1
|
STS1 and STS2 Phosphatase Inhibitor Baicalein Enhances the Expansion of Hematopoietic and Progenitor Stem Cells and Alleviates 5-Fluorouracil-Induced Myelosuppression. Int J Mol Sci 2023; 24:ijms24032987. [PMID: 36769312 PMCID: PMC9917816 DOI: 10.3390/ijms24032987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
STS1 and STS2, as the protein phosphatases that dephosphorylate FLT3 and cKIT, negatively regulate the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). To obtain the small molecule inhibitors of STS1/STS2 phosphatase activity used to expand HSPCs both in vitro and in vivo, we establish an in vitro phosphatase assay using the recombinant proteins of the STS1/STS2 histidine phosphatase (HP) domain, by which we screened out baicalein (BC) as one of the effective inhibitors targeting STS1 and STS2. Then, we further demonstrate the direct binding of BC with STS1/STS2 using molecular docking and capillary electrophoresis and verify that BC can restore the phosphorylation of FLT3 and cKIT from STS1/STS2 inhibition. In a short-term in vitro culture, BC promotes profound expansion and enhances the colony-forming capacity of both human and mouse HSPCs along with the elevation of phospho-FLT3 and phospho-cKIT levels. Likewise, in vivo administration with BC significantly increases the proportions of short-term hematopoietic stem cells (ST-HSCs), multipotent progenitors (MPPs) and especially long-term HSCs (LT-HSCs) in healthy mouse bone marrow and increases the numbers of colony-forming units (CFU) formed by HSPCs as well. More importantly, pre-administration of BC significantly enhances the survival of mice with lethal 5-fluorouracil (5-FU) injection due to the alleviation of 5-FU-induced myelosuppression, as evidenced by the recovery of bone marrow histologic injury, the increased proportions of LT-HSCs, ST-HSCs and MPPs, and enhanced colony-forming capacity. Collectively, our study not only suggests BC as one of the small molecule candidates to stimulate HSPC expansion both in vitro and in vivo when needed in either physiologic or pathologic conditions, but also supports STS1/STS2 as potential therapeutic drug targets for HSPC expansion and hematopoietic injury recovery.
Collapse
|
2
|
Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. Int J Mol Sci 2022; 23:ijms23137289. [PMID: 35806293 PMCID: PMC9267047 DOI: 10.3390/ijms23137289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies.
Collapse
|
3
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
4
|
Li L, Zhang S, Ge C, Ji L, Lv Y, Zhao C, Xu L, Zhang J, Song C, Chen J, Wei W, Fang Y, Yuan N, Wang J. HSCs transdifferentiate primarily to pneumonocytes in radiation-induced lung damage repair. Aging (Albany NY) 2021; 13:8335-8354. [PMID: 33686967 PMCID: PMC8034935 DOI: 10.18632/aging.202644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Accumulative radiation exposure leads to hematopoietic or tissue aging. Whether hematopoietic stem cells (HSCs) are involved in lung damage repair in response to radiation remains controversial. The aim of this study is to identify if HSC can transdifferentiate to pneumonocytes for radiation-induced damage repair. To this end, HSCs from male RosamT/mG mice were isolated by fluorescence-activated cell sorting (FACS) and transplanted into lethally irradiated female CD45.1 mice. 4 months after transplantation, transplanted HSC was shown to repair the radiation-induced tissue damage, and donor-derived tdTomato (phycoerythrin, PE) red fluorescence cells and Ddx3y representing Y chromosome were detected exclusively in female recipient lung epithelial and endothelial cells. Co-localization of donor-derived cells and recipient lung tissue cells were observed by laser confocal microscopy and image flow cytometry. Furthermore, the results showed HSC transplantation replenished radiation-induced lung HSC depletion and the PE positive repaired lung epithelial cells were identified as donor HSC origin. The above data suggest that donor HSC may migrate to the injured lung of the recipient and some of them can be transdifferentiated to pneumonocytes to repair the injury caused by radiation.
Collapse
Affiliation(s)
- Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yaqi Lv
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenglin Song
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jianing Chen
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| |
Collapse
|
5
|
Lin DS, Tian L, Tomei S, Amann-Zalcenstein D, Baldwin TM, Weber TS, Schreuder J, Stonehouse OJ, Rautela J, Huntington ND, Taoudi S, Ritchie ME, Hodgkin PD, Ng AP, Nutt SL, Naik SH. Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development. Nat Cell Biol 2021; 23:219-231. [PMID: 33649477 DOI: 10.1038/s41556-021-00636-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.
