-GVHD.
Collapse
|
23
|
Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells Int 2021; 2021:6633386. [PMID: 33679988 PMCID: PMC7906808 DOI: 10.1155/2021/6633386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hematologic cancer encompasses the heterogeneous group of neoplasms that affect different stages of blood cell linages. Despite the significant improvements made in the new modalities of anticancer therapy, many forms of blood cancer remain untreatable, putting the afflicted patients at high risk of death. Therefore, there has been an urgent need for novel therapy to improve the clinical outcomes of patients with blood cancer. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been reported to possess an anticancer activity. This review discusses (i) the therapeutic potential of MSC-EVs against blood cancer, (ii) the possibility of using EVs from sources other than MSCs as a mean for blood cancer vaccination and drug delivery, and (iii) areas to be optimized for MSC-EV-based clinical application on blood malignancies.
Collapse
|
24
|
Corbett JM, Hawthorne I, Coulter IS, English K. Drug delivery formulation impacts cyclosporine efficacy in a humanised mouse model of acute graft versus host disease. Transpl Immunol 2021; 65:101373. [PMID: 33592300 DOI: 10.1016/j.trim.2021.101373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Acute graft versus host disease (aGvHD) is an allogeneic T cell mediated disease which manifests as a severe inflammatory disease affecting multiple organs including the liver, skin, lungs and gastrointestinal tract. Existing prophylactic and therapeutic approaches in aGvHD include the use of cyclosporine A (CyA), however the currently approved CyA formulations which were designed to optimise systemic CyA bioavailability can have a number of side effects including nephrotoxicity as well as the potential to attenuate the beneficial Graft-versus-Leukemia (GvL) effect. An added complication with CyA is that it has a narrow therapeutic window, and following oral administration is absorbed only from the small intestine, with variable cytochrome P450 metabolism contributing to intra- and inter-patient variability. This study sought to investigate the efficacy of a novel CyA oral formulation enabled by the integrated SmPill® oral drug delivery platform in a humanised mouse model of aGvHD. The study compared the approved optimised CyA (Neoral®) with SmPill®-enabled CyA and a systemic intravenous CyA formulation. Our findings clearly demonstrate superior efficacy of the novel SmPill® CyA in prolonging survival in a clinically relevant humanised aGvHD model. SmPill® CyA significantly reduced pathological score in the small intestine, colon, liver and lung of aGvHD mice. In addition, SmPill® CyA significantly reduced the levels of pro-inflammatory cytokines in all the GvHD target tissues examined. Notably, SmPill® CyA was significantly more potent in reducing GvHD associated pathology and inflammatory cytokine production compared to the optimised approved oral CyA formulation, Neoral®.
Collapse
Affiliation(s)
- Jennifer M Corbett
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian Hawthorne
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ivan S Coulter
- Sigmoid Pharma Ltd., The Invent Centre, Dublin City University, Dublin, Ireland
| | - Karen English
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
25
|
Alhaj Hussen K, Michonneau D, Biajoux V, Keita S, Dubouchet L, Nelson E, Setterblad N, Le Buanec H, Bouaziz JD, Guimiot F, Socié G, Canque B. CD4 +CD8 + T-Lymphocytes in Xenogeneic and Human Graft-versus-Host Disease. Front Immunol 2020; 11:579776. [PMID: 33329550 PMCID: PMC7732609 DOI: 10.3389/fimmu.2020.579776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mechanisms driving acute graft-versus-host disease (aGVHD) onset in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) are still poorly understood. To provide a detailed characterization of tissue-infiltrating T lymphocytes (TL) and search for eventual site-specific specificities, we developed a xenogeneic model of aGVHD in immunodeficient mice. Phenotypic characterization of xenoreactive T lymphocytes (TL) in diseased mice disclosed a massive infiltration of GVHD target organs by an original CD4+CD8+ TL subset. Immunophenotypic and transcriptional profiling shows that CD4+CD8+ TL comprise a major PD1+CD62L−/+ transitional memory subset (>60%) characterized by low level expression of cytotoxicity-related transcripts. CD4+CD8+ TL produce high IL-10 and IL-13 levels, and low IL-2 and IFN-γ, suggestive of regulatory function. In vivo tracking of genetically labeled CD4+ or CD8+ TL subsequently found that CD4+CD8+ TL mainly originate from chronically activated cytotoxic TL (CTL). On the other hand, phenotypic profiling of CD3+ TL from blood, duodenum or rectal mucosa in a cohort of allo-HSCT patients failed to disclose abnormal expansion of CD4+CD8+ TL independent of aGVHD development. Collectively, our results show that acquisition of surface CD4 by xenoreactive CD8+ CTL is associated with functional diversion toward a regulatory phenotype, but rule out a central role of this subset in the pathogenesis of aGVHD in allo-HSCT patients.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.,Service d'Hématologie Biologique, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| | - David Michonneau
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Vincent Biajoux
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Laetitia Dubouchet
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Niclas Setterblad
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Helene Le Buanec
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Jean-David Bouaziz
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Gérard Socié
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
26
|
Donor T-cell-derived GM-CSF drives alloantigen presentation by dendritic cells in the gastrointestinal tract. Blood Adv 2020; 3:2859-2865. [PMID: 31585949 DOI: 10.1182/bloodadvances.2019000053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has recently emerged as an important pathogenic cytokine in acute graft-versus-host disease (GVHD), but the nature of the T-cell lineages secreting the cytokine and the mechanisms of action are less clear. Here we used interleukin 17A-fate reporter systems with transcriptional analysis and assays of alloantigen presentation to interrogate the origins of GM-CSF-secreting T cells and the effects of the cytokine on antigen-presenting cell (APC) function after experimental allogeneic stem cell transplantation (SCT). We demonstrated that although GM-CSF-secreting Th17 and non-Th17 cells expanded in the colon over time after SCT, the Th17 lineage expanded to represent 10% to 20% of the GM-CSF secreting T cells at this site by 4 weeks. Donor T-cell-derived GM-CSF expanded alloantigen-presenting donor dendritic cells (DCs) in the colon and lymph nodes. In the mesenteric lymph nodes, GM-CSF-dependent DCs primed donor T cells and amplified acute GVHD in the colon. We thus describe a feed-forward cascade whereby GM-CSF-secreting donor T cells accumulate and drive alloantigen presentation in the colon to amplify GVHD severity. GM-CSF inhibition may be a tractable clinical intervention to limit donor alloantigen presentation and GVHD in the lower gastrointestinal tract.