Collapse
Affiliation(s)
- Dawn S Lin
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Luyi Tian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Sara Tomei
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Tracey M Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Tom S Weber
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jaring Schreuder
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Olivia J Stonehouse
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Samir Taoudi
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew E Ritchie
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley P Ng
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Stephen L Nutt
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Zriwil A, Böiers C, Kristiansen TA, Wittmann L, Yuan J, Nerlov C, Sitnicka E, Jacobsen SEW. Direct role of FLT3 in regulation of early lymphoid progenitors. Br J Haematol 2018; 183:588-600. [PMID: 30596405 PMCID: PMC6492191 DOI: 10.1111/bjh.15578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023]
Abstract
Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Alya Zriwil
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lilian Wittmann
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ewa Sitnicka
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten E W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology, Center for Haematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
7
|
Tornack J, Kawano Y, Garbi N, Hämmerling GJ, Melchers F, Tsuneto M. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+long-term repopulating murine hematopoietic stem cells. Eur J Immunol 2017; 47:1477-1487. [DOI: 10.1002/eji.201646730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Julia Tornack
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Yohei Kawano
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Natalio Garbi
- Division of Molecular Immunology; German Cancer Research Center; Heidelberg Germany
- Department of Molecular Immunology, Institutes of Molecular Medicine and Experimental Immunology; University of Bonn; Bonn Germany
| | - Günter J. Hämmerling
- Division of Molecular Immunology; German Cancer Research Center; Heidelberg Germany
| | - Fritz Melchers
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Motokazu Tsuneto
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
- Reproductive Centre; Mio Fertility Clinic; Tottori Japan
| |
Collapse
|
8
|
Karimi E, Faraji H, Hamidi Alamdari D, Souktanloo M, Mojarrad M, Ashman LK, Mashkani B. Overexpression of functional human FLT3 ligand in Pichia pastoris. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s000368381704007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mead AJ, Neo WH, Barkas N, Matsuoka S, Giustacchini A, Facchini R, Thongjuea S, Jamieson L, Booth CAG, Fordham N, Di Genua C, Atkinson D, Chowdhury O, Repapi E, Gray N, Kharazi S, Clark SA, Bouriez T, Woll P, Suda T, Nerlov C, Jacobsen SEW. Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD-induced myeloproliferation. J Exp Med 2017; 214:2005-2021. [PMID: 28637883 PMCID: PMC5502426 DOI: 10.1084/jem.20161418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD-driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.
Collapse
Affiliation(s)
- Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Raffaella Facchini
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lauren Jamieson
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas Fordham
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Cristina Di Genua
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Deborah Atkinson
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Onima Chowdhury
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shabnam Kharazi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sally-Ann Clark
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiphaine Bouriez
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Petter Woll
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore
| | - Claus Nerlov
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, O'Carroll D. A transit-amplifying population underpins the efficient regenerative capacity of the testis. J Exp Med 2017; 214:1631-1641. [PMID: 28461596 PMCID: PMC5460999 DOI: 10.1084/jem.20161371] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 11/04/2022] Open
Abstract
The spermatogonial stem cell (SSC) that supports spermatogenesis throughout adult life resides within the GFRα1-expressing A type undifferentiated spermatogonia. The decision to commit to spermatogenic differentiation coincides with the loss of GFRα1 and reciprocal gain of Ngn3 (Neurog3) expression. Through the analysis of the piRNA factor Miwi2 (Piwil4), we identify a novel population of Ngn3-expressing spermatogonia that are essential for efficient testicular regeneration after injury. Depletion of Miwi2-expressing cells results in a transient impact on testicular homeostasis, with this population behaving strictly as transit amplifying cells under homeostatic conditions. However, upon injury, Miwi2-expressing cells are essential for the efficient regenerative capacity of the testis, and also display facultative stem activity in transplantation assays. In summary, the mouse testis has adopted a regenerative strategy to expand stem cell activity by incorporating a transit-amplifying population to the effective stem cell pool, thus ensuring rapid and efficient tissue repair.