Collapse
|
27
|
Zhou Y, Cao L, Guo H, Hong Y, Wang M, Wang K, Huang X, Chang Y. Th2 polarization in target organs is involved in the alleviation of pathological damage mediated by transplanting granulocyte colony-stimulating factor-primed donor T cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1087-1096. [PMID: 32880861 DOI: 10.1007/s11427-020-1754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is caused by allo-activated donor T cells infiltrating target organs. As a regulator of immune function, granulocyte colony-stimulating factor (G-CSF) has been demonstrated to relieve the aGVHD reaction. However, the role of G-CSF-primed donor T cells in specific target organs is still unknown. In this study, we employed a classical MHC-mismatched transplantation mouse model (C57BL/6 into BALB/c) and found that recipient mice transplanted with G-CSF-primed T cells exhibited prolonged survival compared with that of the PBS-treated group. This protective function against GVHD mediated by G-CSF-primed donor T cells was further confirmed by decreased clinical and pathological scores in this aGVHD mouse model, especially in the lung and gut. Moreover, we found that T cells polarized towards Th2 cells and regulatory T cells were increased in specific target organs. In addition, G-CSF treatment inhibited inducible co-stimulator (ICOS) expression and increased the expression of tolerance-related genes in recipient mice. Our study provides new insight into the immune regulatory effects of G-CSF on T cell-mediated aGVHD, especially for its precise regulation in GVHD target organs.
Collapse
Affiliation(s)
- Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Leqing Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Huidong Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ke Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China.
| |
Collapse
|
28
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
29
|
Mohammadpour H, Sarow JL, MacDonald CR, Chen GL, Qiu J, Sharma UC, Cao X, Herr MM, Hahn TE, Blazar BR, Repasky EA, McCarthy PL. β2-Adrenergic receptor activation on donor cells ameliorates acute GvHD. JCI Insight 2020; 5:137788. [PMID: 32437333 DOI: 10.1172/jci.insight.137788] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft versus host disease (aGvHD) remains a major impediment to successful allogeneic hematopoietic cell transplantation (allo-HCT). To solve this problem, a greater knowledge of factors that regulate the differentiation of donor T cells toward cytotoxic cells or Tregs is necessary. We report that the β2-adrenergic receptor (β2-AR) is critical for regulating this differentiation and that its manipulation can control aGvHD without impairing the graft-versus-tumor (GvT) effect. Donor T cell β2-AR expression and signaling is associated with decreased aGvHD when compared with recipients of β2-AR-/- donor T cells. We determined that β2-AR activation skewed CD4+ T cell differentiation in vitro and in vivo toward Tregs rather than the T helper 1 (Th1) phenotype. Treatment of allo-HCT recipients with a selective β2-agonist (bambuterol) ameliorated aGvHD severity. This was associated with increased Tregs, decreased cytotoxic T cells, and increased donor BM-derived myeloid-derived suppressor cells (MDSCs) in allogeneic and humanized xenogeneic aGvHD models. β2-AR signaling resulted in increased Treg generation through glycogen synthase kinase-3 activation. Bambuterol preserved the GvT effect by inducing NKG2D+ effector cells and central memory T cells. These data reveal how β-AR signaling can be targeted to ameliorate GvHD severity while preserving GvT effect.