Collapse
Affiliation(s)
- Claudia Carrieri
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK.,European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo 00015, Italy
| | - Stefano Comazzetto
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo 00015, Italy
| | - Amit Grover
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, England, UK
| | - Marcos Morgan
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK.,European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo 00015, Italy
| | - Andreas Buness
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo 00015, Italy
| | - Claus Nerlov
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, England, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK .,European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo 00015, Italy
| |
Collapse
|
11
|
Tian C, Zhang Y. Purification of hematopoietic stem cells from bone marrow. Ann Hematol 2016; 95:543-7. [DOI: 10.1007/s00277-016-2608-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/31/2016] [Indexed: 12/22/2022]
|
12
|
Zhang J, Vakhrusheva O, Bandi SR, Demirel Ö, Kazi JU, Fernandes RG, Jakobi K, Eichler A, Rönnstrand L, Rieger MA, Carpino N, Serve H, Brandts CH. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness. Stem Cell Reports 2015; 5:633-46. [PMID: 26365512 PMCID: PMC4624938 DOI: 10.1016/j.stemcr.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023] Open
Abstract
FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Olesya Vakhrusheva
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Srinivasa Rao Bandi
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Özlem Demirel
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Julhash U Kazi
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Medicon Village, 22363 Lund, Sweden
| | - Ramona Gomes Fernandes
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Katja Jakobi
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Astrid Eichler
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Medicon Village, 22363 Lund, Sweden
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Abstract
The sensitivity of chromatin immunoprecipitation (ChIP) assays poses a major obstacle for epigenomic studies of low-abundance cells. Here we present a microfluidics-based ChIP-Seq protocol using as few as 100 cells via drastically improved collection of high-quality ChIP-enriched DNA. Using this technology, we uncovered many novel enhancers and super enhancers in hematopoietic stem and progenitor cells from mouse fetal liver, suggesting that enhancer activity is highly dynamic during early hematopoiesis.
Collapse
|
14
|
Oubari F, Amirizade N, Mohammadpour H, Nakhlestani M, Zarif MN. The Important Role of FLT3-L in Ex Vivo Expansion of Hematopoietic Stem Cells following Co-Culture with Mesenchymal Stem Cells. CELL JOURNAL 2015. [PMID: 26199899 PMCID: PMC4503834 DOI: 10.22074/cellj.2016.3715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective Hematopoietic stem cells (HSCs) transplantation using umbilical cord blood
(UCB) has improved during the last decade. Because of cell limitations, several studies focused on the ex vivo expansion of HSCs. Numerous investigations were performed to introduce the best cytokine cocktails for HSC expansion The majority used the Fms-related
tyrosine kinase 3 ligand (FLT3-L) as a critical component. According to FLT3-L biology, in
this study we have investigated the hypothesis that FLT3-L only effectively induces HSCs
expansion in the presence of a mesenchymal stem cell (MSC) feeder.
Materials and Methods In this experimental study, HSCs and MSCs were isolated from
UCB and placenta, respectively. HSCs were cultured in different culture conditions in the
presence and absence of MSC feeder and cytokines. After ten days of culture, total nucleated cell count (TNC), cluster of differentiation 34+(CD34+) cell count, colony forming
unit assay (CFU), long-term culture initiating cell (LTC-IC), homeobox protein B4 (HoxB4)
mRNA and surface CD49d expression were evaluated. The fold increase for some culture
conditions was compared by the t test.
Results HSCs expanded in the presence of cytokines and MSCs feeder. The rate of expansion in the co-culture condition was two-fold more than culture with cytokines (P<0.05).
FLT3-L could expand HSCs in the co-culture condition at a level of 20-fold equal to the
presence of stem cell factor (SCF), thrombopoietin (TPO) and FLT3-L without feeder cells.
The number of extracted colonies from LTC-IC and CD49d expression compared with a
cytokine cocktail condition meaningfully increased (P<0.05).
Conclusion FLT3-L co-culture with MSCs can induce high yield expansion of HSCs and
be a substitute for the universal cocktail of SCF, TPO and FLT3-L in feeder-free culture.