Collapse
Affiliation(s)
| | | | | | - George L Chen
- Medicine, Transplant and Cellular Therapy Program, and
| | - Jingxin Qiu
- Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Umesh C Sharma
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, USA
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Megan M Herr
- Medicine, Transplant and Cellular Therapy Program, and
| | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
30
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
31
|
Odak I, Depkat-Jakob A, Beck M, Jarek M, Yu Y, Seidler U, David S, Ganser A, Förster R, Prinz I, Koenecke C. Donor-derived IL-17A and IL-17F deficiency triggers Th1 allo-responses and increases gut leakage during acute GVHD. PLoS One 2020; 15:e0231222. [PMID: 32251446 PMCID: PMC7135231 DOI: 10.1371/journal.pone.0231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 12/03/2022] Open
Abstract
IL-17A and IL-17F cytokines are important regulators of acute graft-versus-host-disease (GVHD). However, contrary effects of these cytokines in inflammatory diseases have been reported. To investigate the effects of donor-derived IL-17A and IL-17F on GVHD, we made use of single (Il17a-/- or Il17f-/-) and double deficient (Il17af-/-) allogeneic donor CD4+ T cells. We could demonstrate that transplantation of Il17af-/- CD4+ donor T cells led to aggravated GVHD. However, this phenotype was not observed after transplantation of single, Il17a-/- or Il17f-/-, deficient CD4+ T cells, suggesting redundant effects of IL-17A and IL-17F. Moreover, Il17af-/- cell recipients showed an increase of systemic IFNγ, indicating a heightened pro-inflammatory state, as well as infiltration of IFNγ-secreting CD4+ T cells in the recipients’ intestinal tract. These recipients exhibited significant gut leakage, and markedly macrophage infiltration in the gastrointestinal epithelial layer. Moreover, we saw evidence of impaired recovery of gut epithelial cells in recipients of Il17af-/- CD4+ T cells. In this study, we show that IL-17A/F double deficiency of donor CD4+ T cells leads to accelerated GVHD and therefore highlight the importance of these cytokines. Together, IL-17 cytokines might serve as a brake to an intensified Th1 response, leading to the exacerbated gut damage in acute GVHD.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maleen Beck
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Jarek
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Yan Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
32
|
Zhu S, Li H, Liang J, Lv C, Zhao K, Niu M, Li Z, Zeng L, Xu K. Assessment of oral ciprofloxacin impaired gut barrier integrity on gut bacteria in mice. Int Immunopharmacol 2020; 83:106460. [PMID: 32248021 DOI: 10.1016/j.intimp.2020.106460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Gut bacteria and gut barrier plays important roles in body homeostasis. Ciprofloxacin (CPFX) is widely used to treat bacterial infections. However, whether high dosage of CPFX has side effects on gut barrier integrity is still unclear. Our results indicated that the High CPFX treatment (1 mg/ml) caused weight loss, nervousness, anorexia, and increased apoptosis cells in gut, but less influence was observed in the Low CPFX group (0.2 mg/ml). Meanwhile, the High CPFX treatment impaired tight junction molecules Ocln/ZO-1 level and down-regulated antibacterial genes expression (reg3γ, pla2g2α and defb1). Further, the High CPFX treatment increased pro-inflammatory cytokine IL-1β in intestinal tract, decreased IL-17A of duodenum but increased IL-17A of colon at day 37. In addition, the gut bacterial diversity and richness behaved significantly loss regarding CPFX treatment, especially in the High CPFX group during the experiment. Indole exhibited sharply decline in both Low and High CPFX groups at day 7, and the High CPFX mice needed longer time on restoring indole level. Meanwhile, CPFX treatment strongly decreased the concentrations of butyric acid and valeric acid at day 1. Correlation analysis indicated that the linked patterns between the key bacteria (families Bacteroidales_S247, Ruminococcaceae and Desulfovibrionaceae) and metabolites (indole and butyric acid) were disturbed via the CPFX treatment. In conclusion, the High CPFX treatment impaired the gut barrier with the evidence of reduced expression of tight junction proteins, increased apoptosis cells and inflammatory cells, decreased the bacterial diversity and composition, which suggesting a proper antibiotic-dosage use should be carefully considered in disease treatment.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Huiqi Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Jing Liang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Chaoran Lv
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Kai Zhao
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Mingshan Niu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Zhenyu Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China.
| |
Collapse
|
33
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Taborda NA, Rugeles MT, Kottilil S, Zapata JC. High activation and skewed T cell differentiation are associated with low IL-17A levels in a hu-PBL-NSG-SGM3 mouse model of HIV infection. Clin Exp Immunol 2020; 200:185-198. [PMID: 31951011 DOI: 10.1111/cei.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
The humanized NOD/SCID/IL-2 receptor γ-chainnull (NSG) mouse model has been widely used for the study of HIV pathogenesis. Here, NSG mice with transgenic expression of human stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 (NSG-SGM3) were injected with peripheral blood leukocytes (PBL mice) from two HIV-infected (HIV+ ) patients who were under anti-retroviral therapy (ART; referred as HIV+ mice) or one HIV-seronegative healthy volunteer (HIV- ). Such mice are either hu-PBL-NSG-SGM3 HIV+ or HIV- mice, depending on the source of PBL. The kinetics of HIV replication and T cell responses following engraftment were evaluated in peripheral blood and secondary lymphoid tissues. High HIV replication and low CD4 : CD8 ratios were observed in HIV+ mice in the absence of anti-retroviral therapy (ART). Consistent with high activation and skewed differentiation of T cells from the HIV-infected donor, HIV+ mice exhibited a higher T cell co-expression of human leukocyte antigen D-related (HLA-DR) and CD38 than HIV- mice, as well as a shifted differentiation to a CCR7- CD45RA+ terminal effector profile, even in the presence of ART. In addition, HIV replication and the activation/differentiation disturbances of T cells were associated with decreased plasma levels of IL-17A. Thus, this hu-PBL-NSG-SGM3 mouse model recapitulates some immune disturbances occurring in HIV-infected patients, underlying its potential use for studying pathogenic events during this infection.
Collapse
Affiliation(s)
- F Perdomo-Celis
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - S Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - H Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - N A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - M T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - S Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
34
|
Treatment with Apocynin Limits the Development of Acute Graft-versus-Host Disease in Mice. J Immunol Res 2019; 2019:9015292. [PMID: 31781685 PMCID: PMC6874984 DOI: 10.1155/2019/9015292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/11/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the most serious complication limiting the clinical utility of allogeneic hematopoietic stem cell transplantation (HSCT), in which lymphocytes of donors (graft) are activated in response to the host antigen. This disease is associated with increased inflammatory response through the release of inflammatory mediators such as cytokines, chemokines, and reactive oxygen species (ROS). In this study, we have evaluated the role of ROS in GVHD pathogenesis by treatment of recipient mice with apocynin (apo), an inhibitor of intracellular translocation of cytosolic components of NADPH oxidase complex. The pharmacological blockade of NADPH oxidase resulted in prolonged survival and reduced GVHD clinical score. This reduction in GVHD was associated with reduced levels of ROS and TBARS in target organs of GVHD in apocynin-treated mice at the onset of the mortality phase. These results correlated with reduced intestinal and liver injuries and decreased levels of proinflammatory cytokines and chemokines. Mechanistically, pharmacological blockade of the NADPH oxidase was associated with inhibition of recruitment and accumulation of leukocytes in the target organs. Additionally, the chimerism remained unaffected after treatment with apocynin. Our study demonstrates that ROS plays an important role in mediating GVHD, suggesting that strategies aimed at blocking ROS production may be useful as an adjuvant therapy in patients subjected to bone marrow transplantation.
Collapse
|
35
|
Resolution of acute intestinal graft-versus-host disease. Semin Immunopathol 2019; 41:655-664. [PMID: 31673757 DOI: 10.1007/s00281-019-00769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Allogeneic transplantation of hematopoietic stem cells (allo-HCT) represents an increasingly employed therapeutic approach to potentially cure patients suffering from life-threatening malignant and autoimmune disorders. Despite its lifesaving potential, immune-mediated allo-reactivity inherent to the allogeneic transplantation can be observed within up to 50% of all allo-HCT patients regularly resulting in the manifestation of acute and/or chronic graft-versus-host disease (GvHD). Mechanistically, especially donor T cells are assumed to chiefly drive inflammation that can occur in virtually all organs, with the skin, liver, and gut representing as the most frequently affected anatomic sites. Especially in the presence of intestinal manifestations of GvHD, the risk that the disease takes a life-threatening, potentially fatal course is significantly increased. In the light of a rapid gain of knowledge in respect to decode innate and adaptive immunity related mechanisms as, e.g., cytokine networks, intracellular signaling pathways or environmental triggers as, e.g., the intestinal microbiota and the development of novel therapeutic approaches, detailed insight into endogenous mechanisms seeking to counterbalance the proinflammatory machinery or to proactively foster signals promoting the resolution of allo-driven intestinal inflammation is emerging. Here, we seek to highlight the key aspects of those mechanisms involved in and contributing to the resolution of GvHD-associated intestinal inflammation. Concomitantly, we would like to briefly outline and discuss promising future experimental targets suitable to be therapeutically employed to directionally deflect the tissue response from a proinflammatory to an inflammation-resolving type of intestinal GvHD after allo-HCT.
Collapse
|
36
|
Tugues S, Amorim A, Spath S, Martin-Blondel G, Schreiner B, De Feo D, Lutz M, Guscetti F, Apostolova P, Haftmann C, Hasselblatt P, Núñez NG, Hottiger MO, van den Broek M, Manz MG, Zeiser R, Becher B. Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF-licensed myeloid cells. Sci Transl Med 2019; 10:10/469/eaat8410. [PMID: 30487251 DOI: 10.1126/scitranslmed.aat8410] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) not only is an effective treatment for several hematologic malignancies but can also result in potentially life-threatening graft-versus-host disease (GvHD). GvHD is caused by T cells within the allograft attacking nonmalignant host tissues; however, these same T cells mediate the therapeutic graft-versus-leukemia (GvL) response. Thus, there is an urgent need to understand how to mechanistically uncouple GvL from GvHD. Using preclinical models of full and partial MHC-mismatched HCT, we here show that the granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by allogeneic T cells distinguishes between the two processes. GM-CSF drives GvHD pathology by licensing donor-derived phagocytes to produce inflammatory mediators such as interleukin-1β and reactive oxygen species. In contrast, GM-CSF did not affect allogeneic T cells or their capacity to eliminate leukemic cells, retaining undiminished GvL responses. Last, tissue biopsies and peripheral blood mononuclear cells from patients with grade IV GvHD showed an elevation of GM-CSF-producing T cells, suggesting that GM-CSF neutralization has translational potential in allo-HCT.