Collapse
Affiliation(s)
- Farhad Oubari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran ; Faulty of Paramedics, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Naser Amirizade
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hemn Mohammadpour
- Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Nakhlestani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
15
|
Hosseinpour B, Bakhtiarizadeh MR, Mirabbassi SM, Ebrahimie E. Comparison of hematopoietic cancer stem cells with normal stem cells leads to discovery of novel differentially expressed SSRs. Gene 2014; 550:10-7. [PMID: 25084127 DOI: 10.1016/j.gene.2014.07.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Tandem repeat expansion in the transcriptomics level has been considered as one of the underlying causes of different cancers. Cancer stem cells are a small portion of cancer cells within the main neoplasm and can remain alive during chemotherapy and re-induce tumor growth. The EST-SSR background of cancer stem cells and possible roles of expressed SSRs in altering normal stem cells to cancer ones have not been investigated yet. Here, SSR distributions in hematopoietic normal and cancer stem cells were compared based on the expressed EST-SSR. One hundred eighty nine and 223 EST-SSRs were identified in cancer and normal stem cells, respectively. The EST-SSR expression pattern was significantly different between normal and cancer stem cells. The frequencies of AC/GT and TA/TA EST-SSRs were about 10% higher in cancer than normal stem cells. Remarkably, the number of triplets in cancer stem cells was 1.5 times higher than that in normal stem cells. GAT EST-SSR was frequent in cancer stem cells, but, conversely, normal stem cells did not express GAT EST-SSR. We suggest this EST-SSR as a novel triplet in cancer stem cell induction. Translating EST-SSRs to amino acids demonstrated that Asp and Ile were more abundant in cancer stem cells compared to normal stem cells. Finally, Gene Ontology (GO) enrichment analysis was carried out on genes containing triplet SSRs and showed that SSRs intentionally visit some specific GO classes. Interestingly, a NF-kappa (nuclear factor-kB) binding transcription factor was significantly hit by SSR instability which is a hallmark for leukemia stem cells. NF-kappa is an over represented transcription factor during cancer progression. It seems that there is a crosstalk between the NF-kB transcription factor and expressed GAT tandem repeat which negatively regulate apoptosis. In addition to better understanding of tumorigenesis, the findings of this study offer new DNA markers for diagnostic purposes and identifying at risk populations. In addition, a new approach for gene discovery in cancer by target analysis of differentially expressed EST-SSRs between cancer and normal stem cells is presented here.
Collapse
Affiliation(s)
| | | | | | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
16
|
He BL, Shi X, Man CH, Ma ACH, Ekker SC, Chow HCH, So CWE, Choi WWL, Zhang W, Zhang Y, Leung AYH. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 2014; 123:2518-29. [PMID: 24591202 PMCID: PMC4017313 DOI: 10.1182/blood-2013-02-486688] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is expressed in human hematopoietic stem and progenitor cells (HSPCs) but its role during embryogenesis is unclear. In acute myeloid leukemia (AML), internal tandem duplication (ITD) of FLT3 at the juxtamembrane (JMD) and tyrosine kinase (TKD) domains (FLT3-ITD(+)) occurs in 30% of patients and is associated with inferior clinical prognosis. TKD mutations (FLT3-TKD(+)) occur in 5% of cases. We made use of zebrafish to examine the role of flt3 in developmental hematopoiesis and model human FLT3-ITD(+) and FLT3-TKD(+) AML. Zebrafish flt3 JMD and TKD were remarkably similar to their mammalian orthologs. Morpholino knockdown significantly reduced the expression of l-plastin (pan-leukocyte), csf1r, and mpeg1 (macrophage) as well as that of c-myb (definitive HSPCs), lck, and rag1 (T-lymphocyte). Expressing human FLT3-ITD in zebrafish embryos resulted in expansion and clustering of myeloid cells (pu.1(+), mpo(+), and cebpα(+)) which were ameliorated by AC220 and associated with stat5, erk1/2, and akt phosphorylation. Human FLT3-TKD (D835Y) induced significant, albeit modest, myeloid expansion resistant to AC220. This study provides novel insight into the role of flt3 during hematopoiesis and establishes a zebrafish model of FLT3-ITD(+) and FLT3-TKD(+) AML that may facilitate high-throughput screening of novel and personalized agents.