Collapse
Affiliation(s)
- Sonia Tugues
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland.
| | - Ana Amorim
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Sabine Spath
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Guillaume Martin-Blondel
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland.,INSERM U1043-CNRS UMR 5282, Physiopathology Center of Toulouse-Purpan, Toulouse, France
| | - Bettina Schreiner
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland.,Neurology Clinic, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland
| | - Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, 79110 Freiburg, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Peter Hasselblatt
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, 79110 Freiburg, Germany
| | - Nicolas G Núñez
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland
| | - Markus G Manz
- Department of Hematology and Oncology, University and University Hospital 8091 Zurich, Switzerland
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, 79110 Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology,University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Müller AMS, Min D, Wernig G, Levy RB, Perez VL, Herretes S, Florek M, Burnett C, Weinberg K, Shizuru JA. Modeling Chronic Graft-versus-Host Disease in MHC-Matched Mouse Strains: Genetics, Graft Composition, and Tissue Targets. Biol Blood Marrow Transplant 2019; 25:2338-2349. [PMID: 31415899 DOI: 10.1016/j.bbmt.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Graft-versus-host disease (GVHD) remains a major complication of allogeneic hematopoietic cell transplantation. Acute GVHD (aGVHD) results from direct damage by donor T cells, whereas the biology of chronic GVHD (cGVHD) with its autoimmune-like manifestations remains poorly understood, mainly because of the paucity of representative preclinical models. We examined over an extended time period 7 MHC-matched, minor antigen-mismatched mouse models for development of cGVHD. Development and manifestations of cGVHD were determined by a combination of MHC allele type and recipient strain, with BALB recipients being the most susceptible. The C57BL/6 into BALB.B combination most closely modeled the human syndrome. In this strain combination moderate aGVHD was observed and BALB.B survivors developed overt cGVHD at 6 to 12 months affecting eyes, skin, and liver. Naïve CD4+ cells caused this syndrome as no significant pathology was induced by grafts composed of purified hematopoietic stem cells (HSCs) or HSC plus effector memory CD4+ or CD8+ cells. Furthermore, co-transferred naïve and effector memory CD4+ T cells demonstrated differential homing patterns and locations of persistence. No clear association with donor Th17 cells and the phenotype of aGVHD or cGVHD was observed in this model. Donor CD4+ cells caused injury to medullary thymic epithelial cells, a key population responsible for negative T cell selection, suggesting that impaired thymic selection was an underlying cause of the cGVHD syndrome. In conclusion, we report for the first time that the C57BL/6 into BALB.B combination is a representative model of cGVHD that evolves from immunologic events during the early post-transplant period.
Collapse
Affiliation(s)
- Antonia M S Müller
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California; Department of Hematology, University Hospital and University Zurich, Zurich, Switzerland.
| | - Dullei Min
- Division of Pediatric Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Victor L Perez
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Samantha Herretes
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mareike Florek
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Casey Burnett
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kenneth Weinberg
- Department of Hematology, University Hospital and University Zurich, Zurich, Switzerland
| | - Judith A Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
McDaniel Mims B, Jones-Hall Y, Dos Santos AP, Furr K, Enriquez J, Grisham MB. Induction of acute graft vs. host disease in lymphopenic mice. ACTA ACUST UNITED AC 2019; 26:233-244. [PMID: 31248669 DOI: 10.1016/j.pathophys.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially life-saving treatment for refractory/relapsing hematological malignancies, blood disorders or autoimmune diseases. However, approximately 40-50% of patients undergoing allogeneic HSCT will develop a multi-organ, inflammatory disorder called acute graft vs. host disease (aGVHD). Experimental and clinical studies suggest that intestinal injury due to toxic, pre-transplant conditioning protocols (e.g. lethal irradiation and/or chemotherapy) may play a major role in the development of aGVHD. However, recent studies from our laboratory suggest that this may not be the case. The objective of this study was to quantify and compare the onset and severity of aGVHD induced by the adoptive transfer of allogeneic T cells into untreated lymphopenic mice. Four million allogeneic or syngeneic CD4+CD62L+CD25- T cells were transferred (i.p.) into NK cell-depleted RAG1-/- mice or RAG2-/-IL2rγ-/-double knock-out (DKO) mice and assessed daily for signs of aGVHD. We found that adoptive transfer of allogeneic but not syngeneic T cells into NK cell-depleted RAG1-/- or DKO mice induced many of the clinical and histological features of aGVHD including weight loss, inflammatory cytokine production and tissue inflammation. In addition, adoptive transfer of allogeneic T cells into each recipient induced severe anemia as well as dramatic reductions in bone marrow and spleen cellularity. Taken together, we conclude that allogeneic CD4+ T cells are both necessary and sufficient to induce aGVHD in lymphopenic recipients in the absence of toxic, pre-transplant conditioning.
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Yava Jones-Hall
- Purdue University, College of Veterinary Medicine, Department of Comparative Pathobiology, West Lafayette, IN 47907, United States
| | - Andrea Pires Dos Santos
- Purdue University, College of Veterinary Medicine, Department of Comparative Pathobiology, West Lafayette, IN 47907, United States
| | - Kathryn Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States.
| |
Collapse
|
39
|
Geraghty NJ, Belfiore L, Adhikary SR, Alexander SI, Sluyter R, Watson D. Increased splenic human CD4+:CD8+ T cell ratios, serum human interferon-γ and intestinal human interleukin-17 are associated with clinical graft-versus-host disease in humanized mice. Transpl Immunol 2019; 54:38-46. [DOI: 10.1016/j.trim.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
|
40
|
Adhikary SR, Geraghty NJ, Cuthbertson P, Sluyter R, Watson D. Altered donor P2X7 activity in human leukocytes correlates with P2RX7 genotype but does not affect the development of graft-versus-host disease in humanised mice. Purinergic Signal 2019; 15:177-192. [PMID: 31001750 PMCID: PMC6635536 DOI: 10.1007/s11302-019-09651-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening consequence of allogeneic haematopoietic stem cell transplantation, a curative therapy for haematological malignancies. The ATP-gated P2X7 receptor channel is implicated in the development of GVHD. P2X7 activity on human leukocytes can be influenced by gain-of-function (GOF) and loss-of-function (LOF) single nucleotide polymorphisms (SNPs) in the P2RX7 gene. In this study, the P2RX7 gene was sequenced in 25 human donors and the P2X7 activity on subsets of peripheral blood T cells, natural killer (NK) cells and monocytes was measured using an ATP-induced dye uptake assay. GOF and LOF SNPs representing 10 of the 17 known P2RX7 haplotypes were identified, and correlated with P2X7 activity on all leukocyte subsets investigated. Notably, invariant (i) NK T cells displayed the highest P2X7 activity amongst all cell types studied. To determine if donor P2X7 activity influenced the development of GVHD, immunodeficient NOD-SCID-IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells isolated from donors of either GOF (hP2X7GOF mice) or LOF (hP2X7LOF mice) P2RX7 genotype. Both hP2X7GOF and hP2X7LOF mice demonstrated similar human leukocyte engraftment, and showed comparable weight loss, GVHD clinical score and overall survival. Donor P2X7 activity did not affect human leukocyte infiltration or GVHD-mediated tissue damage, or the relative expression of human P2X7 or human interferon-γ (hIFNγ) in tissues. Finally, hP2X7GOF and hP2X7LOF mice demonstrated similar concentrations of serum hIFNγ. This study demonstrates that P2X7 activity correlates with donor P2RX7 genotype on human leukocyte subsets important in GVHD development, but does not affect GVHD development in a humanised mouse model of this disease.
Collapse
Affiliation(s)
- S R Adhikary
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - N J Geraghty
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - P Cuthbertson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - D Watson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
41
|
Abstract
BACKGROUND T cell-mediated graft rejection is mostly correlated with potent Th1 responses. However, because IFNγ mice reject their graft as efficiently as wild-type (WT) mice, the exact contribution of IFNγ and its transcription factor T-bet remains a matter of debate. Here, we address this question in the context of pancreatic islet allograft to better inform the molecular pathways that hampers islet survival in vivo. METHODS Pancreatic islets from BALB/c mice were transplanted in WT, IFNγ, or T-bet C57BL/6 mice. Graft survival and the induction of effector and cytotoxic T-cell responses were monitored. RESULTS Rejection of fully mismatched islet allografts correlated with high expression of both IFNγ and T-bet in WT recipients. However, allogeneic islets were permanently accepted in T-bet mice, in contrast to IFNγ hosts. Long-term survival correlated with decreased CD4 and CD8 T-cell infiltrates, drastically reduced donor-specific IFNγ and tumor necrosis factor tumor necrosis factor α responses and very low expression of the cytotoxic markers granzyme B, perforin, and FasLigand. In addition, in vitro and in vivo data pointed to an increased susceptibility of T-bet CD8 T cell to apoptosis. These observations were not reported in IFNγ mice, which have set up compensatory effector mechanisms comprising an increased expression of the transcription factor Eomes and cytolytic molecules as well as tumor necrosis factor α-mediated but not IL-4 nor IL-17-mediated allogeneic responses. CONCLUSIONS Anti-islet T-cell responses require T-bet but not IFNγ-dependent programs. Our results provide new clues on the mechanisms dictating islet rejection and may help refine the therapeutic/immunosuppressive regimens applied in diabetic patients receiving islets or pancreas allografts.
Collapse
|
42
|
Yang J, Ramadan A, Reichenbach DK, Loschi M, Zhang J, Griesenauer B, Liu H, Hippen KL, Blazar BR, Paczesny S. Rorc restrains the potency of ST2+ regulatory T cells in ameliorating intestinal graft-versus-host disease. JCI Insight 2019; 4:122014. [PMID: 30694220 DOI: 10.1172/jci.insight.122014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Soluble stimulation-2 (ST2) is increased during graft-versus-host disease (GVHD), while Tregs that express ST2 prevent GVHD through unknown mechanisms. Transplantation of Foxp3- T cells and Tregs that were collected and sorted from different Foxp3 reporter mice indicated that in mice that developed GVHD, ST2+ Tregs were thymus derived and predominantly localized to the intestine. ST2-/- Treg transplantation was associated with reduced total intestinal Treg frequency and activation. ST2-/- versus WT intestinal Treg transcriptomes showed decreased Treg functional markers and, reciprocally, increased Rorc expression. Rorc-/- T cells transplantation enhanced the frequency and function of intestinal ST2+ Tregs and reduced GVHD through decreased gut-infiltrating soluble ST2-producing type 1 and increased IL-4/IL-10-producing type 2 T cells. Cotransfer of ST2+ Tregs sorted from Rorc-/- mice with WT CD25-depleted T cells decreased GVHD severity and mortality, increased intestinal ST2+KLRG1+ Tregs, and decreased type 1 T cells after transplantation, indicating an intrinsic mechanism. Ex vivo IL-33-stimulated Tregs (TregIL-33) expressed higher amphiregulin and displayed better immunosuppression, and adoptive transfer prevented GVHD better than control Tregs or TregIL-33 cultured with IL-23/IL-17. Amphiregulin blockade by neutralizing antibody in vivo abolished the protective effect of TregIL-33. Our data show that inverse expression of ST2 and RORγt in intestinal Tregs determines GVHD and that TregIL-33 has potential as a cellular therapy avenue for preventing GVHD.