Collapse
Affiliation(s)
- Bai-Liang He
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells. Exp Hematol 2013; 42:218-229.e4. [PMID: 24333663 DOI: 10.1016/j.exphem.2013.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Defining differentiation pathways is central to understanding the pathogenesis of hematopoietic disorders, including leukemia. The function of the receptor tyrosine kinase Flk2 (Flt3) in promoting myeloid development remains poorly defined, despite being commonly mutated in acute myeloid leukemia. We investigated the effect of Flk2 deficiency on myelopoiesis, focusing on specification of progenitors between HSC and mature cells. We provide evidence that Flk2 is critical for proliferative expansion of multipotent progenitors that are common precursors for all lymphoid and myeloid lineages, including megakaryocyte/erythroid (MegE) cells. Flk2 deficiency impaired the generation of both lymphoid and myeloid progenitors by abrogating propagation of their common upstream precursor. At steady state, downstream compensatory mechanisms masked the effect of Flk2 deficiency on mature myeloid output, whereas transplantation of purified progenitors revealed impaired generation of all mature lineages. Flk2 deficiency did not affect lineage choice, thus dissociating the role of Flk2 in promoting cell expansion and regulating cell fate. Surprisingly, despite impairing myeloid development, Flk2 deficiency afforded protection against myeloablative insult. This survival advantage was attributed to reduced cell cycling and proliferation of progenitors in Flk2-deficient mice. Our data support the existence of a common Flk2(+) intermediate for all hematopoietic lineages and provide insight into how activating Flk2 mutations promote hematopoietic malignancy by non-Flk2-expressing myeloid cells.
Collapse
|
18
|
Differential requirement for wild-type Flt3 in leukemia initiation among mouse models of human leukemia. Exp Hematol 2013; 42:192-203.e1. [PMID: 24269847 DOI: 10.1016/j.exphem.2013.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/08/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022]
Abstract
FLT3 is one of the most frequently mutated genes in acute leukemias. However, the role in leukemogenesis of wild-type (wt) FLT3, which is highly expressed in many hematologic malignancies, is unclear. We show here that in mouse models established by retroviral transduction of leukemic fusion proteins, deletion of Flt3 strongly inhibits MLL-ENL and to lesser extent p210(BCR-ABL)-induced leukemogenesis, but has no effect in MLL-AF9 or AML1-ETO9a models. Flt3 acts at the level of leukemic stem cells (LSCs), as a fraction of LSCs in MLL-ENL, but not in MLL-AF9-induced leukemia, expressed Flt3 in vivo, and Flt3 expression on LSCs was associated with leukemia development in this model. Furthermore, efficiency of MLL-ENL, but not of MLL-AF9-induced leukemia induction was significantly enhanced after transduction of Flt3(+) compared to Flt3(-) wt myeloid progenitors. However, Flt3 is not required for immortalization of bone marrow cells in vitro by MLL-ENL and does not affect colony formation by MLL-ENL LSCs in vitro, suggesting that in vitro models do not reflect the in vivo biology of MLL-ENL leukemia with respect to Flt3 requirement. We conclude that wt Flt3 plays a role in leukemia initiation in vivo, which is, however, not universal.
Collapse
|
19
|
Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, Hunt A, Bhaskara S, Luzwick JW, Sampathi S, Chen X, Thompson MA, Cortez D, Hiebert SW. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest 2013; 123:3112-23. [PMID: 23921131 DOI: 10.1172/jci60806] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3-5 times more multipotent progenitor cells. Hdac3(-/-) stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3(-/-) stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3(-/-) stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis.
Collapse
Affiliation(s)
- Alyssa R Summers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dyer KD, Percopo CM, Rosenberg HF. IL-33 promotes eosinophilia in vivo and antagonizes IL-5-dependent eosinophil hematopoiesis ex vivo. Immunol Lett 2012; 150:41-7. [PMID: 23246474 DOI: 10.1016/j.imlet.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 01/07/2023]
Abstract
IL-33 is an IL-1 family cytokine that elicits IL-5-dependent eosinophilia in vivo. We show here that IL-33 promotes minimal eosinophil hematopoiesis via direct interactions with mouse bone marrow progenitors ex vivo and that it antagonizes eosinophil hematopoiesis promoted by IL-5 on SCF and Flt3L primed bone marrow progenitor cells in culture. SCF and Flt3L primed progenitors respond to IL-33 by acquiring an adherent, macrophage-like phenotype, and by releasing macrophage-associated cytokines into the culture medium. IL-33-mediated antagonism of IL-5 was reproduced in part by the addition of GM-CSF and was inhibited by the actions of neutralizing anti-GM-CSF antibody. These findings suggest that the direct actions of IL-33 on bone marrow progenitors primed with SCF and Flt3L are antagonistic to the actions of IL-5 and are mediated in part by GM-CSF.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Inflammation Immunobiology Section of the Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1883, USA.
| | | | | |
Collapse
|
21
|
Chu SH, Heiser D, Li L, Kaplan I, Collector M, Huso D, Sharkis SJ, Civin C, Small D. FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis, leading to myeloproliferative neoplasm. Cell Stem Cell 2012; 11:346-58. [PMID: 22958930 PMCID: PMC3725984 DOI: 10.1016/j.stem.2012.05.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/30/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022]
Abstract
Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) render the receptor constitutively active driving proliferation and survival in leukemic blasts. Expression of FLT3-ITD from the endogenous promoter in a murine knockin model results in progenitor expansion and a myeloproliferative neoplasm. In this study, we show that this expansion begins with overproliferation within a compartment of normally quiescent long-term hematopoietic stem cells (LT-HSCs), which become rapidly depleted. This depletion is reversible upon treatment with the small molecule inhibitor Sorafenib, which also ablates the disease. Although the normal LT-HSC has been defined as FLT3(-) by flow cytometric detection, we demonstrate that FLT3 is capable of playing a role within this compartment by examining the effects of constitutively activated FLT3-ITD. This indicates an important link between stem cell quiescence/homeostasis and myeloproliferative disease while also giving novel insight into the emergence of FLT3-ITD mutations in the evolution of leukemic transformation.
Collapse
Affiliation(s)
- S. Haihua Chu
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Diane Heiser
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Li Li
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Ian Kaplan
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Pediatric Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Michael Collector
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - David Huso
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Molecular and Comparative Pathobiology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Saul J Sharkis
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Curt Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Don Small
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Pediatric Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| |
Collapse
|
22
|
Avagyan S, Aguilo F, Kamezaki K, Snoeck HW. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis. Blood 2011; 118:6078-86. [PMID: 21967974 PMCID: PMC3234666 DOI: 10.1182/blood-2011-07-365080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/23/2011] [Indexed: 01/21/2023] Open
Abstract
Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.
Collapse
Affiliation(s)
- Serine Avagyan
- Children's Hospital of New York-Presbyterian, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Abstract
Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3− Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.
Collapse
|
24
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
25
|
Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood 2010; 115:5061-8. [PMID: 20393130 DOI: 10.1182/blood-2009-12-258756] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mice deficient in c-fms-like tyrosine kinase 3 (FLT3) signaling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harboring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors (GMP), possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function, and role of FLT3 in recently identified early GMPs. Flt3-cre fate-mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3-expressing progenitors. A higher expression of FLT3 was found in preGMP compared with GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both thrombopoietin (THPO) and FL had a more pronounced GMP phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and -independent regulation of GMPs, of likely significance for myeloid malignancies with Flt3-ITD mutations.
Collapse
|
26
|
Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 2010; 95:328-38. [PMID: 20211243 DOI: 10.1016/j.ygeno.2010.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 12/24/2022]
Abstract
Very large microarray datasets showing gene expression across multiple tissues and cell populations provide a window on the transcriptional networks that underpin the differences in functional activity between biological systems. Clusters of co-expressed genes provide lineage markers, candidate regulators of cell function and, by applying the principle of guilt by association, candidate functions for genes of currently unknown function. We have analysed a dataset comprising pure cell populations from hemopoietic and non-hemopoietic cell types (http://biogps.gnf.org). Using a novel network visualisation and clustering approach, we demonstrate that it is possible to identify very tight expression signatures associated specifically with embryonic stem cells, mesenchymal cells and hematopoietic lineages. Selected examples validate the prediction that gene function can be inferred by co-expression. One expression cluster was enriched in phagocytes, which, alongside endosome-lysosome constituents, contains genes that may make up a 'pathway' for phagocyte differentiation. Promoters of these genes are enriched for binding sites for the ETS/PU.1 and MITF families. Another cluster was associated with the production of a specific extracellular matrix, with high levels of gene expression shared by cells of mesenchymal origin (fibroblasts, adipocytes, osteoblasts and myoblasts). We discuss the limitations placed upon such data by the presence of alternative promoters with distinct tissue specificity within many protein-coding genes.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute, Roslin Biocentre, Roslin, Midlothian, UK.