Collapse
Affiliation(s)
- Jinfeng Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdulraouf Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dawn K Reichenbach
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Loschi
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jilu Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hong Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keli L Hippen
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
43
|
Li JY, Yu M, Tyagi AM, Vaccaro C, Hsu E, Adams J, Bellido T, Weitzmann MN, Pacifici R. IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production. J Bone Miner Res 2019; 34:349-360. [PMID: 30399207 DOI: 10.1002/jbmr.3600] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes. However, a definitive link between IL-17A and osteocytic expression of RANKL has not been made. Here we show that cPTH fails to induce cortical and trabecular bone loss and causes less intense bone resorption in conditional knock-out (IL-17RAΔOCY ) male and female mice lacking the expression of IL-17A receptor (IL-17RA) in dentin matrix protein 1 (DMP1)-8kb-Cre-expressing cells, which include osteocytes and some osteoblasts. Therefore, direct IL-17RA signaling in osteoblasts/osteocytes is required for cPTH to exert its bone catabolic effects. In addition, in vivo, silencing of IL-17RA signaling in in DMP1-8kb-expressing cells blunts the capacity of cPTH to stimulate osteocytic RANKL production, indicating that cPTH augments osteocytic RANKL expression indirectly, via an IL-17A/IL-17RA-mediated mechanism. Thus, osteocytic production of RANKL and T cell production of IL-17A are both critical for the bone catabolic activity of cPTH. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chiara Vaccaro
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Lv Q, Xie L, Cheng Y, Shi Y, Shan W, Ning C, Xie B, Yang B, Luo X, He Q, Zhu Q, Zhang Y, Zhang Z, Wang C, Chen X, Xu C. A20-mediated deubiquitination of ERα in the microenvironment of CD163+ macrophages sensitizes endometrial cancer cells to estrogen. Cancer Lett 2019; 442:137-147. [DOI: 10.1016/j.canlet.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 02/04/2023]
|
45
|
Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, Zhou T, Huang T, Geng S, Luo C, Huang X, Wu S, Ling W, Du X, He C, Weng J. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol 2018; 11:135. [PMID: 30526632 PMCID: PMC6286548 DOI: 10.1186/s13045-018-0680-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are a promising therapy for preventing chronic Graft-Versus-Host Disease (cGVHD) due to their potent immunomodulatory properties. However, the safety concerns regarding the use of MSCs remain unsolved, and conflicting effects are observed due to the heterogeneity of MSCs. Recently, exosomes were shown to mediate the paracrine effects of MSCs, making it a potential candidate for cell-free therapies. The aim of this study is to investigate the efficacy and safety of MSCs-derived exosomes (MSCs-exo) in an established cGVHD mouse model. METHODS Bone marrow (BM)-derived MSCs were cultured, and the supernatants of these cultures were collected to prepare exosomes using ultracentrifugation. Exosomes from human dermal fibroblasts (Fib-exo) were used as a negative control. The cGVHD model was established, and tail vein injections of MSCs-exo or Fib-exo were administered once per week for 6 weeks. The symptoms and signs of cGVHD were monitored, and histopathological changes were detected by hematoxylin and eosin and Masson staining. The effects of MSCs-exo on Th17, Th1, and Treg were evaluated by flow cytometry, qPCR, and Luminex. In addition, human peripheral blood mononuclear cells (PBMCs) were stimulated and treated with MSCs-exo in vitro. IL-17-expressing Th17 and IL-10-expressing Treg were evaluated by flow cytometry, qPCR, and ELISA. RESULTS We found that MSCs-exo effectively prolonged the survival of cGVHD mice and diminished the clinical and pathological scores of cGVHD. Fibrosis in the skin, lung, and liver was significantly ameliorated by MSCs-exo application. In MSCs-exo treated mice, activation of CD4+ T cells and their infiltration into the lung were reduced. Of note, MSCs-exo exhibited potent immunomodulatory effects via the inhibition of IL-17-expressing pathogenic T cells and induction of IL-10-expressing regulatory cells during cGVHD. The expressions of Th17 cell-relevant transcription factors and pro-inflammatory cytokines was markedly reduced after MSCs-exo treatment. In vitro, MSCs-exo blocked Th17 differentiation and improved the Treg phenotype in PBMCs obtained from healthy donors and patients with active cGVHD, further indicating the regulatory effect of MSCs-exo on GVHD effector T cells. CONCLUSIONS Our data suggested that MSCs-exo could improve the survival and ameliorate the pathologic damage of cGVHD by suppressing Th17 cells and inducing Treg. This finding provides a novel alternative approach for the treatment of cGVHD.