| | | | | | | | | |
Collapse
|
27
|
de Kruijf EJFM, Hagoort H, Velders GA, Fibbe WE, van Pel M. Hematopoietic stem and progenitor cells are differentially mobilized depending on the duration of Flt3-ligand administration. Haematologica 2010; 95:1061-7. [PMID: 20081057 DOI: 10.3324/haematol.2009.016691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Flt3-ligand is a cytokine that induces relatively slow mobilization of hematopoietic cells in animals and humans in vivo. This provides a time-frame to study hematopoietic stem and progenitor cell migration kinetics in detail. DESIGN AND METHODS Mice were injected with Flt3-ligand (10 microg/day, intraperitoneally) for 3, 5, 7 and 10 days. Mobilization of hematopoietic stem and progenitor cells was studied using colony-forming-unit granulocyte/monocyte and cobblestone-area-forming-cell assays. The radioprotective capacity of mobilized peripheral blood mononuclear cells was studied by transplantation of 1.5 x 10(6) Flt3-ligand-mobilized peripheral blood mononuclear cells into lethally irradiated (9.5 Gy) recipients. RESULTS Hematopoietic progenitor cell mobilization was detected from day 3 onwards and prolonged administration of Flt3-ligand produced a steady increase in mobilized progenitor cells. Compared to Flt3-ligand administration for 5 days, the administration of Flt3-ligand for 10 days led to a 5.5-fold increase in cobblestone-area-forming cells at week 4 and a 5.0-fold increase at week 5. Furthermore, transplantation of peripheral blood mononuclear cells mobilized by 5 days of Flt3-ligand administration did not radioprotect lethally irradiated recipients, whereas peripheral blood mononuclear cells mobilized by 10 days of Flt3-Ligand administration did provide 100% radioprotection of the recipients with significant multilineage donor chimerism. Compared to the administration of Flt3-ligand or interleukin-8 alone, co-administration of interleukin-8 and Flt3-ligand led to synergistic enhancement of hematopoietic stem and progenitor cell mobilization on days 3 and 5. CONCLUSIONS These results indicate that hematopoietic stem and progenitor cells show different mobilization kinetics in response to Flt3-ligand, resulting in preferential mobilization of hematopoietic progenitor cells at day 5, followed by hematopoietic stem cell mobilization at day 10.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center PO Box 9600, 2300 RC Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
Expression, purification and characterization of the extracellular domain of human Flt3 ligand in Escherichia coli. Mol Biol Rep 2009; 37:2301-7. [PMID: 19693697 DOI: 10.1007/s11033-009-9724-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Fms-like tyrosine kinase 3 ligand (Flt3 ligand, FL) is a cytokine that affects the growth, survival and/or differentiation of hematopoietic cells through the activation of specific tyrosine kinase receptors, and is potentially useful for in vitro HSC amplification. To express the extracellular domain of human Flt3 ligand (hFL(ext)) in Escherichia coli, we cloned hFL(ext) and constructed the recombinant expression vector pET32a-hFL(ext). hFL(ext) was successfully expressed in E. coli as a Trx fusion protein (Trx-hFL(ext)) under IPTG (isopropyl-beta-D: -thiogalactopyranoside) induction for 12 h at 30 degrees C. The Trx-hFL(ext) protein, expressed in inclusion bodies even at a low induction temperature, was successfully refolded and purified using dialysis and affinity chromatography. The purified hFL(ext) was biologically active and could effectively stimulate the proliferation of mouse bone marrow nucleated cells revealed by cell proliferation assay and colony forming assay. In addition, in synergize with G-CSF and TPO, recombinant purified hFL(ext) could stimulate ex vivo expansion of murine Lin(-)Sca-1(+)c-Kit(+) cells. Therefore, using the E. coli expression system and an affinity chromatography system, we successfully expressed, refolded, and purified a biologically active Trx-hFL(ext) protein which might be potentially useful for in vitro HSC amplification.
Collapse
|