Collapse
Affiliation(s)
- Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiaomei Chen
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liyan Guo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suijing Wu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Wei Ling
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China.
| | - Jianyu Weng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
46
|
Gong H, Ma S, Liu S, Liu Y, Jin Z, Zhu Y, Song Y, Lei L, Hu B, Mei Y, Liu H, Liu Y, Wu Y, Dong C, Xu Y, Wu D, Liu H. IL-17C Mitigates Murine Acute Graft-vs.-Host Disease by Promoting Intestinal Barrier Functions and Treg Differentiation. Front Immunol 2018; 9:2724. [PMID: 30534126 PMCID: PMC6275224 DOI: 10.3389/fimmu.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Acute graft-vs.-host disease (aGVHD) is one of the major complications and results in high mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-17C is involved in many inflammatory immune disorders. However, the role of IL-17C in aGVHD remains unknown. Here we demonstrated that IL-17C deficiency in the graft significantly promoted alloreactive T cell responses and induced aggravated aGVHD compared with wildtype donors in a fully MHC-mismatched allo-HSCT model. In contrast, IL-17C overexpression ameliorated aGVHD. IL-17C deficiency increased intestinal epithelial permeability and elevated inflammatory cytokine production, leading to an enhanced aGVHD progression. Tregs was reduced in recipients of IL-17C−/− graft, whilst restored after IL-17C overexpression. Decreased Treg differentiation was abrogated after neutralizing IFN-γ, but not IL-6. Moreover, depletion of Tregs diminished the protective effect of IL-17C. Of note, patients with low IL-17C expression displayed higher aGVHD incidence together with poor overall survival, thereby IL-17C could be an independent risk factor for aGVHD development. Our results are the first demonstrating the protective role of IL-17C in aGVHD by promoting intestinal barrier functions and Treg differentiation in a MHC fully mismatched murine aGVHD model. IL-17C may serve as a novel biomarker and potential therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Huanle Gong
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuangzhu Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Mei
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hong Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuejun Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wu
- School of Radiation Medicine and Protection School for Radiological and Interdisciplinary Science, Soochow University, Suzhou, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
In Vitro Th17-Polarized Human CD4 + T Cells Exacerbate Xenogeneic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:204-215. [PMID: 30326279 DOI: 10.1016/j.bbmt.2018.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe complication of allogeneic hematopoietic stem cell transplantation. The role of Th17 cells in its pathophysiology remains a matter of debate. In this study, we assessed whether enrichment of human peripheral blood mononuclear cells (PBMCs) with in vitro Th17-polarized CD4+ T cells would exacerbate xenogeneic GVHD (xGVHD) into NOD-scid IL-2Rγ null (NSG) mice. Naive human CD4+ T cells were stimulated under Th17-skewing conditions for 8 to 10 days and then coinjected in NSG mice with fresh PBMCs from the same donor. We observed that Th17-polarized cells engrafted and migrated toward xGVHD target organs. They also acquired a double-expressing IL-17A+IFNγ+ profile in vivo. Importantly, cotransfer of Th17-polarized cells (1 × 106) with PBMCs (1 × 106) exacerbated xGVHD compared with transplantation of PBMCs alone (2 × 106). Furthermore, PBMC cotransfer with Th17-polarized cells was more potent for xGVHD induction than cotransfer with naive CD4+ T cells stimulated in nonpolarizing conditions (Th0 cells, 1 × 106 + 1 × 106 PBMCs) or with Th1-polarized cells (1 × 106 + 1 × 106 PBMCs). In summary, our results suggest that human Th17-polarized cells can cooperate with PBMCs and be pathogenic in the NSG xGVHD model.
Collapse
|
48
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
49
|
Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen HD, Bastian D, Zhang M, Sofi MH, Chatterjee S, Hill EG, Mehrotra S, Kraft AS, Yu XZ. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest 2018; 128:2787-2801. [PMID: 29781812 DOI: 10.1172/jci95407] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
PIM kinase family members play a crucial role in promoting cell survival and proliferation via phosphorylation of their target substrates. In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenicity of PIM-2-deficient T cells to induce GVHD. On the other hand, mice deficient in PIM-2 readily rejected syngeneic tumor, which was primarily dependent on CD8+ T cells. Furthermore, silencing PIM-2 in polyclonal or antigen-specific CD8+ T cells substantially enhanced their antitumor response in adoptive T cell immunotherapy. We conclude that PIM-2 kinase plays a prominent role in suppressing T cell responses, and provide a strong rationale to target PIM-2 for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology
| | | | | | | | | | | | | | - Elizabeth G Hill
- Department of Public Health Science, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
50
|
Koenecke C, Krueger A. MicroRNA in T-Cell Development and T-Cell Mediated Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:992. [PMID: 29867969 PMCID: PMC5949326 DOI: 10.3389/fimmu.2018.00992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) is still a major cause of treatment-related mortality after allogeneic stem cell transplantation. Allo-antigen recognition of donor T cells after transplantation account for the onset and persistence of this disease. MicroRNAs (miRNAs) are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation. Thus, miRNAs also contribute to pathological T-cell function during GvHD. Given their capacity of fine-tuning T-cell function, miRNAs have emerged as promising therapeutic targets to curtail acute GvHD, but simultaneously maintain T-cell-mediated graft-versus-tumor effects. Here, we review the role of key miRNAs contributing to the pathophysiology of GvHD. We focus on those miRNAs acting in T cells and for which a role in GvHD has been established in preclinical models. Finally, we provide an outlook for clinical application of this new therapeutic target for GvHD prevention and treatment.
Collapse
Affiliation(s)
- Christian Koenecke
- Clinic for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|